- Метод подзаряда малым током.
- Подзарядка аккумуляторных батарей малыми токами
- Как правильно заряжать аккумулятор — полезные советы «За рулем»
- Надо заряжать или не надо?
- Возможен ли заряд на морозе?
- Как заряжать при нечастых поездках?
- Зарядное устройство или генератор — что лучше заряжает?
- Какой должен быть режим заряда?
- Снимать ли батарею с автомобиля для заряда?
- Можно «прикуривать» от другой машины?
- Как правильно заряжать аккумулятор автомобиля.
- Правила безопасности при зарядке автомобильного аккумулятора.
- Как определить заряжен или разряжен аккумулятор
- Каким током и напряжением следует заряжать аккумулятор
- Сколько времени необходимо заряжать аккумулятор
- Последствия глубоко разряда АКБ и как его правильно зарядить после этого
- Как часто нужно подзаряжать аккумулятор?
Метод подзаряда малым током.
Величина тока от 0,03 А до 0,5 А. Используется для компенсации тока саморазряда и поддержания АКБ в заряженном состоянии, также для восстановления ее емкости в тренировочном цикле.
Автоматический метод заряда. Современный, оптимальный метод заряда батарей, состоящий из двух этапов. На первом этапе производится заряд АКБ током постоянной силы 0,1Ср, после того как напряжение АКБ возрастет и достигнет 14,4-14,8 В (напряжения ограничения), дальнейшая подзарядка происходит при постоянном напряжении с автоматически уменьшающимся током.
Этот метод исключает отрицательные эффекты, присущие вышеперечисленным способам. Он обеспечивает автоматическое поддержание оптимальной скорости заряда, не допуская опасного для батареи перенапряжения, приводящего к обильному газовыделению и кипению электролита.
При правильно выбранном напряжении величина силы тока уменьшается до значения, компенсирующего саморазряд А=E.
Техника безопасности при зарядке АКБ:
- Производить заряд АКБ разрешается только в помещениях с подходящей приточно-вытяжной вентиляцией.
- Во время заряда выделяется взрывчатая смесь водорода и кислорода, вредная для жизни и взрывоопасная.
- Не подходите к аккумулятору, особенно во время заряда, с открытым огнем или зажженной сигаретой. Не производите никаких действий, способствующих образованию искры.
- При выключенном двигателе и всех потребителях электроэнергии отсоедините как описано выше и выньте аккумулятор из автомобиля (при зарядке батареи на автомобиле обязательно отсоедините электрические кабели и следуйте инструкции автомобиля).
- Аккумулятор заряжается только постоянным током.
- Запрещено осуществлять заряд аккумулятора высокими зарядными токами.
1.2.4 Проверка емкости аккумулятора мультиметром
Для профессиональной проверки емкости АКБ применяется тестер аккумуляторов Кулон. При отсутствии тестера аккумуляторов (когда нет необходимости в высокой точности), можно воспользоваться мультиметром [6] (приложение 1).
Порядок проведения проверки емкости АКБ:
1. Зажигание автомобиля должно быть выключенным;
2. Ставим переключатель режимов работы мультиметра в положение DCV (постоянное напряжение) на цифру 20 или ближайшую к ней в сторону увеличения;
3. Красный щуп к клемме «+», черный «-» (рисунок 1.2);
4. Значение напряжения считываем с экрана, или отсчитываем по шкале(в зависимости от конструкции прибора).
5. Степень заряженности АКБ контролируется по напряжению на клеммах АКБ. У полностью заряженного АКБ с номинальным напряжением 12В. напряжение на клеммах должно быть в пределах 12,6 – 13,0В (таблица 1.1).
6. Если меньше 12,6 В, то:
— Машина долго стояла (саморазряд+мелкие потребители типа сигнализации);
— Есть значительная утечка тока, снимаем любую клемму и в разрыв включаем тестер в режиме амперметра. Должно быть около 30-40мА (например нормальная сигнализация). Если больше — ищите утечку, если у вас не навешано потребителей типа пары дополнительных сигнализаций, камер слежения, аудиоаппаратуры в «спящем» режиме и т.п.
ВАЖНО: Не пытайтесь таким способом измерить пусковой ток, отдаваемый батареей при пуске двигателя. Ваш прибор может не выдержать и сгореть, а Вы можете получить хороший удар током;
— Батарея старая, и подлежит замене, в противном случае предстоит замена генератора.
Рисунок 1.2 – Проверка степени заряженности АКБ
Таблица 1.1 – Степень заряженности АКБ
Напряжение на клеммах, В | Степень заряженности, % |
12,6 | 100% |
12,4 | 75% |
12,2 | 50% |
12,0 | 25% |
11,8 | батарея разряжена |
Примечание: Если напряжение ниже 11V — батарею в утиль, есть риск сжечь зарядное устройство или генератор.
1.3 Порядок выполнения работы и составления отчета
1.3.1 Изучить самостоятельно теоретический материал по теме практической работы:
— методы заряда АКБ;
— проверку емкости АКБ.
1.3.2 По имеющейся АКБ:
— описать, на какие автомобили возможна установка;
— провести проверку емкости АКБ;
1.4 Контрольные вопросы
1.4.1 Назначение и устройство АКБ?
1.4.2 Перечислите обозначения, указываемые при маркировке АКБ?
1.4.3 Расскажите об особенностях зарядки АКБ.
1.4.4 Расскажите порядок проверки емкости АКБ.
Практическая работа № 2 (2 часа)
Генератор переменного тока
2.1 Цель работы: изучить устройство, принцип работы генератора переменного тока, а также проводить проверку генератора мультиметром.
2.2 Теоретическая часть
2.2.1 Устройство генератора переменного тока
Генератор – одно из важнейших устройств автомобиля (рисунок 2.1). Без него становиться невозможным нормальное функционирование всех блоков, узлов и приборов, которым нужна электрическая энергия. После запуска двигателя автогенератор включается на запитывание бортовой сети, а также на зарядку аккумуляторной батареи. Важно следить и периодически проверять натяжение ремня генератора. От этого зависит не только срок службы самого ремня, но и нормальная зарядка аккумуляторной батареи. При неправильной регулировке ремень может проскальзывать, в результате чего будет вырабатываться недостаточное напряжение. В такой ситуации аккумуляторная батарея не будет получать необходимый заряд и со временем может разрядиться [7].
2.2.2 Принцип работы генератора переменного тока
Генератор переменного тока приводиться в работу с помощью коленчатого вала через ремень привода. Он превращает механическую энергию, созданную двигателем автомобиля, в электрическую.
Вращающаяся часть привода называется ротором. Как правильно, в основных моделях это электрический магнит, обеспечивающий магнитное поле, которое в дальнейшем передается на статор.
Через коллекторные (роторные) кольца и щетки передается напряжение. Роторные кольца — это медные кольца, расположенные на задней части самого ротора. Они вращаются с ротором и коленчатым валом. Щетки прижимаются пружинами к кольцам. Щетки находятся на месте и не трутся поперек колец, что позволяет току передаваться от неподвижной части генератора к вращающейся.
Статор – это внешняя часть генератора переменного тока. Он состоит из трех катушек с проводом, окружающих ротор.
Магнитное поле, произведенное вращением ротора в статоре тоже вращается. Так как поле передвигается поперек катушек статора, оно производить электро потоки в них. Именно эти потоки заряжают аккумулятор.
Аккумулятор – это постоянный ток. Генератор переменного тока – переменный. Для того, чтобы переделать переменный в постоянный то необходим диодный мост. Он и расположен в задней части привода.
На диодном мосте обычно располагаются 9-10 диодов (диод — устройство с 2 контактами, позволяющее электрическому потоку проходить в одном направлении через него.)
Основные диоды, выпрямляющие напряжение для заряжения аккумулятора соединяются с тремя выводами статора. Кроме этого, выводы статора соединены с дополнительными диодами, дающие напряжение регулятору напряжения и лампе контролирующей зарядку.
Лампа, контролирующая зарядку, необходима генератору постоянного тока для контроля исправности привода и для запуска генератора. Генератор постоянного тока без лампы не запуститься на стандартных оборотах.
Рисунок 2.1 – Устройство автомобильного генератора переменного тока:
1 – задний подшипник; 2 – выпрямительный блок; 3 – контактные кольца; 4 – щетка; 5 – щеткодержатель; 6 – кожух; 7 – диод; 8 – втулка подшипника; 9 – винт; 10 – задняя крышка; 11 – крыльчатка; 12 – винт; 13 – ротор; 14 — обмотка статора; 15 – передняя крышка; 16 – вал ротора; 17 – шайба; 18 – гайка; 19 – шкив; 20 – передний подшипник; 21 – обмотка ротора; 22 — статор
2.2.3 Проверка исправности генератора переменного тока
В случае возникновения каких-либо проблем с электропитанием первый вопрос, который встает перед водителем – как проверить работу генератора. Разумеется, идеальный вариант провести диагностику на СТО. Но для выявления в полевых условиях (в собственном гараже) неисправности генератора, возможно при помощи обычного мультиметра.
Рассмотрим порядок диагностирования мультиметром:
1. Необходимо убедиться, что приводной ремень в хорошем состоянии и его натяжение в норме (приложение 2). Также проверить проводку генератора и аккумулятора (она должна быть в норме и не окислена, места крепления не ржавые).
2. Далее проверяем реле генератора. Перенапряжение в бортовой сети автомобиля способно вывести из строя различные приборы. Для поддержания правильной разности потенциалов используется реле-регулятор. Мультиметр переключаем в режим измерения напряжения. Заводим автомобиль. На клеммах АКБ или выходах генератора замеряем величину напряжения. Правильное значение должно быть в диапазоне 14-14.2 В. Нажимаем на акселератор (здесь понадобиться помощь помощника). Величина напряжение не должна измениться более чем на 0.5В. Если значения замеренных параметров отличаются от приведенных, это говорит о неправильной работе реле-регулятора.
3. Проверяем диодный мост, состоящий из шести диодов. Из них три можно назвать «положительными», а три – «отрицательными». Половина диодов имеет массу на аноде, а остальные – на катоде. Для проверки переводим мультиметр в режим «звука». Если замкнуть контакты щупов, будет слышен писк. Проверяем каждый диод в обоих направлениях. Писк должен быть слышен только в одном. Если диод звонится в обе стороны – значит, он пробит и его нужно менять. Желательно в таком случае произвести замену сразу всего моста.
4. Проверяем статор генератора. Данный блок выполнен в виде полого металлического цилиндра. Внутри уложена обмотка генератора. Для проверки нужно предварительно отсоединить от диодного моста выводы статора. Осматриваем состояние обмотки. Не должно быть подгораний и механических повреждений. Переводим тестер в режим измерения сопротивления. Проверяем обмотку на пробой. С этой целью замеряем сопротивление между корпусом статора и любым из выводов обмотки. Значение должно быть как можно большим, в идеале – стремящимся к бесконечности. Если тестер показывает меньше 50 КОм – значит, автогенератор скоро выйдет из строя.
5. Проверяем ротор генератора. Этот узел выполнен в виде металлического стержня, на который наматывается обмотка. На одном из концов стержня находятся кольца. По ним скользят щетки генератора. Извлекаем ротор и осматриваем состояние обмотки и подшипников. Проверяем мультиметром целостность обмотки. Замеряем сопротивление между контактными кольцами. Его значение должно быть порядка нескольких Ом. В случае короткого замыкания (сопротивление около нуля) или обрыва цепи требуется замена ротора.
Вышеописанный алгоритм может с успехом применяться как на большинстве современных автомобилей, так и на отечественных ВАЗ 2106, 2107, 2114 и т.д. главное условие – напряжение бортовой сети 12В.
2.3 Порядок выполнения работы и составления отчета
2.3.1 Изучить самостоятельно теоретический материал по теме практической работы:
— устройство генератора переменного тока;
— принцип работы генератора переменного тока;
— диагностика генератора переменного тока.
2.3.2 По имеющимся генераторам переменного тока:
— описать, на какие автомобили возможна установка;
2.4 Контрольные вопросы
2.4.1 Поясните назначение, устройство и принцип работы генератора переменного тока?
2.4.2 Каким образом проводится диагностика генератора переменного тока?
2.4.3 Поясните порядок проверки состояния, регулировки натяжения и как проводится замена приводных ремней?
Практическая работа № 3 (2 часа)
Регуляторы напряжения
3.1 Цель работы: изучить назначение, виды и принцип действия регуляторов напряжения.
3.2 Теоретическая часть
3.2.1 Назначение регуляторов напряжения
Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды [9]. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.
3.2.2 Виды и устройство регуляторов напряжения
Конструкция, технология изготовления и схемное исполнение регуляторов напряжения тесно связаны друг с другом [10]. Основные тенденции развития конструкций и схем обуславливаются стремлением миниатюризировать регулятор, чтобы при встраивании в генератор он занимал меньше места, увеличить число выполняемых им функции (например, наряду со стабилизацией напряжения сообщать о работоспособности генераторной установки, предотвращать разряд аккумуляторной батареи при неработающем двигателе), а также повысить качество выходного напряжения.
Вибрационные реле-регуляторы (рисунок 3.1, а) и контактно-транзисторные регуляторы (рисунок 3.1, б) в настоящее время полностью заменены электронными транзисторными регуляторами напряжения. С развитием электроники наметились существенные изменения в схемном и конструктивном решениях электронных регуляторов. Теперь их можно разделить на две группы — регуляторы традиционного схемного исполнения с частотой переключения, меняющейся с изменением режима работы генератора, и регуляторы со стабилизированной частотой переключения, работающие по принципу широтно-импульсной модуляции (ШИМ). По конструкции регуляторы традиционного схемного исполнения выполняются либо на навесных элементах, расположенных на печатной плат, либо в виде гибридных схем, регуляторы с ШИМ могут быть гибридного исполнения или полностью выполненными на монокристалле кремния. Число транзисторов в традиционных схемах невелико, обычно значительно меньше десятка, в регуляторах с ШИМ это число составляет несколько десятков. Последнее стало возможно с развитием электроники, так как в микросхемах, выполненных на монокристалле кремния, стоимость схемы мало зависит от числа транзисторов. Применение же ШИМ позволяет повысить качество стабилизации напряжения и предотвратить влияние на регулятор внешних воздействий.
| | |
а) б) в) Рисунок 3.1 – Схемы регуляторов напряжения: а – простейшая схема вибрационного реле-регулятора; б – контактно-транзисторный регулятор напряжения РР362; в – Электронный транзисторный регулятор напряжения (1 – генератор; 2 – регулятор) |
3.2.3 Принцип работы
Все регуляторы напряжения работают по единому принципу. Напряжение генератора определяется тремя факторами — частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, создаваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора, снижение тока возбуждения уменьшает напряжение.
Все регуляторы напряжения, отечественные и зарубежные, стабилизируют напряжение изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.
Блок-схема регулятора напряжения представлена на рисунке 3.2.
Рисунок 3.2 – Блок-схема регулятора напряжения:
1 – регулятор; 2 – генератор; 3 – элемент сравнения; 4 – регулирующий элемент; 5 – измерительный элемент
Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий элемент 4. Измерительный элемент воспринимает напряжение генератора 2 Ud и преобразует его в сигнал Uизм., который в элементе сравнения сравнивается с эталонным значением Uэт.
Если величина Uизм. отличается от эталонной величины Uэт, на выходе измерительного элемента появляется сигнал Uo, который активизирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.
Таким образом, к регулятору напряжения обязательно должно быть подведено напряжение генератора или напряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбуждения генератора. Если функции регулятора расширены, то и число подсоединений его в схему растет.
Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на элемент сравнения, где роль эталонной величины играет обычно напряжение стабилизации стабилитрона. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т.е. начинает пропускать через себя ток, если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным.
Ток через стабилитрон включает электронное реле, которое коммутирует цепь возбуждения таким образом, что ток в обмотке возбуждения изменяется в нужную сторону. В вибрационных и контактно-транзисторных регуляторах чувствительный элемент представлен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина — это сила натяжения пружины, противодействующей силе притяжения электромагнита.
Коммутацию в цепи обмотки возбуждения осуществляют контакты реле или, в контактно-транзисторном регуляторе, полупроводниковая схема, управляемая этими контактами.
Особенностью автомобильных регуляторов напряжения является то, что они осуществляют дискретное регулирование напряжения путем включения и выключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и контактно- транзисторных регуляторах), при этом меняется относительная продолжительность включения обмотки или дополнительного резистора.
3.3 Порядок выполнения работы и составления отчета
3.3.1 Изучить самостоятельно теоретический материал по теме практической работы:
— назначение регулятора напряжения;
— виды и устройство регуляторов напряжения;
3.3.2 По своему варианту (приложение 3) составить отчет согласно пункта 3.3.1.
3.4 Контрольные вопросы
3.4.1 Поясните назначение, устройство и принцип работы регулятора напряжения?
3.4.2 Поясните в чем особенность автомобильных регуляторов напряжения?
3.4.3 Какие источники напряжения подводятся к регулятору напряжения?
Источник
Подзарядка аккумуляторных батарей малыми токами
Регистрация
Вход
- В начало форума
- Правила форума
- Старый дизайн
- FAQ
- Поиск
- Пользователи
На форуме 17 лет Сообщения: 1670 Откуда: Санкт-Петербург Авто: 2111 -> Astra H Caravan
На форуме 16 лет Сообщения: 13335 Откуда: 93-177 Авто: ПешкаРУС-Tranzit 4WD
На форуме 14 лет Сообщения: 15417 Откуда: Москва, СЗАО Авто: фф3
На форуме 13 лет Сообщения: 113 Откуда: Москва СВАО Авто: Ваз-21102 г.2004 капри
На форуме 13 лет Сообщения: 24 Откуда: Мск. область, пос. Нерастанное Авто: ВАЗ 2112 1.5GTI 16V, 2003г.
Собственно, сабж.
Просто имеется небольшой недозаряд. Хочу поставить на сутки под ток 0.5-1А (удобно — вечером зашел в гараж включил, вечером же и выключил, не надо с работы сбегать).
Но где-то слышал, что заряд малым током вреден. Пребываю в сомнениях.
Не все йогурты одинаково полезны.
Дело в том, что при зарядке обычным (не импульсным и не автоматическим) ЗУ толку от зарядки малым током не будет! При использовании обычного ЗУ в самом начале зарядки сначала «разогревают» АКБ малым током, где-то один час, что бы не осыпалась активная масса с пластин, а потом в зависимости от ёмкости АКБ выставляют, например, 5.5 А и 10 часов заряжают.
Импульсное автоматическое ЗУ, тоже начинает заряд малым током, потом в автомате переходит на большой ток, а после зарядки АКБ, тоже в автомате переходит на заряд импульсным током (заряд-разряд) и в таком режиме, он называется «режим хранения», АКБ может пребывать теоретически бесконечно долго. Заряда как такового уже нет, а идет процесс десульфатации пластин.
Т.е. если у тебя обычное ЗУ, старого образца, то смысла заряжать АКБ малым током нет, он не будет воспринимать заряд. АКБ нужен мощный ток, что бы активизировался химический процесс заряда АКБ. А если у тебя современное автоматическое импульсное ЗУ, то заряд малым током в импульсном режиме — это профилактический процесс от сульфатации пластин, который продлевает срок службы АКБ.
Источник
Как правильно заряжать аккумулятор — полезные советы «За рулем»
Наполнять банку электричеством — выражение из словаря В. И. Даля: так он пояснил значение слова «заряжать». К современным автомобильным батареям из шести банок оно подходит идеально. Правда, банки на поверку оказываются разными — как по конструкции, так и по состоянию. Как же заполнять их электричеством?
Все АКБ условно можно разбить на малообслуживаемые, необслуживаемые и полностью необслуживаемые. Самые древние из них — малообслуживаемые, с решетками из свинцово‑сурьмянистого сплава, самые крутые — полностью необслуживаемые, с решетками из максимально чистого свинца. Надо отметить, что под «необслуживаемостью» понимаются увеличенные интервалы доливки воды или полное отсутствие этой процедуры в течение всего срока службы. Но любая необслуживаемая батарея требует периодического контроля наравне с другими компонентами автомобиля. Вопреки распространенному заблуждению, особой разницы в зарядке батарей этих трех типов нет.
Надо заряжать или не надо?
Возможен ли заряд на морозе?
Как заряжать при нечастых поездках?
Зарядное устройство или генератор — что лучше заряжает?
При нормальных условиях эксплуатации зарядное устройство не нужно. Батарея должна заряжаться от генератора. И заряд при постоянном напряжении исправного автомобиля — самый правильный и полезный для АКБ.
Задача стационарного зарядного устройства — восстановить батарею пусть не полностью, но достаточно для того, чтобы генератор уже дозарядил на 100%. При заряде постоянным током во избежание перезаряда и «выкипания», то есть расхода воды из электролита, стационарное зарядное устройство прерывает работу на уровне 14,4 В, переходя в режим подзаряда минимальным током при хранении. Это обычно не позволяет зарядить батарею полностью. А генератор заряжает ее в режиме постоянного напряжения.
В зависимости от настроек системы электроснабжения автомобиля диапазон регулирования напряжения составляет 13,8–14,5 В. Ток заряда определяется внутренним сопротивлением батареи, которое характеризует ее состояние в данный момент, и снижается по мере приближения значения напряжения на клеммах батареи к напряжению генератора. То есть стационарное зарядное устройство выдает конкретный ток в соответствии со своим алгоритмом, а от генератора батарея забирает ток, который ей нужен. Вот почему зарядное устройство не может зарядить так же, как генератор.
Какой должен быть режим заряда?
Когда НРЦ падает ниже 10,5 В, это уже сверхглубокий разряд. Если батарею посадили за короткое время, ее можно быстро зарядить большим током 10–20 А (10% от значения номинальной емкости) от стационарного устройства в течение нескольких часов. Если же батарея испытывала хронический недозаряд и помирала медленно, заряд необходимо начинать минимальным током при постоянном напряжении. Для этого придется обратиться в специализированный сервис.
Снимать ли батарею с автомобиля для заряда?
Можно «прикуривать» от другой машины?
Мнения на этот счет часто расходятся, но споры идут лишь о сохранности электрооборудования автомобиля и соответствии его инструкции по эксплуатации. Неоспоримо одно: аккумулятор при этом точно не пострадает! По нашему мнению, «прикуривание» безопасно, если соблюдается нехитрая схема: положительные клеммы донора и акцептора соединяем между собой, а отрицательный вывод донора сажаем на кузов «прикуриваемого» автомобиля.
Редакция благодарит эксперта Национальной ассоциации производителей источников тока Дмитрия Тищенко за помощь в подготовке материала.
- В ассортименте интернет-магазина «За рулем» есть недорогие и проверенные временем зарядные устройства Тамбовского завода. Отличный подарок и себе, и товарищу-автолюбителю!
Понравилась заметка? Подпишись и будешь всегда в курсе!
Источник
Как правильно заряжать аккумулятор автомобиля.
Скорее всего, каждый автовладелец со стажем не менее трёх лет сталкивался с ситуацией, когда он не смог завести свою машину по причине того, что аккумулятор полностью разрядился. Вы можете спросить, почему стаж не менее трёх лет? А потому, что средняя продолжительность жизни аккумулятора составляет 3 года. Хотя в отдельных случаях возможна более длительная эксплуатация аккумулятора, но это уже зависит от того, насколько качественно и вовремя он обслуживался.
Правила безопасности при зарядке автомобильного аккумулятора.
Не рекомендуется производить зарядку в жилом помещении по причине того, что из аккумулятора выделяются взрывоопасный газ. Это актуально для обслуживаемых АКБ с пробками.
По этой же причине запрещается курить или производить любые другие работы с открытым огнем или искрообразованием.
Сначала подключается зарядное устройство к клеммам батареи, а потом уже оно включается в сеть. Отключение производится в обратном порядке. Сначала отключаем зарядное устройство (ЗУ) от сети, затем отключаем клеммы. Такой порядок действий позволит избежать образования искры при подключении ЗУ.
В обслуживаемых аккумуляторах обязательно выкручиваем все пробки. Это удобно сделать с помощью обычной монеты номиналом 2 или 5 рублей. После выкручивания пробки нужно положить обратно в отверстия, но не закручивать. Такое положение пробок позволит свободно выходить газам и одновременно защитить батарею от возможного попадания во внутрь неё пыли и грязи. Также это уменьшит потерю электролита при его испарении.
Пробки выкручены и вставлены в свои гнёзда.
Перед выкручиванием пробок обязательно стираем всю пыль и грязь с рабочей поверхности аккумулятора. Это также позволит избежать попадания грязи во внутрь батареи.
Если же зарядка производиться в квартире, то необходимо это делать на балконе с открытым окном или в помещении, где есть вытяжка, например, туалет.
Как определить заряжен или разряжен аккумулятор
Это можно определить по напряжению на контактах и по плотности электролита.
В полностью заряженном аккумуляторе (100% заряда) напряжение на клеммах должно быть 12.7В. В разряженном соответственно 11.7В (0% заряда). Следовательно, каждые 0.1В — это 10% заряда. Эти значения актуальны для температуры аккумулятора 20-25 градусов.
Например, напряжение на контактах равно 12.2В, следовательно, заряд составляет 50%.
Таблица — зависимость степени заряда АКБ от напряжения.
Второй более точный способ определить степень заряда — это определение по плотности электролита. Данный способ подойдет только для обслуживаемых аккумуляторов, в которых есть возможность выкрутить пробки и добраться до электролита.
В качестве электролита в батареях применяют раствор серной кислоты, плотность которого измеряется в г/см3. При разряде плотность электролита снижается. Зная это свойство можно определить степень разряда батареи. Плотность определяется с помощью специального прибора – ареометра.
Плотность полностью заряженной батареи (100%) при 25 °с равна 1.27-1.28 г/см3.
Плотность полностью разряженной батареи (0%) при 25 °с равна примерно 1.1 г/см3.
Зная эти данные, можно вычислить, что примерно каждая сотая единица плотности равна 6% заряда (0.01 г/см3 =6%заряда).
Для примера плотность равна 1,24 г/см3, следовательно, степень заряда составляет 76%.
График -зависимость плотности электролита от температуры.
Таблица -зависимость плотности электролита от температуры.
Перед проверкой плотности электролита обязательно отключаем зарядное устройство и ждем несколько минут. Плотность более точно определяется, когда из электролита не выделяется газ.
Каким током и напряжением следует заряжать аккумулятор
Напряжение заряда у АКБ, изготовленных по разным технологиям, отличается. Но есть общие требования, которые применимы к большинству аккумуляторов.
Самая оптимальная и безопасная зарядка — это выставить ограничение напряжения 14.7В, а силу тока 1/10 от ёмкости АКБ. Допустим ёмкость равна 70 (А*ч), тогда ток, выставляемый при заряде, должен быть 7 ампер.
Качество заряда АКБ и сила тока имеют обратную зависимость, то есть, чем меньше сила тока, тем качественнее будет заряжен аккумулятор и тем медленнее будет происходить его зарядка. Если есть время, то лучше выбрать силу тока еще меньше в размере 1/20 от емкости аккумулятора. Например, для батареи ёмкостью 70 (А*ч) это будет сила тока в 3.5А.
Для необслуживаемых батарей силу тока выбирают не более 1/20 от емкости аккумулятора. Другими словами, если ёмкость равна 60 Ампер*час, то сила тока должна быть 3А. Такая низкая сила тока обусловлена самой конструкцией АКБ. Так как АКБ необслуживаемый, то при кипении электролита выделяемому газу некуда будет выходить и батарею может разорвать давлением газа. Чтобы избежать кипения электролита и выбирают небольшие токи для зарядки.
По мере заряда напряжение будет расти до 14.7 В, а ток будет неизменен пока напряжение не достигнет этого значения. После того как напряжение достигнет значения 14.7В оно перестанет расти так как ограничено настройками ЗУ. При продолжении заряда теперь напряжение ограничено, при этом по мере продолжения заряда будет снижаться сила тока, пока не достигнет значения свидетельствующего об окончании заряда (примерно 1-0.5А). Если в течении двух трех часов сила тока не снижается, то можно считать, что аккумулятор заряжен полностью на данном режиме зарядки.
После окончания зарядки отключаем ЗУ и даем АКБ несколько минут постоять, чтобы электролит перестал выделять газ. Производим замеры плотности.
Если плотность электролита не достигла своих оптимальных значений 1.27-1.28 г/см3, то можно попробовать её поднять с помощью зарядки на более высоком напряжении. Для этого устанавливаем ограничение напряжения в 16.3В, а силу тока не более 1/20 от ёмкости аккумулятора. Силу тока можно выставить ещё меньше до уровня 0.5А. Так АКБ будет медленнее заряжаться, но таким образом снижаем вероятность кипения электролита, а значит риск разрушения пластин батареи. В таком режиме зарядки выдерживаем от одного до четырех часов. Время зависит от того, как быстро плотность электролита придёт в норму.
Если для зарядки используется автоматическое зарядное устройство, то оно само подбирает напряжение и силу тока.
Сколько времени необходимо заряжать аккумулятор
Нет точного определения времени требуемого для полного заряда , так как есть несколько факторов, влияющих на это. Поэтому время заряда может быть от пары часов и до нескольких суток.
Существует 4 основных фактора влияющих на время зарядки АКБ.
- Процент разряженности аккумулятора. Полностью разряженную АКБ по времени придется заряжать намного дольше, чем разряженную на 50%.
- Степень износа батареи. Со временем пластины АКБ осыпаются и её емкость уменьшается. Возьмём для примера изношенную АКБ емкостью 60А*час. Но её ёмкость по факту не будет равна 60А*час, а будет меньше, например, 50-45 А*час. Следовательно, изношенный аккумулятор зарядится быстрее, чем аналогичный, но новый.
- Сила тока и напряжение зарядки. Чем меньше сила тока, тем медленнее происходит зарядка.
- Скорость приема заряда. Например, холодный аккумулятор хуже заряжается. Это связано с тем, что скорость химической реакции (электролиза) зависит от температуры. Поэтому перед зарядкой его необходимо отогреть при комнатной температуре, если он занесен зимой с улицы.
Если для зарядки используется автоматическое зарядное устройство, то оно само определит, когда АКБ заряжена, отключится и сообщит о полном заряде какой-либо индикацией. При зарядке по мере заряда уменьшается разница между ЭДС аккумулятора и зарядным напряжением, вследствие чего снижается ток. При достижении силы тока примерно в 0.5А зарядное устройство прекращает зарядку.
Если заряд производится не в автоматическом режиме, то нужно дождаться момента, когда сила тока опустится до своего минимального значения (примерно 1- 0.5А) и останется на этом уровне около трёх часов не изменяясь. После этого можно отключать ЗУ и замерять плотность электролита.
Понять, что аккумулятор заряжен полностью, можно по двум признакам. Это достижение электролитом плотности 1,27 г/см3 и напряжения на клеммах батареи 12.7В. Замеры плотности и напряжения следует производить после отключения ЗУ и прошествии некоторого времени после зарядки. Нужно, чтобы электролит устоялся и перестал выделять пузырьки газа.
Последствия глубоко разряда АКБ и как его правильно зарядить после этого
При глубоком разряде происходит сульфитация пластин. Крупные кристаллы сульфата свинца (PbSO4) откладываются на положительно заряженных пластинах АКБ, тем самым забивая их. При этом сильно уменьшается площадь поверхности пластин, свободной от кристаллов сульфата свинца. Вследствие чего уменьшается ёмкость аккумулятора. Три, четыре полных разряда и практически все пластины будут забиты, а аккумулятор можно будет выкинуть.
Пластины АКБ забитые кристаллами сульфата свинца.
При штатных режимах работы (заряд – разряд) — образуются кристаллы небольших размеров и при заряде они растворяются в электролите. Таким образом очищаются пластины и ёмкость АКБ восстанавливается. Этого не происходит если произошел глубокий разряд, так как при нормальной зарядке крупные кристаллы сульфата свинца практически не растворяются в электролите. В этом случае для их растворения нужно использовать другой режим зарядки.
Глубоко разряженный аккумулятор следует заряжать напряжением 16,2 — 16.3В и малой силой тока — 1-0.5А. В таком режиме зарядки возможно частичное восстановление его ёмкости. За один цикл восстановить ёмкость и поднять плотность электролита до 1,27 г/см3 не получится. Поэтому, когда электролит на малых токах начал кипеть, то заряд необходимо прекратить и дать отстояться 2-3 часа. После этого опять повторяем зарядку. Этот процесс повторяем несколько раз. Таким образом возможно поднять плотность электролита до состояния полностью заряженного аккумулятора.
Но не следует забывать, что напряжение выше 14.5В подходит не для всех АКБ. К таким относятся гелиевые и гибридные.
Как часто нужно подзаряжать аккумулятор?
Его следует заряжать минимум 2 раза в год, с периодичностью полгода (до зимы, после зимы).
Также после длительных простоев автомобиля, когда он долго не подзаряжался от генератора. Во время простоя АКБ сама по себе медленно разряжается, а также этому способствует включенная сигнализация на авто.
После глубокого разряда, когда забыли выключить фары или магнитолу и т.п.
Источник