Меню

Получение электрического тока из света



3 способа получить электричество из земли своими руками

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы. В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться.

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

получить электроэнергию из земли

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

получить электроэнергию из земли

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Источник

Новая технология позволяет получить ток даже от света ламп

Если внимательно посмотреть вокруг, то может оказаться, что энергия, которой так не хватает, расходуется слишком расточительно. Например, лампы, освещающие помещения, испускают свет, который можно с успехом использовать для получения тока. Раньше на это бы просто не обратили внимания, или сочли бы малозначительным, но только не сейчас… Исследования китайских и британских ученых показали, что использование солнечных панелей на основе перовскита может быть весьма перспективным.

Они изучили свойства материалов, не содержащих свинец, но содержащих перовскит, и пришли к любопытным выводам. Их можно применять в солнечных панелях нового типа, обеспечив последние весомыми преимуществами. Одно из них – безопасность для человека, обуславливаемая отсутствием в их составе свинца. Так же были обнаружены и минусы. Панели, выполненные из материалов PIM, показали меньшую эффективность поглощения солнечного света. Кроме того, их свойства ограничены сравнительно небольшим сроком. Но исследования были продолжены.

В их ходе было выяснено, что эффективность PIM на солнечном свету не превышает 1%. Однако, если освещать такие панели искусственным светом (например, обычными бытовыми лампами), то этот показатель вырастает до 4-5%. Значение эффективности может показаться небольшим, но все относительно. Эти цифры вполне соотносятся с текущими стандартами в отрасли фотовольтаики, а тока, получаемого от таких PIM-панелей, вполне достаточно для работы микромощных схем на пленочных транзисторах. Это делает технологию применимой коммерчески.

Читайте также:  Работа силы тока без силы тока

Новая технология позволяет получить ток даже от света ламп

Фото theelectricenergy.com

Исследователи уверены в большом потенциале PIM-материалов. Кроме того, ученые уже имеют основания говорить, что текущие характеристики могут быть существенно улучшены в будущем. Диапазон применения таких материалов и панелей на их основе крайне широк. Их можно использовать для питания слаботочной электроники, например, телефонов, или компактных динамиков. Свойства нового материала допускают его введение в состав пластиков и тканей, что еще больше увеличивает возможности его практического применения.

Источник

История открытия электричества

Электричество – обыденное и жизненно необходимое для большинства людей явление. И как любая привычная вещь, оно редко заметно. Мало кто задаётся вопросом откуда оно появляется, как работает, что с его помощью можно сделать. Однако, его исследованием занимались задолго до нашей эры и до сих пор некоторые загадки остаются без ответа.

История открытия электричества

Что понимают под электрическим током

Электричество – это комплекс явлений, связанный с существованием электрических зарядов. Под этим словом чаще всего подразумевается электрический ток и все процессы, которые он вызывает.

Электрический ток – это направленное движение частиц, несущих заряд, под воздействием электрического поля.

Кто придумал электричество — история

Частные проявления электричества изучались ещё задолго до нашей эры. Но соединить их в одну теорию, объясняющую вспышки молний в небе, притяжение предметов, способность вызывать пожары и онемение частей тела или даже смерть человека, оказалось непростой задачей.

История открытия электричества

Учёные издревле изучали три проявления электричества:

  • Рыбы, вырабатывающие электричество;
  • Статическое электричество;
  • Магнетизм.

В Древнем Египте целители знали о странных способностях нильского сома и пытались с его помощью лечить головную боль и другие заболевания. Древнеримские врачи использовали в сходных целях электрического ската. Древние греки подробно изучали странные способности ската и знали, что оглушить человека существо могло без прямого контакта через трезубец и рыболовные сети.

Несколько раньше было обнаружено, что если потереть янтарь о кусок шерсти, то он начнёт притягивать шерстинки и небольшие предметы. Позже был открыт и другой материал со сходными свойствами – турмалин.

Примерно в 500-х годах до н.э. индийские и арабские учёные знали о веществах, способных притягивать железо и активно использовали эту способность в разных областях. Около 100-го года до н.э. китайские учёные изобрели магнитный компас.

В 1600 году Уильям Гилберт, придворный врач Елизаветы I и Якова I, обнаружил, что вся планета – это один огромный компас и ввел понятие «электричество» (с греческого «янтарность»). В его трудах эксперименты с натиранием янтаря о шерсть и способность компаса указывать на север начали объединяться в одну теорию. На картине ниже он демонстрирует магнит Елизавете I.

История открытия электричества

В 1633 год инженер Отто фон Герике изобретает электростатическую машину, которая может не только притягивать, но и отталкивать предметы, а в 1745 году Питер ван Мушенбрук сооружает первый в мире накопитель электрического заряда.

В 1800 году итальянец Алессандро Вольта изобретает первый источник тока – электрическую батарею, вырабатывающую постоянный ток. Также он смог передать электрический ток на расстояние. Поэтому именно этот год многие считают годом изобретения электричества.

В 1831 году Майк Фарадей открывает явление электромагнитной индукции и открывает направление для изобретения различных устройств на основе электрического тока.

История открытия электричества

На рубеже XIX-XX веков совершается огромное количество открытий и достижений, благодаря деятельности Николы Тесла. Среди прочего, он изобрёл высокочастотный генератор и трансформатор, электродвигатель, антенну для радиосигналов.

Наука, изучающая электричество

Электричество – природное явление. Оно частично изучается в биологии, химии и физике. Наиболее полно электрические заряды рассматриваются в рамках электродинамики – одного из разделов физики.

Теории и законы электричества

Законов, которым подчиняется электричество немного, но они полностью описывают явление:

  • Закон сохранения энергии – фундаментальный закон, которому подчиняются и электрические явления;
  • Закон Ома – основной закон электрического тока;
  • Закон электромагнитной индукции – о электромагнитном и магнитном полях;
  • Закон Ампера – о взаимодействии двух проводников с токами;
  • Закон Джоуля-Ленца – о тепловом эффекте электричества;
  • Закон Кулон – об электростатике;
  • Правила правой и левой руки – определяющие направления силовых линий магнитного поля и силы Ампера, действующей на проводник в магнитном поле;
  • Правило Ленца – определяющее направление индукционного тока;
  • Законы Фарадея – об электролизе.

Первые опыты с электричеством

Первые опыты с электричеством носили, в основном, развлекательный характер. Их суть была в лёгких предметах, которые притягивались и отталкивались под действием плохо изученной силы. Другой занимательный опыт – передача электричества через цепочку людей, взявшихся за руки. Физиологическое действие электричества активно изучал Жан Нолле, заставивший пройти электрический заряд через 180 человек.

Читайте также:  Расчет токов короткого замыкания для генератора

Из чего состоит электрический ток

Электрический ток – это направленное или упорядоченное движение заряженных частиц (электронов, ионов). Такие частицы называют носителями электрического заряда. Для того чтобы движение появилось, в веществе должны быть свободные заряженные частицы. Способность заряженных частиц перемещаться в веществе определяет проводимость этого вещества. По проводимости вещества различают на проводники, полупроводники, диэлектрики и изоляторы.

История открытия электричества

В металлах заряд перемещают электроны. Само вещество при этом никуда не утекает – ионы металла надёжно закреплены в узлах структуры и лишь слегка колеблются.

В жидкостях заряд переносят ионы: положительно заряженные катионы и отрицательно заряженные анионы. Частицы устремляются к электродам с противоположным зарядом, где становятся нейтральными и оседают.

В газах под действием сил с разными потенциалами образуется плазма. Заряд переносится свободными электронами и ионами обоих полюсов.

В полупроводниках, заряд перемещают электроны, перемещаясь от атома к атому и оставляя после себя разрывы, считающиеся положительно заряженными.

История открытия электричества

Откуда берется электрический ток

Электричество, поступающее по проводам в дома, вырабатывается электрическим генератором на различных электростанциях. На них генератор соединён с постоянно вращающейся турбиной.

В конструкции генератора есть ротор – катушка, которая располагается между полюсами магнита. При вращении турбиной этого ротора в магнитном поле по законам физики появляется или наводится электрический ток. Таким образом назначение генератора – преобразовывать кинетическую силу вращения в электричество.

История открытия электричества

Заставить турбину крутиться можно многими способами, используя разнообразные источники энергии. Они разделяются на три вида:

  • Возобновляемые – энергия, получаемая из неисчерпаемых ресурсов: потоков воды, солнечного света, ветра, геотермальных источников и биотоплива;
  • Невозобновляемые – энергия, получаемая из ресурсов, которые возникают очень медленно, несоизмеримо с темпами расходования: уголь, нефть, торф, природный газ;
  • Ядерные – энергия, получаемая из процесса ядерного деления клеток.

Чаще всего электроэнергия возникает благодаря работе:

  • Гидроэлектростанций (ГЭС) – строятся на реках и используют силу водного потока;
  • Тепловых электростанций (ТЭС) – работают на тепловой энергии от сжигания топлива;
  • Атомные электростанции (АЭС) – работают на тепловой энергии, получаемой от процесса ядерной реакции.

Преобразованная энергия по проводам поступает в трансформаторные подстанции и распределительные устройства и уже потом доходит до конечного потребителя.

Сейчас активно развиваются так называемые альтернативные виды энергии. К ним относят ветрогенераторы, солнечные батареи, использование геотермальных источников и любые другие способы получить электроэнергию через необычные явления. Альтернативная энергетика сильно уступает по производительности и окупаемости традиционным источникам, но в определённых ситуациях помогают сэкономить и снизить нагрузку на основные электросети.

Также есть миф о существовании БТГ — бестопливных генераторов. В интернете есть ролики демонстрирующие их работу и предлагается их продажа. Но о достоверности этой информации идут большие споры.

Виды электричества в природе

Самый простой пример электричества, возникающего естественным путём – это молнии. Частицы воды в облаках постоянно сталкиваются друг с другом, приобретая положительный или отрицательный заряд. Более лёгкие, положительно заряженные частицы оказываются в верхней части облака, а тяжёлые отрицательные перемещаются вниз. Когда два подобных облака оказываются на достаточно близком расстоянии, но на разной высоте, положительные заряды одного начинают взаимно притягиваться отрицательными частицами другого. В этот момент и возникает молния. Также это явление возникает между облаками и самой земной поверхностью.

Другое проявление электричества в природе – это специальные органы у рыб, скатов и угрей. С их помощью они могут создавать электрические заряды, чтобы обороняться от хищников или оглушать своих жертв. Их потенциал – от совсем слабых разрядов, незаметных для человека, до смертельно опасных. Некоторые рыбы создают вокруг себя слабое электрическое поле, помогающее искать добычу и ориентироваться в мутной воде. Любой физический объект так или иначе искажает его, что помогает воссоздавать окружающее пространство и «видеть» без глаз.

Также электричество проявляется и в работе нервной системы живых организмов. Нервный импульс передаёт информацию от одной клетки к другой, позволяя реагировать на внешние и внутренние раздражители, мыслить и управлять своими движениями.

История открытия электричества

Что такое статическое электричество и как с ним бороться?

История открытия электричества

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

История открытия электричества

Чем отличаются и где используются постоянный и переменный ток

История открытия электричества

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Что такое анод и катод?

История открытия электричества

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Источник

Электричество из солнечного света: как это работает

Отправляемся в Калифорнию, чтобы поближе познакомиться с этим чудом техники.
Крупнейшая в мире солнечная электростанция «Айванпа» находится в 64 километрах от Лас-Вегаса. Как уже говорилось, она состоит из 350 тысяч зеркал-гелиостатов.

Читайте также:  Активная мощность двигателя постоянного тока

Гелиостат — это прибор, способный поворачивать зеркало так, чтобы направлять солнечные лучи постоянно в одном направлении, несмотря на видимое суточное движение Солнца.

3 поля гелиостатов окружают 40-этажные башни-электростанции. Зеркала фокусируют солнечный свет на котлах, находящихся на вершине башен (смотри заглавную фотографию). Вырабатывается пар, который приводит в движение турбины. Так появляется электрическая энергия, которой достаточно для питания 140 000 зданий в Калифорнии.

Выходная мощность крупнейшей в мире солнечной электростанции составляет почти 392 МВт.

Гелиостаты солнечной электростанции Айванпа

Как видно, гелиостат состоит из двух зеркал и управляющего механизма. Количество таких гелиостатов здесь — 173 500 штук. Соответственно, зеркал в 2 раза больше.

Внизу каждой из трех электростанций находятся охлаждающие системы. Вверху — паровой котел.

Пункт управления электростанцией.

Графическая система управления крупнейшей в мире солнечной электростанцией Айванпа.

Автомобили на дороге для осознания масштабов.

Две из трех электростанций. Видно, как вырабатывается пар в котлах от солнечной энергии, фокусируемой гелиостатами.

Так светится башня-приемник солнечной энергии с котлами внутри.

Вид с воздуха на одно из зеркальных полей с электростанцией посредине.

Как уже говорилось, все здесь 3 поля с гелиостатами.
Постройка солнечной электростанции «Айванпа» является частью государственной программы, по которой Соединенные Штаты намерены к 2020 году перевести третью часть объема добываемой энергии на возобновляемые источники.

Источник

Как получить бесплатное электричество (мы нашли четыре способа)

Как получить электричество от батареи отопления

Для того чтобы получить бесплатное электричество от радиаторов отопления, нам понадобится дополнительное оборудование в виде термоэлектрического элемента Пельтье. Элемент Пельтье представляет собой две керамические пластины, между которыми заключено большое количество полупроводников в виде термопар.

Принцип действия основан на возникновении разности температур при протекании электрического тока. Обычно такие устройства используют для создания мобильных холодильных установок, но можно добиться и обратного эффекта. Достаточно изменить полярность подключения элемента, и эффект охлаждения сменится на нагревание.

Если с одной стороны подвести тепло к этому элементу, а с другой, наоборот, охлаждать его, то благодаря созданию разности температур на его поверхностях, можно снимать с него электроэнергию, которой вполне хватит, например для работы светодиодной лампы.

Чтобы закрепить конструкцию на трубе отопления, можно воспользоваться алюминиевым уголком. А для повышения плотности контакта образовавшиеся зазоры можно уплотнить алюминиевой фольгой.

Также потребуется преобразователь напряжения, который повышает создаваемое элементом Пельтье напряжение 0,5 В до 3 – 5 В, необходимых для работы светодиодной лампы.

С одной стороны мы нагреваем элемент Пельтье теплом от радиатора отопления, а с другой стороны охлаждаем его окружающим воздухом. Чтобы увеличить площадь поверхности охлаждения, можно использовать обычный радиатор охлаждения от старого компьютера. Чем больше будет его площадь, тем лучше.

Такое устройство может пригодиться в качестве бесплатного дежурного освещения, например, в подъезде. Конечно, этот метод получения электричества можно назвать лишь условно бесплатным, ведь за отопление вы так или иначе платите деньги, но почему бы не использовать кэшбек в виде бесплатной электроэнергии?

Электроэнергия из водопровода

Второй не менее интересный способ — врезка минигенератора в водопровод. Получение электричества от энергии движения потока воды само по себе не ново. Гидроэлектростанции, использующие подобный принцип, работают по всему миру. А плотины для их использования являются одними из самых сложных технических устройств.

В процессе строительства участвовали более 5 тыс. рабочих, 96 человек погибло.

Небольшие генераторы, которые можно установить непосредственно в домашний водопровод, можно приобрести в интернет-магазинах. Генератор, подключают к небольшому аккумулятору и используют накопленную таким образом электроэнергию для освещения.

Некоторые умельцы делают такие генераторы своими руками, собирая их из старого водяного счетчика и помпы от стиральной машины. Подключают такие генераторы даже к бачкам унитаза. Расчеты показывают, что выработки электричества от одного смыва бачка унитаза хватит на 12 минут непрерывного свечения светодиодной лампы мощностью 5 ватт.

Электричество от самодельных элементов питания

Электроэнергию можно получить от импровизированных батареек, собранных буквально «на коленке». Как известно любая батарея использует в своей основе заряженные частицы образующиеся в процессе взаимодействия металлов, помещенных в токопроводящую жидкость.

Достаточно взять две пластины различных металлов, например, цинка и меди, и поместить их в стаканчик с водой, а затем замкнуть эту цепь, используя в качестве нагрузки светодиодную лампу. Такая конструкция позволит вам получить порядка 0,8 В.

Причем это напряжение не будет зависеть от площади пластин.

Если подсоединить несколько таких пар пластин последовательно, то вы получите довольно емкую батарею, которой хватит на работу хорошего светодиодного фонаря.

Источник