Меню

Почему в автомобиле используется постоянный ток а не переменный



Почему автомобильные генераторы вырабатывают переменный ток?

Вот почему автомобили используют генераторы переменного тока, хотя все устройства на борту работают от постоянного электричества

Почему автомобильные генераторы вырабатывают переменный ток?

Задумывались ли вы когда-нибудь о том, что питает все системы вашего автомобиля ? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия – электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, – генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина. И вот что мы выяснили.

Почему автомобильные генераторы вырабатывают переменный ток?

Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток, или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках ГАЗ М-20 «Победа» и ГАЗ-69 ставились именно генераторы постоянного тока.

Почему автомобильные генераторы вырабатывают переменный ток?

Другой вид электричества – переменный ток – назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?

Почему автомобильные генераторы вырабатывают переменный ток?

В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

Кратко принцип работы автомобильного генератора таков:

Почему автомобильные генераторы вырабатывают переменный ток?

При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Далее переменный ток отправляется на выпрямительный блок, где происходит его преобразование в постоянный ток.

Завершающая стадия «готовки» правильного тока – регулятор напряжения.

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето – простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем – Ипполит Пикси.

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще – при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

Почему автомобильные генераторы вырабатывают переменный ток?

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.

Почему автомобильные генераторы вырабатывают переменный ток?

Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР», первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

В СССР же, хоть и опоздали на 7 лет с введением в серию генераторов переменного тока на легковые автомобили, опередили весь мир в самой разработке новых типов генераторов. Еще в 1955 году на Горьковском автозаводе было выпущено 2.000 машин с альтернаторами вместо магнето.

Почему автомобильные генераторы вырабатывают переменный ток?

«Одними из ведущих разработчиков, благодаря которым в СССР и на европейском континенте появилась первая серийная конструкция генераторов переменного тока, были Ю. А. Купеев (НИИ автоприборов) и В. И. Василевский (КЗАТЭ г. Самара)», – говорится на страницах Википедии.

Итог. Почему генераторы на авто вырабатывают переменный ток?

Почему автомобильные генераторы вырабатывают переменный ток?

Ну, а мы завершаем наш рассказ. Первым легковым автомобилем, в базовой комплектации которого устанавливался генератор новой конструкции, стал Plymouth 1960 года выпуска. Некоторыми из наиболее очевидных преимуществ генератора было то, что на низкой скорости или на холостом ходу он по-прежнему производил достаточно тока, чтобы заряжать аккумулятор, что большинство генераторов того времени были не в состоянии сделать.

Оказалось, что альтернаторы, после того как был налажен массовый выпуск, производить дешевле, чем генераторы старой конструкции, они надежнее, выносливее и производят больше электричества на разных скоростях вращения коленчатого вала. Они сделали настолько большой шаг вперед, что все их плюсы запросто перекрывали единственный минус – они не могли производить постоянный ток. Позиция закрепилась после того, как инженерами был разработан дешевый и надежный твердотельный выпрямитель.

Источник

Электрика автомобиля: краткое обучение для автолюбителя

Электрический ток

Современный автомобиль не может работать без электричества. При помощи электрического тока происходит зажигание рабочей
смеси в бензиновых двигателях, пуск двигателя стартером, приводятся в действие световая и звуковая сигнализация, контрольно-измерительные
приборы, освещение и дополнительное оборудование. Кроме того, тенденции мирового автомобилестроения в последнее время направлены на все более
широкое применение электрической тяги в автомобилях (гибридные силовые установки, топливные элементы и электромобили).

Для получения электрической энергии на автомобиле устанавливают источники электрического тока- генератор и аккумуляторную батарею.
Аккумулятор используется для пуска двигателя и для питания электроприборов при неработающем двигателе. Генератор питает электрооборудование автомобиля при работающем двигателе, и, кроме того, подзаряжает аккумуляторную батарею. Генератор превращает механическую энергию от вращения коленвала в электрическую, а аккумулятор- химическую энергию в электрическую.

Генератор и аккумулятор относятся к источникам электрического тока, все остальные электроприборы автомобиля являются его потребителями. Источники и потребители электрического тока соединяются между собой с помощью проводников, в качестве которых, как правило, служит медный провод. Провод обязательно должен находиться в изоляции во избежание замыкания с другими проводниками и, как следствие, перегорания электроприборов.

Все материалы по электропроводности делятся на проводники и непроводники (изоляторы). Не вдаваясь в дебри физики, просто отметим, что в проводниках
находится большое количество свободных электронов, которые хаотично движутся. При приложении электрического напряжения к проводнику свободные электроны начинают двигаться в одном направлении, создавая электрический ток. В изоляторах же свободных электронов практически нет, поэтому и ток создавать нечем. К проводникам относится большинство металлов, уголь, водные растворы щелочей и кислот. К изоляторам- резина, пластмассы, стекло и т.п.

Замкнутая и разомкнутая цепь Замкнутая и разомкнутая цепь

Если источник тока, провода и потребители соединить между собой в замкнутый контур, то мы получим электрическую цепь, по которой потечет электрический ток. Характерной особенностью электрической цепи на автомобиле является то, что одним из проводов служит масса (металлические части кузова автомобиля), а другим проводом служат изолированные провода. Поэтому такая электрическая цепь называется однопроводной.

Между полюсами (выводами) любого источника тока существует электрическое напряжение (обозначается U), измеряемое в вольтах. Сила электрического тока (обозначается I) измеряется в амперах. Всякий проводник и потребитель создает сопротивление электрическому току (обозначается R), которое измеряется в омах. Между этими тремя величинами существует зависимость, которую выражает знаменитый закон Ома: I = U / R. Работа электрического тока, выполненная за 1 секунду, называется мощностью. Мощность измеряется в ваттах и обозначается P. Мощность можно рассчитать по формуле P = U * I. Электрический ток, проходящий через проводник, нагревает его. Количество выделяемого при этом тепла зависит от силы тока, сопротивления и времени прохождения тока.

Читайте также:  Векторная диаграмма катушки индуктивности в цепи переменного тока

Однопроводная электрическая цепь автомобиля

Однопроводная электрическая цепь автомобиля

На автомобилях приборы электрооборудования питаются постоянным током. Постоянным называется ток, который движется в проводнике только
в одном направлении, в отличие от переменного тока, который движется в проводнике попеременно то в одном, то в другом направлении.
В каждом источнике постоянного тока различают два полюса: положительный (+) и отрицательный (-). Условно считают, что постоянный ток в цепи движется
от положительного полюса к отрицательному. На автомобилях отрицательный полюс источника тока соединяют с массой (если, конечно, кузов металлический).

Потребители или источники тока могут быть соединены между собой последовательно или параллельно. При последовательном соединении отрицательный полюс одного источника тока соединяют с положительным полюсом другого. В результате такого соединения общее напряжение будет равно сумме напряжений всех источников тока. При параллельном соединении источников тока соединяют между собой одноименные полюса- положительные с положительными, отрицательные с отрицательными. При таком соединении общее напряжение будет таким же, как у одного источника тока, а сила тока увеличится во столько раз, сколько источников тока соединены между собой.

При последовательном соединении потребителей весь ток проходит через каждый потребитель. Если выйдет из строя один из потребителей, обесточивается вся цепь. При параллельном соединении ток, разветвляясь, поступает к каждому потребителю отдельно. В этом случае выход из строя любого потребителя не влияет на работоспособность остальных.

Последовательное соединение источников Последовательное соединение источников Параллельное соединение источников Параллельное соединение источников

Магнетизм и электромагнетизм

Все знают, что такое магнит. Также все замечали, что магниты притягивают к себе стальные предметы не только при непосредственном соприкосновении, но
и на расстоянии, что свидетельствует о наличии вокруг них магнитного поля. Каждый магнит имеет два полюса, которые условно называют северным (N) и южным (S). При сближении одноименных полюсов двух магнитов они отталкиваются, а при сближении разноименных полюсов- притягиваются.

Магнитное поле, созданное вокруг магнитов, состоит из магнитных силовых линий, направленных от северного полюса к южному. С удалением от магнита величина магнитного поля уменьшается.

Магнитное поле вокруг проводника с током Магнитное поле вокруг проводника с током

Если через проводник пропустить электрический ток, то вокруг него создается кольцевое магнитное поле без выраженных полюсов. Если же проводник свернуть в виде спирали, то при прохождении по нему тока магнитное поле образует на концах спирали полюса- северный и южный. Если в середину такой катушки поместить стальной сердечник, то образуется электромагнит, имеющий все свойства обычного магнита (очень наглядно это показано в мультфильме “Ивашка из дворца пионеров”, где главный герой с помощью электромагнита расправляется с Кащеем Бессмертным).

Простейший электромагнит

Простейший электромагнит

Магнитное поле электромагнита можно увеличивать или уменьшать, изменяя силу тока или количество витков катушки. С увеличением силы тока или количества витков электромагнита увеличивается его магнитное поле.

Если проводник с током поместить в магнитное поле магнита (электромагнита), то в результате взаимодействия магнитных полей проводника и магнита проводник будет выталкиваться, т.е. электрическая энергия будет превращаться в механическую. На этом явлении основана работа электродвигателей.

Принцип работы генератора Принцип работы генератора Принцип работы электродвигателя Принцип работы электродвигателя

Для превращения механической энергии в электрическую используют явление электромагнитной индукции. Если замкнутый проводник вращать в магнитном поле, то в проводнике возникает электрический ток. Величина тока зависит от длины проводника, скорости пересечения,плотности магнитного поля и угла, под которым пересекаются магнитные силовые линии. На этом явлении основана работа генератора.

Вы, конечно же обратили внимание, что картинки практически одинаковы? Не удивляйтесь, это свидетельство обратимости электрических машин. Обратимость электрических машин — одинаковое устройство преобразователей электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот. Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Говоря по-русски, электрогенератор будет работать лучше, чем используемый в качестве генератора соответствующий по размерам электродвигатель, и наоборот.

Обозначения на электрических схемах

Обозначения на схемах электрооборудования автомобиля, как правило, интуитивно понятны. Но, для общего развития, не мешает знать и некоторые специфические условные обозначения.

Источник

Почему автомобиль Tesla использует двигатель переменного тока вместо двигателя постоянного тока?

Я просто смотрел мега заводское видео и удивлялся, почему они используют двигатель переменного тока, которому требуется преобразователь питания вместо постоянного тока, который может питаться напрямую от их батареи постоянного тока? Введение инвертора означает большую стоимость (вес, контроллер и т. Д.).

Есть ли для этого причины? Какие различия между двигателем переменного и постоянного тока могут привести к этому решению? Также кто-нибудь знает, какой двигатель используется в других электромобилях?

Вы спрашиваете о технических компромиссах, связанных с выбором тягового двигателя для электромобиля. Описание полного пространства дизайна значительно превосходит то, что здесь можно резюмировать, но я опишу основные компромиссы дизайна для такого приложения.

Поскольку количество энергии, которое может храниться химически (например, в батарее), весьма ограничено, почти все электромобили разработаны с учетом эффективности. Большинство тяговых двигателей для транзитного применения в автомобильной промышленности имеют пиковую мощность от 60 до 300 кВт. Закон Ома указывает на то, что потери мощности в кабелях, обмотках двигателя и межсоединениях аккумуляторных батарей составляют P = I 2 R. Таким образом, уменьшение тока в два раза снижает потери сопротивления в 4 раза. В результате большинство автомобильных заявки выполняется при номинальном напряжении цепи постоянного тока между 288 и 36 номом (есть и другие причины для этого выбора напряжения, тоже, но давайте сосредоточимся на потерях). Напряжение питания имеет отношение к данному обсуждению, поскольку некоторые двигатели, такие как Brush DC, имеют практические верхние пределы напряжения питания из-за искрения коммутатора.

Игнорируя более экзотические моторные технологии, такие как переключаемое / переменное сопротивление, существует три основных категории электродвигателей, используемых в автомобильной промышленности:

Щеточный двигатель постоянного тока : с механической коммутацией, для управления крутящим моментом требуется только простой «прерыватель» постоянного тока. В то время как щеточные двигатели постоянного тока могут иметь постоянные магниты, размер магнитов для тяговых применений делает их непомерно дорогими. В результате большинство тяговых двигателей постоянного тока имеют последовательную или шунтирующую обмотку. В такой конфигурации имеются обмотки как на статоре, так и на роторе.

Бесщеточный двигатель постоянного тока (BLDC): с электронным управлением от инвертора, постоянные магниты на роторе, обмотки на статоре.

Асинхронный двигатель : с электронным управлением от инвертора, индукционного ротора, обмоток на статоре.

Ниже приведены некоторые дерзкие обобщения относительно компромиссов между тремя технологиями двигателя. Есть множество точечных примеров, которые не поддаются этим параметрам; Моя цель — поделиться тем, что я бы посчитал номинальными значениями для этого типа приложения.

— КПД:
Brush DC: двигатель:

80%, контроллер постоянного тока:

94% (пассивный возврат), NET = 75%
BLDC:

97% (синхронный возврат или гистерезисное управление), NET = 90%
Индукция:

91%: инвертор: 97% (синхронный возврат или гистерезисное управление), NET = 88%

— износ / обслуживание:
щетка постоянного тока: щетки подвержены износу; требуют периодической замены. Подшипники.
BLDC: Подшипники (срок службы)
Индукция: Подшипники (срок службы)

— Удельная стоимость (стоимость за кВт), включая инвертор
Brush DC: Низкий — двигатель и контроллер, как правило, недорогие.
BLDC: Высокомощные постоянные магниты очень дороги.
Индукция: умеренная — инверторы увеличивают стоимость, но двигатель дешев.


Щетка отвода тепла постоянного тока: обмотки на роторе затрудняют отвод тепла как от ротора, так и от коммутатора для двигателей большой мощности.
BLDC: Обмотки на статоре обеспечивают прямой отвод тепла. Магниты на роторе имеют низко-умеренный вихревой ток, индуцированный нагрев.
Индукция: Обмотки на статоре обеспечивают прямой отвод тепла от статора. Индуцированные токи в роторе могут потребовать масляного охлаждения в приложениях с высокой мощностью (вход и выход через вал, без разбрызгивания).

— Поведение крутящего момента / скорости.
Кисть постоянного тока: теоретически бесконечный крутящий момент при нулевой скорости, крутящий момент падает с увеличением скорости. Автомобильные применения с щеточным приводом обычно требуют 3-4 передаточных чисел, чтобы охватить весь автомобильный диапазон характеристик и максимальной скорости. В течение нескольких лет я водил электромотор EV с двигателем постоянного тока мощностью 24 кВт, который мог разжечь шины с места (но изо всех сил пытался достичь скорости 65 миль в час).
BLDC: постоянный крутящий момент до базовой скорости, постоянная мощность до максимальной скорости. Автомобильные применения жизнеспособны с коробкой передач с одним передаточным числом.
Индукция: постоянный крутящий момент до базовой скорости, постоянная мощность до максимальной скорости. Автомобильные применения жизнеспособны с коробкой передач с одним передаточным числом. Может потребоваться сотни мсек для создания крутящего момента после подачи тока

— Разное:
щетка постоянного тока: при высоких напряжениях искрение коммутатора может быть проблематичным. Щеточные двигатели постоянного тока канонически используются в тележках для гольфа и вилочных погрузчиках (24 В или 48 В), хотя более новые модели являются индукционными благодаря повышенной эффективности. Регенеративное торможение сложно и требует более сложного регулятора скорости.
BLDC: проблемы с стоимостью и сборкой магнитов (магниты ОЧЕНЬ мощные) делают двигатели BLDC жизнеспособными для применений с более низкой мощностью (например, два двигателя / генератора Prius). Регенеративное торможение происходит по существу бесплатно.
Индукция: двигатель относительно дешев в изготовлении, а силовая электроника для автомобильной промышленности за последние 20 лет значительно снизилась в цене. Регенеративное торможение происходит по существу бесплатно.

Опять же, это только краткий обзор некоторых основных драйверов для выбора двигателя. Я намеренно опустил удельную мощность и удельный крутящий момент, так как они имеют тенденцию значительно отличаться от фактической реализации.

. а теперь почему Tesla использует асинхронные двигатели

Остальные ответы отличные и получаются по техническим причинам. Следуя Тесле и рынку электромобилей в целом в течение многих лет, я бы хотел ответить на ваш вопрос о том, почему Tesla использует асинхронные двигатели.

Элон Маск (соучредитель Tesla) происходит из мышления Силиконовой долины (SV), где мантра — «двигаться быстро и ломать вещи». Когда он обналичил PayPal на несколько сотен миллионов, он решил заняться (исследованием космоса) электромобилей. В SV-land время / скорость для достижения цели — это все, поэтому он огляделся по сторонам, чтобы найти что-то, что он мог бы использовать в качестве отправной точки для начала.

Читайте также:  Как измерить ток холостого хода трансформатора тока

JB Straubel был инженером-единомышленником (как из космоса, так и из EV), который обратился к Маску вскоре после того, как Маск проявил интерес к космосу и EV.

Во время их первой встречи за обедом Страубель упомянул компанию AC Propulsion, которая разработала прототип спортивного электромобиля с использованием каркаса автомобильного комплекта. Уже во втором поколении он недавно переключился на использование литий-ионных батарей, имел дальность 250 миль, предлагал большой крутящий момент, мог разгоняться до 0-60 менее чем за 4 секунды, но, как ни странно для этого обсуждения, использовал — — как вы уже догадались — AC Propulsion (асинхронный двигатель).

Маск посетил А.С. и ушел очень впечатленный. В течение нескольких месяцев он пытался убедить AC Propulsion в коммерциализации электромобиля, но в то время они не были заинтересованы в этом.

Том Гейдж, президент AC Propulsion, предложил, чтобы Маск объединил свои силы с другим поклонником, состоящим из Мартина Эберхарда, Марка Тарпеннинга и Иана Райта. Они согласились объединить свои усилия: Маск стал председателем и главным руководителем по дизайну продуктов, Эберхард стал генеральным директором, а Штраубель стал техническим директором новой компании, которую они назвали «Тесла Моторс».

Ответ

Итак, у вас это есть, Тесла использует индукцию в основном потому, что его использовал первый жизнеспособный прототип, который видел Маск. Инерция (без каламбура . хорошо, немного) объясняет остальное («Если не сломано . «).

Теперь о том, почему AC Propulsion использовали его в своем прототипе Tzero, смотрите другие ответы . 😉

Если вам нужна полная история, зайдите сюда или сюда .

Трудно сказать, каковы были точные причины инженеров, не будучи в команде разработчиков, но вот несколько соображений:

Оба двигателя требуют одинаковых приводов. Двигатели постоянного тока с щеткой могут работать непосредственно от аккумулятора, но тип двигателя, на который вы смотрите в электромобиле, — это двигатель без щеток постоянного тока. Приводы для асинхронного двигателя и бесщеточного двигателя постоянного тока очень похожи. Управление асинхронным двигателем в целом, вероятно, более сложное.

Бесщеточные двигатели постоянного тока имеют магниты в роторе. Это дороже, чем индукционный ротор с медью. Кроме того, рынок магнитов очень нестабилен. С другой стороны, асинхронный двигатель будет иметь гораздо больше тепла, выделяемого в роторе из-за потерь I²R и потерь в сердечнике.

Пусковой момент на бесщеточном двигателе обычно выше, чем на асинхронных двигателях.

Пиковая эффективность бесщеточных двигателей, как правило, выше, чем у асинхронных двигателей, но я думаю, что где-то читал, что Tesla получает более высокую среднюю эффективность с их асинхронными двигателями, чем с бесщеточными. К сожалению, я не могу вспомнить, где я это читал.

Многие люди сейчас исследуют машины с переключаемым сопротивлением. Последние несколько автомобильных конференций, в которых я участвовал, были о переключенном нежелании. Они не требуют магнитов, а эффективность двигателей такого типа выглядит многообещающе. Все хотят убежать от магнитов в моторах.

Итак, как я уже сказал, я сомневаюсь, что кто-нибудь может ответить на ваш вопрос, кроме инженеров в Тесла. Но я думаю, что это как-то связано с моим пунктом 4), но я точно не знаю. Я уверен, что волатильность цен на магниты тоже имеет к этому отношение.

Эта часть особенно заметна:

В идеальном бесщеточном приводе напряженность магнитного поля, создаваемого постоянными магнитами, будет регулироваться. Когда требуется максимальный крутящий момент, особенно на низких скоростях, напряженность магнитного поля (B) должна быть максимальной — так, чтобы токи инвертора и двигателя поддерживались на минимально возможных значениях. Это минимизирует потери I² R (ток² сопротивления) и тем самым оптимизирует эффективность. Аналогично, когда уровни крутящего момента являются низкими, поле B должно быть уменьшено так, чтобы потери на вихрь и гистерезис, вызванные B, также были уменьшены. В идеале B должен быть отрегулирован таким образом, чтобы сумма потерь на вихрь, гистерезис и I2 была минимальной. К сожалению, не существует простого способа замены B с постоянными магнитами.

Напротив, индукционные машины не имеют магнитов, а поля B «регулируемы», поскольку B пропорционально V / f (напряжение к частоте). Это означает, что при небольших нагрузках инвертор может снизить напряжение, так что магнитные потери уменьшатся, а КПД будет максимальным. Таким образом, асинхронная машина при работе с интеллектуальным инвертором имеет преимущество перед бесщеточной машиной постоянного тока — магнитные потери и потери проводимости могут быть распределены таким образом, что эффективность оптимизируется. Это преимущество становится все более важным по мере увеличения производительности. С бесщеточным постоянным током, когда размер машины увеличивается, магнитные потери увеличиваются пропорционально, а эффективность частичной нагрузки падает. С индукцией, когда размер машины увеличивается, потери не обязательно растут. Таким образом, асинхронные приводы могут быть предпочтительным подходом, когда требуется высокая производительность;

Постоянные магниты стоят дорого — примерно 50 долларов за килограмм. Роторы с постоянными магнитами (РМ) также трудно обрабатывать из-за очень больших сил, которые вступают в действие, когда что-либо ферромагнитное приближается к ним. Это означает, что асинхронные двигатели, вероятно, сохранят ценовое преимущество по сравнению с машинами с постоянными магнитами. Кроме того, из-за возможностей асинхронных машин по ослаблению поля номинальные характеристики и стоимость инверторов, по-видимому, ниже, особенно для высокопроизводительных приводов. Поскольку прядильные индукционные машины вырабатывают мало напряжения или вообще не генерируют его при отключении, их легче защитить.

ВСЕ вращающиеся электродвигатели являются двигателями переменного тока. Каждый из них.
Кроме того, в глубине души они делают то же самое. Разница заключается в том, как постоянный ток превращается в переменный ток и как он используется для получения стандартного результата.

Единственный двигатель с электронным управлением постоянного тока — это щеточный двигатель. DC превращается в переменный ток с помощью вращающегося коммутатора и фиксированных щеток. Помимо этого двигателя всем остальным понадобится некоторая форма преобразования постоянного тока в переменный. Щеточный двигатель, как правило, непривлекателен, поскольку механический переключатель постоянного тока в переменный (коммутатор) является относительно дорогим и относительно недолговечным.

Таким образом, для Tesla или другого электромобиля выбор не является постоянным или переменным током, но какая форма электродвигателя переменного тока наилучшим образом соответствует целям конструкции экономически эффективно.

Tesla будет использовать то, что она делает, потому что она достигла целей дизайна наиболее экономически эффективно.

Отрицательные отзывы свидетельствуют о том, что ряд людей согласны с Маркусом и считают, что приведенный выше ответ придирчив. Немного подумав и посмотрев на мои ответы в целом, можно предположить отсутствие понимания со стороны downvoters.

Все вращающиеся электродвигатели являются двигателями переменного тока

  • Если вы думаете, что этот момент придирчив, то вам нужно подумать о том, что в целом делает электромобиль.

Давайте посмотрим, есть ли у нижестоящих людей смелость прочитать следующее, а затем удалить свои отрицательные голоса. Для меня это не имеет значения. Если вы вводите в заблуждение других людей, это имеет большое значение.

ВСЕМ роторным электродвигателям требуется контроллер для подачи переменного тока на двигатель каким-либо образом.
Различие между электродвигателем переменного тока и электродвигателем постоянного тока полезно в некоторых контекстах, но в автомобиле, который представляет собой замкнутую систему, которая начинается с источника энергии постоянного тока и заканчивается вращающимся электродвигателем, различие является ложным и бесполезным. Машина закрытая система. Где-то в системе есть контроллер, который в той или иной форме преобразует постоянный ток в переменный. Не имеет значения, установлен ли он внутри статора ротора или ротора, внутри корпуса двигателя, прикреплен к корпусу или где-то еще в автомобиле.

В почищенном щеткой двигателе постоянного тока «контроллер» представляет собой механический переключатель, установленный на конце вала двигателя. Этот контроллер называется коммутатором, но он функционально является контроллером, который принимает постоянный ток и создает погоню за своим магнитным полем переменного тока, что касается обмоток в двигателе.

Статор с постоянным магнитом и обмоткой ротора «Бесщеточный двигатель постоянного тока» функционально очень похож на щеточный двигатель постоянного тока, с заменой коммутатора электронными переключателями и датчиками, которые принимают входящий в комплект постоянный ток и применяют его к различным полям, чтобы они могли преследовать свой хвост как ротор вращается. Опять же, это двигатель переменного тока с контроллером. Просто спросите любую обмотку. Датчики находятся внутри самого двигателя, а переключатели могут находиться рядом с двигателем или дистанционно.

Асинхронный двигатель с короткозамкнутым ротором добавляет определенную сложность, используя вращение гнезда обмоток с низким импедансом внутри поля статора, чтобы вызвать напряжение в стержнях ротора и создать магнитное поле, которое вращает ротор так, что оно преследует вращающееся поле переменного тока. применяется к обмоткам статора. Опять же, он имеет однонаправленный (но синусоидально изменяющийся) постоянный ток во время любой части последовательности привода. Это такая же смешанная система постоянного и переменного тока, как и любая другая.

Можно неохотно описывать приводные двигатели с переменным вихревым током — больше одинаковых, но разных. Это двигатель переменного тока с контроллером, производящим его от постоянного тока.

Проводимое различие не имеет значения и тривиально. Реальный вопрос заключается в том, «почему Тесла использует именно эту форму двигателя, а не какую-то другую». То, что это не просто семантика, а отсутствие понимания, показано

  • . которые требуют питания, а не постоянного тока, который более непосредственно от батареи постоянного тока. Введение Inveter означает большую стоимость (вес, контроллер и т. Д.) .

Единственным двигателем постоянного тока, который не требует какой-либо инверторной или электронной системы переключения, является механический щеточный двигатель. Они настолько непригодны для работы с легкими приводами с регулируемой скоростью, что их будет мало, если они вообще будут использоваться в современных конструкциях электромобилей. ВСЕ другие типы электродвигателей, у которых нет инвертора, будут иметь некоторую электронику вместо инвертора.

Я сказал ROTARY: «Электродвигатели — это двигатели переменного тока, потому что, возможно, можно создать бесщеточный линейный двигатель с двигателем постоянного тока с коммутируемым режимом работы только с постоянным током, хотя это приведет к неэффективному использованию меди и магнетизма. Вы можете сделать это с помощью роторного двигателя, но без реального мира». мотор в серийном производстве сделал бы так.

Источник

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Читайте также:  Как нужно изменять ток возбуждения

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник