Меню

Полезная мощность батареи источников тока



Полезная мощность

При подключении электроприборов к электросети обычно имеет значение только мощность и КПД самого электроприбора. Но при использовании источника тока в замкнутой цепи важна полезная мощность, которую он выдаёт. В качестве источника могут применяться генератор, аккумулятор, батарея или элементы солнечной электростанции. Для расчётов это принципиального значения не имеет.

Замкнутая электрическая цепь

Замкнутая электрическая цепь

Параметры источника питания

При подключении электроприборов к электропитанию и создании замкнутой цепи, кроме энергии Р, потребляемой нагрузкой, учитываются следующие параметры:

  • Роб. (полная мощность источника тока), выделяемая на всех участках цепи;
  • ЭДС – напряжение, вырабатываемое элементом питания;
  • Р (полезная мощность), потребляемая всеми участками сети, кроме источника тока;
  • Ро (мощность потерь), потраченная внутри батареи или генератора;
  • внутреннее сопротивление элемента питания;
  • КПД источника электропитания.

Внимание! Не следует путать КПД источника и нагрузки. При высоком коэффициенте батареи в электроприборе он может быть низким из-за потерь в проводах или самом устройстве, а также наоборот.

Об этом подробнее.

Полная энергия цепи

При прохождении электрического тока по цепи выделяется тепло, или совершается другая работа. Аккумулятор или генератор не являются исключением. Энергия, выделенная на всех элементах, включая провода, называется полной. Она рассчитывается по формуле Роб.=Ро.+Рпол., где:

  • Роб. – полная мощность;
  • Ро. – внутренние потери;
  • Рпол. – полезная мощность.

Полная и полезная мощность

Полная и полезная мощность

Внимание! Понятие о полной мощности используется не только в расчётах полной цепи, но также в расчетах электродвигателей и других устройств, потребляющих вместе с активной реактивную энергию.

ЭДС и напряжение

ЭДС, или электродвижущая сила, – напряжение, вырабатываемое источником. Измерить его можно только в режиме Х.Х. (холостого хода). При подключении нагрузки и появлении тока от значения ЭДС вычитается Uо. – потери напряжения внутри питающего устройства.

ЭДС и напряжение

ЭДС и напряжение

Полезная мощность

Полезной называют энергию, выделенную во всей цепи, кроме питающего устройства. Она высчитывается по формуле:

  1. «U» – напряжение на клеммах,
  2. «I» – ток в цепи.

В ситуации, при которой сопротивление нагрузки равно сопротивлению источника тока, она максимальна и равна 50% полной.

При уменьшении сопротивления нагрузки ток в цепи растёт вместе с внутренними потерями, а напряжение продолжает падать, и при достижении нуля ток будет максимальным и ограниченным только Rо. Это режим К.З. – короткого замыкания. При этом энергия потерь равна полной.

При росте сопротивления нагрузки ток и внутренние потери падают, а напряжение растёт. При достижении бесконечно большой величины (разрыве сети) и I=0 напряжение будет равно ЭДС. Это режим Х..Х. – холостого хода.

Потери внутри источника питания

Аккумуляторы, генераторы и другие устройства имеют внутреннее сопротивление. При протекании через них тока выделяется энергия потерь. Она рассчитывается по формуле:

где «Uо» – падение напряжения внутри прибора или разница между ЭДС и выходным напряжением.

Внутреннее сопротивление источника питания

Для расчёта потерь Ро. необходимо знать внутреннее сопротивление устройства. Это сопротивление обмоток генератора, электролита в аккумуляторе или по другим причинам. Замерить его мультиметром не всегда возможно. Приходится пользоваться косвенными методами:

  • при включении прибора в режиме холостого хода замеряется Е (ЭДС);
  • при подключенной нагрузке определяются Uвых. (выходное напряжение) и ток I;
  • рассчитывается падение напряжения внутри устройства:
  • вычисляется внутреннее сопротивление:

Полезная энергия Р и КПД

В зависимости от конкретных задач, необходима максимальная полезная мощность Р или максимум КПД. Условия для этого не совпадают:

  • Р максимальна при R=Ro, при этом КПД = 50%;
  • КПД 100% в режиме Х.Х., при этом Р=0.

Мощность Р и КПД

Мощность Р и КПД

Получение максимальной энергии на выходе питающего устройства

Максимум Р достигается при условии равенства сопротивлений R (нагрузки) и Ro (источника электроэнергии). В этом случае КПД = 50%. Это режим «согласованной нагрузки».

Кроме него возможны два варианта:

  • Сопротивление R падает, ток в цепи увеличивается, при этом растут потери напряжения Uo и Ро внутри устройства. В режиме К.З. (короткого замыкания) сопротивление нагрузки равно «0», I и Ро максимальны, а КПД также 0%. Этот режим опасен для аккумуляторов и генераторов, поэтому не используется. Исключение составляют практически вышедшие из употребления сварочные генераторы и автомобильные аккумуляторы, которые при запуске двигателя и включении стартёра работают в режиме, близком к «К.З.»;
  • Сопротивление нагрузки больше внутреннего. В этом случае ток и мощность нагрузки Р падают, и при бесконечно большом сопротивлении они равны «0». Это режим Х.Х. (холостого хода). Внутренние потери в режиме, близком к Х.Х., очень малы, и КПД близок к 100%.

Следовательно, «Р» максимальна при равенстве внутреннего и внешнего сопротивлений и минимальна в остальных случаях за счёт высоких внутренних потерь при К.З и малого тока в режиме Х.Х.

Режим максимальной полезной мощности при эффективности 50% применяется в электронике при слабых токах. Например, в телефонном аппарате Рвых. микрофона – 2 милливатта, и важно максимально передать её в сеть, жертвуя при этом КПД.

Достижение максимального КПД

Максимальная эффективность достигается в режиме Х.Х. за счёт отсутствия потерь мощности внутри источника напряжения Ро. При росте тока нагрузки КПД линейно уменьшается и в режиме К.З. равен «0». Режим максимальной эффективности используется в генераторах электростанций, где согласованная нагрузка, максимальная полезная Ро и КПД 50% неприменимы из-за больших потерь, составляющих половину всей энергии.

Коэффициент полезного действия нагрузки

Эффективность электроприборов не зависит от батареи и никогда не достигает 100%. Исключение составляют кондиционеры и холодильники, работающие по принципу теплового насоса: охлаждение одного радиатора происходит за счёт нагрева другого. Если не учесть этот момент, то КПД получается выше 100%.

Энергия расходуется не только на выполнение полезной работы, но и на нагрев проводов, трение и другие виды потерь. В светильниках, кроме КПД самой лампы, следует обратить внимание на конструкцию отражателя, в нагревателях воздуха – на эффективность нагрева помещения, а в электродвигателях – на cos φ.

Читайте также:  Схема включения конденсатора в сеть переменного тока

Знание полезной мощности элемента электропитания необходимо для выполнения расчётов. Без этого невозможно достичь максимальной эффективности работы всей системы.

Видео

Источник

ЭНЕРГИЯ И МОЩНОСТЬ АККУМУЛЯТОРА

Энергия аккумулятора W выражается в Ватт-часах и определяется произведением его разрядной (зарядной) ёмкости на среднее разрядное (зарядное) напряжение:

где: Uр и Uз – средние значения разрядного или зарядного напряжения, В;

Ср и Сз – соответственно разрядная или зарядная ёмкость аккумулятора (батареи), А·ч;

tp и tз – соответственно продолжительность разряди или заряда, час;

n – количество измеренных значений напряжения в процессе разряда или заряда через равные интервалы времени.

Так как с изменением температуры и режима разряда меняются и ёмкость аккумулятора, и его разрядное напряжение, то при понижении температуры и увеличении разрядного тока энергия аккумулятора уменьшается ещё более значительно, чем его ёмкость.

При сравнении между собой химических источников тока, различающихся по ёмкости, конструкции и даже по электрохимической системе, а также при определении направлений их усовершенствования, пользуются показателем удельной энергии, то есть энергии, отнесенной к единице массы аккумулятора или его объёма. Для современных свинцовых стартерных батарей удельная энергия при двадцатичасовом режиме разряда составляет 40-47 Вт·ч/кг.

Количество энергии, отдаваемой аккумуляторной батареей в единицу времени, называется её мощностью. Мощность Р можно определить, как произведение величины разрядного тока на разрядное напряжение, то есть:

Мощность, рассеиваемая в замкнутой электрической цепи, то есть – полная мощность источника тока, определяется выражением:

Р = I ·U = I ( I · r + I · R) = I 2 · r + I 2 · R, (16)

где R – сопротивление внешней цепи, Ом; r – внутреннее сопротивление батареи, Ом.

Если батарея состоит из m последовательно соединённых аккумуляторов и q таких батарей соединены в параллельные группы, то, согласно закону Ома, разрядный ток в цепи будет определяться выражением:

Ip = m · U / ( R + m · r / q ).

Та часть мощности, которая определена выражением I 2 · r в формуле (17), расходуется внутри аккумулятора и никакой полезной работы не производит. Составляющая l 2 · R является полезной мощностью , развиваемой аккумулятором во внешней электрической цепи:

P´ = I · U — I 2 · r (17)

Из формулы видно, что полная мощность увеличивается с ростом тока. Максимальный ток во внешней цепи будет протекать при условии, что её сопротивление равно R = 0, то есть

При этом полезная мощность также будет равна нулю, так как вся развиваемая мощность расходуется в самом аккумуляторе.

Максимум полезной мощности получим, продифференцировав уравнение (17) по току и решив уравнение:

d/ dI = U – 2 I · r = 0

Отсюда определяем, что максимальная мощность max имеет место при равенстве сопротивлений внешней и внутренней цепи (R = r).

Таким образом, для получения во внешней цепи максимальной полезной мощности необходимо чтобы ее сопротивление было равно внутреннему сопротивлению аккумулятора (батареи).

На Рис. 23 показаны характер изменения энергии батареи и ее полезной мощности в зависимости от силы разрядного тока.

ХАРАКТЕРИСТИКИ СТАРТЕРНОГО РАЗРЯДА

АККУМУЛЯТОРНЫХ БАТАРЕЙ

Наиболее тяжёлым режимом работы для автомобильной аккумуляторной батареи является режим стартерного разряда при пуске двигателя. Из опыта проведения многочисленных испытаний известно, что пуск двигателя при различных условиях осуществляется в режиме, при котором сила тока разряда не остаётся постоянной, а изменяется в некотором диапазоне. Этот диапазон значений тока зависит от многих условий пуска, включая температуру двигателя и электролита батареи.

Для контроля технического уровня и качества производимых батарей используют непрерывный или прерывистый разряд при постоянной силе тока и температуре электролита –18°C. Существует несколько методик определения стартерных характеристик свинцовых аккумуляторных батарей, которые регламентированы стандартами разных стран.

В США Обществом Американских Инженеров (SAE) для оценки показателей стартерного разряда батарей применяют методику, позволяющую оценить максимальную мощность, которую аккумуляторная батарея способна отдать в режиме, обеспечивающем пуск двигателя. Согласно стандарту SAE J537, разряд проводится при температуре –18ºC (0ºF). При этом ток разряда Iхп выбирается таким, чтобы величина напряжения на выводах батареи на тридцатой секунде разряда была не ниже 7,2 В. График изменения напряжения при разряде батареи по методике SAE показан на Рис. 24.

В странах Европейского экономического сообщества (ЕЭС) в настоящее время применяется методика определения стартерных характеристик батарей по стандарту EN 50342+А1. При разработке этой методики была сделана попытка создания такого метода оценки, который позволяет сравнивать характеристики батарей, которые испытывались по SAE или по EN без проведения дополнительных испытаний или расчётов. Разряд проводится при температуре –18°C в две стадии (Рис. 25). Первая стадия разряда происходит при токе холодной прокрутки Iхп, указанном производителем батарей, в течение десяти секунд. При этом напряжение в конце десятой секунды должно быть не ниже 7,5 В. Затем разряд прекращают на десять секунд. После паузы разряд продолжают при токе, равном 0,6 Iхп, до конечного напряжения 6,0 В. При этом общее (приведённое) время разряда до напряжения 6,0 В должно быть не менее 90 секунд или 150.

Методика, которая окончательно сблизила требования Европейских инженеров и инженеров США, была принята в утверждённом в конце 2006 года документе МЭК 60095-1, который был учтён при разработке нового стандарта РФ – ГОСТ Р 53165-2008, действующего на территории Российской Федерации с 1 июля 2009 г. Согласно требованиям ГОСТ Р 53165-2008, разряд проводится при температуре –18°C в две стадии (см. Рис. 26). На первой стадии разряд производят при токе холодной прокрутки Iхп, указанном производителем батарей, в течение тридцати секунд. При этом напряжение в конце десятой секунды должно быть не ниже 7,5 В (см. требования EN), а в конце тридцатой секунды – не менее 7,2 В (см. SAE). Затем разряд прекращают на двадцать секунд. После двадцатисекундной паузы разряд продолжают при токе, равном 0,6 Iхп, до конечного напряжения 6,0 В. Время разряда током второй стадии до напряжения 6,0 В должно быть не менее 40 секунд. При этом общее (приведённое) время разряда батареи должно быть не менее 90 секунд.

Читайте также:  Электрический ток как вредный фактор производственной среды

Общее (приведённое) суммарное время разряда до 6,0 В определяется, как длительность второй стадии разряда, плюс соответствующая длительность первой стадии разряда, как если бы протекал ток 0,6 Iхп, то есть:

где t1 – время первой стадии разряда (30 секунд);

t2 – время второй стадии разряда до 6, В, секунд.

При этом, согласно табл. 9 ГОСТ Р 53165-2008, требование по продолжительности разряда током второй ступени является необязательным.

Вместе с тем методика, применённая в этом стандарте, позволяет дать более полную оценку энергетических возможностей батареи при стартерном разряде в сравнении со всеми ранее применявшимися.

При сравнении значений разрядного напряжения батарей при разряде по SAE, EN и ГОСТ Р 53165-2008, на десятой и тридцатой секунде, приведённых на Рис. 24, 25 и 26 можно заметить, что их величины практически совпадают.

Таким образом, можно утверждать, что токи разряда, определяемые по методикам SAE, EN и ГОСТ Р 53165-2008, практически одинаковы.

При этом можно также утверждать, что батарея, соответствующая по току холодной прокрутки требованиям EN и ГОСТ Р 53165-2008, будет соответствовать и требованиям SAE по стартерным характеристикам. Однако, если батарея соответствует требованиям SAE, это не обязательно будет означать, что она будет соответствовать также и требованиям ГОСТ Р 53165-2008 и EN, так как в SAE не предусмотрено после паузы продолжение разряда током второй ступени, равным 0,6 Iхп до напряжения 6,0 В.

Кроме разрядных характеристик, описанных выше, для практических целей используют разрядные характеристики стартерных батарей, называемые вольтамперными и получаемые в прерывистом разряде для определённых условий. Эти характеристики используются для расчётных исследований пусковых систем двигателей (мощности стартера).

Первоначальный выбор характеристик аккумуляторной батареи для конкретного автомобиля производят разработчики пусковой системы двигателя автомобиля. При этом расчёте принимают за основу разрядные характеристики батареи в прерывистом режиме разряда при начальной степени заряженности 75 % и на третьей попытке стартерного пуска. Температурные условия пуска двигателя задаёт разработчик автомобиля. Обычно для бензиновых двигателей на товарных маслах температура пуска принимается равной –20°С, а для дизельных двигателей – до –17°С. При более низких температурах предполагаются специальные средства для облегчения пуска (аэрозоль), применение систем для подогрева масла, воздуха, топлива (для дизелей), а также самой аккумуляторной батареи.

Источник

Что такое полная и полезная мощность источника тока

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью.

Она определяется по формуле

где Pоб-полная мощность, развиваемая источником тока во всей цепи, вт;

Е- э. д. с. источника, в;

I-величина тока в цепи, а.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R0 (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI.

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, Ее называют мощностью потерь Po=UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь Pоб=Pпол+P0.

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η.

Из определения следует

При любых условиях коэффициент полезного действия η ≤ 1.

Если выразить мощности через величину тока и сопротивления участков цепи, получим

Таким образом, к. п. д. зависит от соотношения между внутренним сопротивлением источника и сопротивлением потребителя.

Обычно электрический к. п. д. принято выражать в процентах.

Для практической электротехники особый интерес представляют два вопроса:

1. Условие получения наибольшей полезной мощности

2. Условие получения наибольшего к. п. д.

Наибольшую полезную мощность( мощность на нагрузке) электрический ток развивает в том случае, если сопротивление нагрузки равно сопротивлению источника тока.

Эта наибольшая мощность равна половине всей мощности (50%) развиваемой источником тока во всей цепи.

Половина мощности развивается на нагрузке и половина развивается на внутреннем сопротивлении источника тока.

Если будем уменьшать сопротивление нагрузки, то мощность развиваемая на нагрузке будет уменьшаться а мощность развиваемая на внутреннем сопротивлении источника тока будет увеличиваться.

Если сопротивление нагрузки равно нулю то ток в цепи будет максимальным, это режим короткого замыкания (КЗ). Почти вся мощность будет развивается на внутреннем сопротивлении источника тока. Этот режим опасен для источника тока а также для всей цепи.

Если сопротивление нагрузки будем увеличивать, то ток в цепи будет уменьшатся, мощность на нагрузке также будет уменьшатся. При очень большом сопротивлении нагрузки тока в цепи вообще не будет. Это сопротивление называется бесконечно большим. Если цепь разомкнута то ее сопротивление бесконечно большое. Такой режим называется режимом холостого хода.

Таким образом, в режимах, близких к короткому замыканию и к холостому ходу, полезная мощность мала в первом случае за счет малой величины напряжения, а во втором за счет малой величины тока.

Коэффициент полезного действия (к. п. д.) равен 100% при холостом ходе ( в этом случае полезная мощность не выделяется, но в то же время и не затрачивается мощность источника).

По мере увеличения тока нагрузки к. п. д. уменьшается по прямолинейному закону.

В режиме короткого замыкания к. п. д. равен нулю ( полезной мощности нет, а мощность развиваемая источником, полностью расходуется внутри него).

Подводя итоги вышеизложенному, можно сделать выводы.

Читайте также:  Механическая работа двигателя постоянного тока

Условие получения максимальной полезной мощности( R=R0) и условие получения максимального к. п. д. (R=∞) не совпадают. Более того, при получении от источника максимальной полезной мощности ( режим согласованной нагрузки) к. п. д.составляет 50%, т.е. половина развиваемой источником мощности бесполезно затрачивается внутри него.

В мощных электрических установках режим согласованной нагрузки является неприемлемым, так как при этом происходит бесполезная затрата больших мощностей. Поэтому для электрических станций и подстанций режимы работы генераторов, трансформаторов, выпрямителей рассчитываются так, чтобы обеспечивался высокий к. п. д. ( 90% и более).

Иначе обстоит дело в технике слабых токов. Возьмем, например, телефонный аппарат. При разговоре перед микрофоном в схеме аппарата создается электрический сигнал мощностью около 2 мвт. Очевидно, что для получения наибольшей дальности связи необходимо передать в линию как можно большую мощность, а для этого требуется выполнить режим согласованного включения нагрузки. Имеет ли в данном случае существенное значение к. п. д.? Конечно нет, так как потери энергии исчисляются долями или единицами милливатт.

Режим согласованной нагрузки применяется в радиоаппаратуре. В том случае, когда согласованный режим при непосредственном соединении генератора и нагрузки не обеспечивается, применяют меры согласования их сопротивлений.

Источник

Полная и полезная мощность. Коэффициент полезного действия (к. п. д. )

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью.

Она определяется по формуле

где Pоб-полная мощность, развиваемая источником тока во всей цепи, вт;

Е- э. д. с. источника, в;

I-величина тока в цепи, а.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI.

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, Ее называют мощностью потерь Po=UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь Pоб=Pпол+P0.

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η.

Из определения следует

При любых условиях коэффициент полезного действия η ≤ 1.

Если выразить мощности через величину тока и сопротивления участков цепи, получим

Таким образом, к. п. д. зависит от соотношения между внутренним сопротивлением источника и сопротивлением потребителя.

Обычно электрический к. п. д. принято выражать в процентах.

Для практической электротехники особый интерес представляют два вопроса:

1. Условие получения наибольшей полезной мощности

2. Условие получения наибольшего к. п. д.

Условие получения наибольшей полезной мощности (мощности в нагрузке)

Наибольшую полезную мощность( мощность на нагрузке) электрический ток развивает в том случае, если сопротивление нагрузки равно сопротивлению источника тока.

Эта наибольшая мощность равна половине всей мощности (50%) развиваемой источником тока во всей цепи.

Половина мощности развивается на нагрузке и половина развивается на внутреннем сопротивлении источника тока.

Если будем уменьшать сопротивление нагрузки, то мощность развиваемая на нагрузке будет уменьшаться а мощность развиваемая на внутреннем сопротивлении источника тока будет увеличиваться.

Если сопротивление нагрузки равно нулю то ток в цепи будет максимальным, это режим короткого замыкания (КЗ). Почти вся мощность будет развивается на внутреннем сопротивлении источника тока. Этот режим опасен для источника тока а также для всей цепи.

Если сопротивление нагрузки будем увеличивать, то ток в цепи будет уменьшатся, мощность на нагрузке также будет уменьшатся. При очень большом сопротивлении нагрузки тока в цепи вообще не будет. Это сопротивление называется бесконечно большим. Если цепь разомкнута то ее сопротивление бесконечно большое. Такой режим называется режимом холостого хода.

Таким образом, в режимах, близких к короткому замыканию и к холостому ходу, полезная мощность мала в первом случае за счет малой величины напряжения, а во втором за счет малой величины тока.

Условие получения наибольшего к. п. д коэффициента полезного действия

Коэффициент полезного действия (к. п. д.) равен 100% при холостом ходе ( в этом случае полезная мощность не выделяется, но в то же время и не затрачивается мощность источника).

По мере увеличения тока нагрузки к. п. д. уменьшается по прямолинейному закону.

В режиме короткого замыкания к. п. д. равен нулю ( полезной мощности нет, а мощность развиваемая источником, полностью расходуется внутри него).

Подводя итоги вышеизложенному, можно сделать выводы.

Условие получения максимальной полезной мощности( R=R) и условие получения максимального к. п. д. (R=∞) не совпадают. Более того, при получении от источника максимальной полезной мощности ( режим согласованной нагрузки) к. п. д.составляет 50%, т.е. половина развиваемой источником мощности бесполезно затрачивается внутри него.

В мощных электрических установках режим согласованной нагрузки является неприемлемым, так как при этом происходит бесполезная затрата больших мощностей. Поэтому для электрических станций и подстанций режимы работы генераторов, трансформаторов, выпрямителей рассчитываются так, чтобы обеспечивался высокий к. п. д. ( 90% и более).

Иначе обстоит дело в технике слабых токов. Возьмем, например, телефонный аппарат. При разговоре перед микрофоном в схеме аппарата создается электрический сигнал мощностью около 2 мвт. Очевидно, что для получения наибольшей дальности связи необходимо передать в линию как можно большую мощность, а для этого требуется выполнить режим согласованного включения нагрузки. Имеет ли в данном случае существенное значение к. п. д.? Конечно нет, так как потери энергии исчисляются долями или единицами милливатт.

Режим согласованной нагрузки применяется в радиоаппаратуре. В том случае, когда согласованный режим при непосредственном соединении генератора и нагрузки не обеспечивается, применяют меры согласования их сопротивлений.

Источник