Меню

Почему при уменьшении фазового сдвига ток цепи уменьшается



Сдвиг фаз у переменных токов

Сдвиг фаз у переменных токовПеременные токи одинаковой частоты могут отличаться друг от друга не только по амплитуде, но и по фазе, т. е. могут быть сдвинуты по фазе.

Если два переменных тока одновременно достигают амплитудных значений и одновременно проходят через нулевые значения, то эти токи совпадают по фазе. В этом случае сдвиг фаз между токами равен нулю (рис. 1, а).

Однако возможны случаи, когда амплитудные (и нулевые) значения данных токов не совпадают друг с другом по времени, т. е. имеется тот или иной сдвиг фаз, не равный нулю. На рис. 1, б показаны токи, сдвинутые по фазе на четверть периода (T/4).

Сдвиг фаз обычно обозначают греческой буквой φ и часто выражают в градусах, считая весь период равным 360°, подобно тому, как один полный оборот соответствует 360°. Таким образом, сдвиг фаз на четверть периода обозначают φ = 90°, а при сдвиге фаз на половину периода пишут φ = 180е.

Различные сдвиги фаз между двумя переменными токами

Рис. 1. Различные сдвиги фаз между двумя переменными токами

Связь между периодом переменного тока T и углом 360° можно установить из опыта, в котором получают переменную синусоидальную ЭДС при равномерном вращении витка (или катушки) в однородном магнитном поле. В этом случае за один оборот витка, т. е. за время его поворота на угол 360°, ЭДС совершает одно полное синусоидальное колебание. Таким образом, действительно период T соответствует углу 360°.

Это же следует из математического выражения для переменного тока, т. е. из его уравнения. Если переменный ток начал свои изменения от нулевой фазы, когда t = 0, ωt = 0 и sin ωt = 0, то по прошествии одного периода получится

В этот момент фазовый угол составляет 2π радиан или 360°, и, следовательно, sin ωt = sin 2π = sin 360° = 0. При изменении угла от 0 до 2π радиан, или до 360°, синус совершает полный цикл своих изменений. Соответственно этому переменный ток совершает одно полное колебание.

Следует помнить, что только токи одной и той же частоты могут иметь вполне определенный сдвиг фаз. При различной частоте токов сдвиг фаз между ними не является постоянным, а все время меняется. Например, для токов i1 и i2 изображенных на рис. 2 и имеющих частоты, отличающиеся друг от друга в два раза, сдвиг фаз в моменты времени, изображенные точками 0, 1, 2, 3, 4, равен соответственно 0; 90; 180; 270; 360°, т. е. на протяжении одного периода тока i1 значение φ изменяется от 0 до 360°.

Переменный сдвиг фаз между токами различной частоты

Рис. 2. Переменный сдвиг фаз между токами различной частоты

Все сказанное о сдвиге фаз между токами относится также к напряжениям и электродвижущим силам. В дальнейшем мы рассмотрим случаи, когда будет существовать сдвиг фаз между напряжением и током.

Источник

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Читайте также:  Потребления тока при обогреве

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Почему при уменьшении фазового сдвига ток цепи уменьшается

Синусоиды тока и напряжения сдвинуты по фазе. При наличии самоиндукции не только увеличивается сопротивление цепи, но и нарушается одновременность хода изменения напряжения и тока. Синусоида тока оказывается сдвинутой по фазе относительно синусоиды напряжения.

Сдвиг фаз между переменными напряжением и током означает, что они проходят через свои нулевые и максимальные значения не одновременно. Длительность же периодов напряжения и тока при этом не изменяется и остается одинаковой.

Например, в момент, когда внешнее напряжение равно нулю, в цепи будет проходить ток, величина и направление которого определяются напряжением самоиндукции.

Наоборот, в тот момент, когда ток в цепи проходит через нулевое значение, напряжение источника не равно нулю. Отсутствие тока объясняется тем, что в этот момент напряжение источника равно по величине и противоположно по направлению напряжению самоиндукции. Иными словами, напряжение самоиндукции в этот момент полностью уравновешивает напряжение источника. Процесс этот уясняется из рассмотрения рис. 6.3.

Рис. 6.3. Между током и приложенным напряжением существует сдвиг фаз. Несмотря на то что в момент времени а внешнее напряжение 1 равно нулю, по цепи все же проходит ток, направление тока совпадает с направлением напряжения самоиндукции 2. В момент времени б приложенное напряжение равно по величине и противоположно по направлению напряжению самоиндукции, сумма обоих напряжений дает нуль, поэтому ток также равен нулю

Мы видим, что напряжение самоиндукции усложняет явление. Когда ток, пройдя через нулевое значение, начинает увеличиваться, напряжение самоиндукции оказывается направленным прямо противоположно току, стремясь помешать его возрастанию. Наоборот, при спадании тока (после перехода через максимальное значение) напряжение самоиндукции направлено одинаково с током, тем самым препятствуя его уменьшению.

Нетрудно убедиться, что когда величина тока равна нулю (моменты времени б и г), напряжение источника полностью уравновешивается напряжением самоиндукции. Наоборот, когда напряжение источника равно нулю (моменты времени а не), величина тока поддерживается напряжением самоиндукции.

Положительная и отрицательная мощность Следствием сдвига фаз между током и напряжением у потребителей является невозможность использовать ту энергию, которая доставляется ему генератором.

Чтобы убедиться в этом, перерисуем еще раз рис. 6.3, опустив для наглядности чертежа кривую напряжения самоиндукции. Получится рис. 6.4.

Рис. 6.4. Благодаря сдвигу фаз напряжение и ток могут быть направлены в противоположные стороны. В это время цепь возвращает часть энергии источнику. В результате уменьшается потребляемая мощность

Рис. 6.5. Когда ток и напряжение батареи совпадают по направлению, она разряжается, расходуя свою энергию. Если направление напряжения батареи противоположно току, она заряжается, получая энергию от генератора

Рассмотрение его показывает, что направление тока в цепи может или совпадать с напряжением источника (сплошная штриховка), или быть ему прямо противоположным (пунктирная штриховка).

Мощность электрической цепи равна произведению значений тока и напряжения;

(§ 1.6). Следовательно, при сдвиге фаз мощность может принимать как положительные, так и отрицательные значения. Но что такое отрицательная мощность?

Ответом на этот вопрос является схема на рис. 6.5. Аккумуляторная батарея в зависимости от положения переключателя будет присоединена или к генератору постоянного напряжения Г, или к какой-нибудь нагрузке. Напряжение батареи (ее ЭДС) всегда направлено от ее положительного полюса во внутреннюю цепь; это направление показано стрелкой 1. Переведем переключатель в нижнее положение, т. е. присоединим батарею к нагрузке. Через нагрузку пройдет ток, направление которого обозначено стрелкой 2. Батарея будет расходовать энергию, необходимую для поддержания тока в цепи. В этом случае направление тока совпадет с направлением напряжения батареи.

Читайте также:  Какая перегрузка по току для кабелей с пропитанной бумажной изоляцией напряжением до 10 кв

Теперь переведем переключатель в верхнее положение, присоединив батарею к генератору постоянного тока.

Напряжение генератора направлено по стрелке 3, т. е. навстречу напряжению батареи. Если напряжение генератора больше ЭДС батареи, то ток будет идти от генератора к батарее. Генератор будет заряжать батарею, сообщая ей запас энергии. Направление зарядного тока (стрелка 3) будет противоположно напряжению батареи.

Итак, если ток и напряжение имеют одинаковые направления, то источник — в нашем примере аккумуляторная батарея — расходует свою энергию. Наоборот, при противоположных направлениях тока и напряжения источник получает энергию из цепи. Положительный знак мощности соответствует передаче энергии от источника в цепь, а отрицательный знак мощности — передаче энергии из цепи к источнику.

Сдвиг фаз и мощность. Вернемся теперь к рис. 6.4. Оказывается, что при наличии фазового сдвига между напряжением и током энергия, посылаемая генератором, может быть потреблена в цепи лишь частично, так как только в течение части периода энергия передается источнику. Кроме того, энергия генератора расходуется не только на тепло в активном сопротивлении; часть отдаваемой генератором энергии запасается в магнитном поле цепи. Уменьшение тока в цепи означает и уменьшение запаса энергии в ее магнитном поле. Освобождающаяся при этом энергия возвращается источнику.

Получается любопытная картина: индуктивный потребитель, т. е. потребитель, в цепи которого существует напряжение самоиндукции, не может полностью израсходовать получаемую от генератора энергию:

сдвиг фаз уменьшает полезную мощность.

Посмотрим, как сложатся условия работы в цепи, где напряжение самоиндукции отсутствует (рис. 5.6). При этом будем считать, что условия работы генератора остались теми же, что и на рис. 6.4: генератор имеет прежнее напряжение и создает в цепи прежний ток. Попутно отметим, что при отсутствии самоиндукции отношение между током и напряжением в любой момент времени остается постоянным, а именно:

Но цепь уже не возвращает энергию генератору. Напряжение и ток в любой момент времени имеют одинаковые направления. Знак мощности всегда положителен (рис. 5.7).

Потребляемая в цепи мощность увеличилась, так как прекратился возврат энергии генератору.

Увеличим еще больше тот сдвиг фаз, который существовал на рис. 6.5. Это достигается уменьшением активного сопротивления в цепи переменного тока. Например, сопротивление катушки из толстых проводов может оказаться в несколько десятков раз меньше величины индуктивного сопротивления. Влияние активного сопротивления делается незаметным.

Происходящие здесь явления уясняются из рассмотрения рис. 6.6. Сдвиг фаз между током и напряжением достиг четверти периода. Это значит, что моменты прохождения тока и напряжения через свои нулевые и максимальные значения разделены промежутком времени в четверть периода.

Рис. 6.6. Сдвиг фаз между напряжением 1 и током 2 равен Д периода, Средняя мощность 3 за полпериода равна нулю

Нанесем на чертеж также кривую изменения мощности генератора. Мощность в любой момент времени равна произведению тока и напряжения. Эта кривая показывает, что мощность, отдаваемая генератором в цепь, в точности равна мощности, возвращаемой в следующую четверть периода цепью в генератор. Генератор не совершает никакой полезной работы, а перебрасывает энергию в цепь, с тем чтобы вслед за тем получить ее обратно. Средняя мощность генератора оказывается равной нулю.

К тому же выводу мы придем, воспользовавшись законом Джоуля — Ленца (§ 1.12). Так как активное сопротивление цепи равно нулю, то нулю равна и потребляемая мощность.

Создается удивительное положение вещей. Генератор может не вырабатывать никакой мощности и тем не менее быть перегруженным.

Источник

Переходные процессы в RC- и RL- цепях

Переходными, в электрической цепи, принято называть процессы возникающие в результате различных воздействий (например: включений или отключений цепи от источника питания, обрывах или коротких замыканиях, импульсных возмущающих воздействий и так далее) и переводящих её из одного стационарного (установившегося) состояния в новое (другое) стационарное состояние.

Рассмотрим переходный процесс в RC-цепи (рисунок 1), в состав которой входят резистор R, конденсатор С, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

Схема RC цепи

Рисунок 1. Схема RC-цепи.

Если установить ключ К в положение ”1” (рисунок 1), то начнётся процесс заряда конденсатора С через резистор R (рисунок 2,a). Для образовавшейся цепи будет справедливо соотношение :

Суммарное напряжение в цепи

Так как на конденсаторе напряжение скачком изменяться не может, то в момент (t=0) подключения цепи к источнику питания всё напряжение источника окажется на резисторе R, то есть uR = U, uc = 0.

В начальный момент времени заряда конденсатора, ток в RC-цепи будет иметь наибольшее значение: i=U/R. Конденсатор начнёт заряжаться, напряжение на нём “постепенно” повышается, что, в свою очередь, приведёт к уменьшению падения напряжения на резисторе uR = U — uC, а следовательно и уменьшению тока в RC-цепи, вплоть до его ”полного” прекращения. Напряжение на конденсаторе, во время заряда, нарастает по экспоненциальной зависимости согласно формуле:

Читайте также:  Стабилизированные источники питания переменного тока

Напряжение на конденсаторе во время заряда

где t – любой момент времени, τ – постоянная времени заряда конденсатора в секундах:

Постоянная времени заряда конденсатора

Значения напряжения на резисторе и общего тока RC-цепи уменьшаются также по экспоненциальному закону:

Закон изменения напряжения и тока в RC цепи

Переходные процессы в RC цепи

Рисунок 2. Переходные процессы в RC-цепи. (а – при подключении к источнику; б –при замыкании цепи)

Из приведенных выше математических выражений, а также изображений на рис.2,а можно сделать вывод что, величина τ характеризует скорость заряда конденсатора или скорость затухания переходного процеесса. Через время t= τ , после подключения RC-цепи к источнику постоянного напряжения, напряжение на конденсаторе достигнет значения Напряжение на конденсаторе достигает заряда, а напряжение на резисторе уменьшится до значения Напряжение на резисторе уменьшается достигая значения. Процесс заряда конденсатора будет продолжаться до тех пор, пока напряжения на его выводах не достигнет значения равного напряжению источника питания U. Когда заряд конденсатора закончится — ток в RC-цепи становится равным нулю. Теоретически, для “полного” заряда конденсатора, потребуется бесконечно большое время.

Поэтому, принято считать, что процесс заряда конденсатора заканчивается, когда напряжение на нём достигает значений 90,95 или 99% величины напряжения источника питания U=E.

Зависимость значения величины заряда конденсатора от времени

В подавляющем большинстве случаев, как на практике, так и в теоретических расчётах, время t в течение которого конденсатор считается полностью заряженным, принимают равным 3τ. Также это можно отнести ко всем электрическим цепям, где токи меняются по экспоненциальному закону.

Если установить ключ К в положение ”2” (рисунок 1) то начнётся новый переходный процесс — разряд конденсатора С через резистор R (рисунок 2,a). В этом случае предварительно заряженный конденсатор становится фактическим источником напряжения, т.к. источник внешнего напряжения E=U перестаёт действовать и для любого момента времени становится действительным соотношение uC + uR = 0, то есть uC = -uR.

Ток в начальный момент ( t=0) разряда конденсатора будет иметь максимальное значение:Величина тока в начальный момент заряда конденсатора

Но по мере разряда конденсатора (превращения накопленной в его электрическом поле энергии в тепловую на резисторе R ) напряжение на нём будет уменьшаться и, как следствие, будут уменьшаться по экспоненциальному закону ток в цепи и напряжение на резисторе:

Изменение напряжений на кондесаторе и резисторе в зависимости от величины протекаемого тока

Через некоторое время, например t=3τ (см. приведенную выше табл.), на конденсаторе останется примерно 5% напряжения от начального значения, что условно можно считать окончанием переходного процесса и возвратом схемы в исходное состояние когда: uC = 0, uR = 0, i = 0.

Теперь рассмотрим переходной процесс в RL-цепи (рис.3), в состав которой входят резистор R, катушка индуктивности L, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

Схема RL цепи

Рисунок 3. Схема RL-цепи.

При подключении к источнику E=U, переводом ключа “K” в положение 1, ток в RL-цепи не сразу достигнет значения i=U/R, а будет нарастать по экспоненциальному закону (см.рис.4,а). Это связано с тем, что кроме источника E=U, в цепи с индуктивностью L начинает действовать ЭДС самоиндукции eL, препятствующая нарастанию тока. В момент включения, когда t=0, ЭДС самоиндукции максимальна и принимает значение eL = -U, при этом все напряжения выделяются на катушке индуктивности L : Напряжение на катушке индуктивности, так как при t=0 ток в цепи i=0, следовательно iR = 0. С течением времени напряжение на катушке uL уменьшается, а ток i и напряжение на резисторе uR экспоненциально возрастают:

Изменение и тока напряжений на катушке индуктивности и резисторе при переходном процессе в RL цепи

где τ – постоянная времени RL-цепи, Постоянная времени RL цепи

Переходные процессы в RL цепи

Рисунок 4. Переходные процессы в RL-цепи.
(а – при подключении к источнику; б –при замыкании цепи)

На рисунке 4,а показано что ток в цепи, особенно в начале подключения к источнику, нарастает с наибольшей скоростью, но уже при t= τ его рост значительно замедляется, а при t=3τ практически прекращается и можно считать что его величина достигла установившегося значения i=U/R. При этом, с ростом тока, ЭДС самоиндукции уменьшается до нуля, переходной процесс заканчивается.

Процесс уменьшения тока и напряжения в RL цепи

Переведём ключ К в положение ”2” (рисунок 3) – начнётся обратный переходной процесс, ”разряда” накопленной катушкой индуктивноси “энергии магнитного поля” и превращения её в тепловую на резисторе R, . В самом начале этого переходного процесса (рисунок 4,б) напряжение на катушке возрастает скачком от нуля до uL = -U. В дальнейшем, начинается процесс уменьшения по экспоненциальному закону тока и напряжения на элементах R-L цепи:Итого:

  • переходные процессы в обеих цепях, как RC так и RL , происходят в соответствии с экспоненциальным законом ;
  • в момент подключения RC-цепи к постоянному источнику питания напряжение на конденсаторе “минимамальное” и практически равняется нулю uc = 0 (если он был разряжен), но при этом по цепи протекает максимальный ток i=U/R, значение которого постепенно уменьшается по мере заряда конденсатора (рисунок 2,а);
  • в момент подключения RL-цепи к постоянному источнику питания напряжение на катушке индуктивности принимает максимальное значение и приравнивается к величине напряжения источника, а ток имеет минимальное значение и практически равен нулю i=0, но с течением времени, по мере уменьшения ЭДС самоиндукции катушки, принимает значение i=U/R (рисунок 4,а);
  • величина τ характеризует скорость затухания переходного процесса:
  1. постоянная времени RC-цепи —Постоянная времени заряда конденсатора;
  2. постоянная времени RL-цепи —Постоянная времени RL цепи ;

Источник

Adblock
detector