- Закон Джоуля-Ленца: определение, формулы
- Почему нагреваются проводники
- Токовая нагрузка на кабель: как рассчитать сечение
- Плюсы и минусы от нагрева электрическим током
- Расчет допустимой силы тока по нагреву жил
- Несколько базовых понятий
- Что такое плотность тока
- Содержание статьи
- Значения плотности тока в технике
- О плотности тока высокой частоты
- Плотность тока смещения
- Что такое плотность тока
- Плотность электрического тока
- Сила тока и плотность
- Плотность тока
- Содержание
- Плотность тока и мощность
- Закон Ома
- 4-вектор плотности тока
- Примечания
- Смотреть что такое «Плотность тока» в других словарях:
Закон Джоуля-Ленца: определение, формулы
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
Токовая нагрузка на кабель: как рассчитать сечение
Суммарная величина тока, движущегося по проводнику, зависит от нескольких характеристик: длина, ширина, удельное сопротивление и температура. Повышение температуры сопровождается снижением тока. Любая справочная информация, которую вы обнаружите в таблицах ПУЭ, обычно приводится для комнатной температуры 18 градусов Цельсия.
Помимо электрического тока нужно знать материал для проводника и напряжение. Самый простой расчет сечения кабеля по допустимому току: поделить его значение на 10. Если при изучении таблицы вы не обнаружите нужного значения, то ищите ближайшую, чуть большую величину. Такой вариант возможен для медных проводов, а допустимый ток составляет 40 А или меньше.
Допустимые токовые нагрузки на кабель
При расчете токовой нагрузки в сети с постоянным током ориентируются по одножильному кабелю. Напряжение такого тока составляет 12 В. Расчет нагрузки провода, через который подключается лампочка на 0,1 кВт (к примеру, в передней фаре машины), выглядит так:
После этого нетрудно рассчитать сопротивление:
В таблице найдите удельное сопротивление меди, из которой производятся жилы современных проводников. Также предположите, что длина кабеля составляет 2 м. Воспользуйтесь формулой, указанной в разделах выше, чтобы получить площадь сечения подходящего провода:
- S = (ρ*L)/R = (1,68*10-8*2)/1,44 = 1,2 кв. мм.
Выбор сечения кабеля для сетей постоянного тока
Изучая ПУЭ, можно отыскать бессчетное количество таблиц, в которых определена токовая нагрузка для сетей переменного тока с одно- и трехфазными цепями. Поэтому выполнять такие сложные расчеты необязательно.
Таблица токов, в которой можно найти тип бытового прибора, его приблизительные значения мощности, также указывает и интервал возможного потребляемого тока.
Потребляемые мощность и ток электроприборами
Название электроприбора | Мощность, кВт | Величина тока, А |
Стиральная машина | 2 – 2,5 | 9,0 – 11,4 |
Электроплита | 4,5 – 8,5 | 20,5 – 38,6 |
Микроволновая печь | 0,9 – 1,3 | 4,1 – 5,9 |
Холодильник, морозильник | 0,2 – 0,8 | 0,9 – 3,6 |
Электрочайник | 1,8 – 2,0 | 8,4 – 9,0 |
Утюг | 0,9 – 1,7 | 4,1 – 7,7 |
Пылесос | 0,7 – 1,4 | 3,1 – 6,4 |
Телевизор | 0,12 – 0,18 | 0,6 – 0,8 |
Осветительные приборы | 0,02 – 0,150 | 0,1 – 0,6 |
Однофазная схема электроснабжения дома на 220 В
Если под рукой нет таблицы, но известен потребляемый ток, то вычислить сечение можно в два этапа, используя формулы:
- Находят сопротивление материала при данном значении тока. Это можно сделать из формулы Закона Ома I = U/R. Выразив отсюда R, получают R = U/I.
- Вычисляют площадь сечения, используя значение удельного сопротивления для конкретного материала. Применяют формулу:
- ρ – удельное сопротивление;
- L – длина проводника;
- S – площадь сечения.
Удельное сопротивление для меди ρ = 1,68*10-8 Ом*м, для алюминия – 2,82*10-8 Ом*м.
I = P/U = 50/12 = 4,15 А.
R = U/I = 12/4,15 = 2,9 Ом.
Зная удельное сопротивление меди и, приняв за максимальную длину провода L = 2 м, подставляют всё известное в формулу.
S = (ρ*L)/R = (1,68*10-8*2)/2,9 = 1,9 мм2.
В ПУЭ есть множество таблиц, по которым можно определить токовую нагрузку однофазных и трёхфазных цепей переменного тока. Не обязательно производить математические вычисления. Достаточно оперировать известными параметрами и правильно определить сечение провода или кабеля.
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
Расчет допустимой силы тока по нагреву жил
Если выбран проводник подходящего сечения, это исключит падение напряжения и перегревы линии. Таким образом, от сечения зависит то, насколько оптимальным и экономичным будет режим работы электрической сети. Казалось бы, можно просто взять и установить кабель огромного сечения. Но стоимость медных проводников пропорциональна их сечению, и разница при монтаже электропроводки уже в одной комнате может насчитывать несколько тысяч рублей.
Для выбора сечения провода нужно учитывать два важных критерия — допустимые нагрев и потерю напряжения. Получив два значения площади сечения проводника при использовании разных формул, выбирайте большую величину, округлив ее до стандартной. Особенно чувствительны к потере напряжения воздушные линии электропередач.
Допустимые температуры нагрева токопроводящих жил кабелей
Iд — допустимая нагрузка на кабель (ток по нагреву). Эта величина соответствует току, в течение долгого времени протекающего по проводнику. В процессе этого появляется установленные, длительно допустимая температура (Tд). Расчетная сила тока (Iр) должна соответствовать допустимой (Iд), и для ее определения нужно воспользоваться формулой:
- Iр=(1000*Pн*kз)/√(3*Uн*hд*cos j),
- Pн — номинальная мощность, кВт;
- Kз — коэффициент загрузки (0,85-0,9);
- Uн — номинальное напряжение оборудования;
- hд — КПД оборудования;
- cos j — коэффициент мощности оборудования (0,85-0,92).
Даже если брать во внимание одинаковые токовые величины, тепловая отдача будет разной в зависимости от температуры окружающей среды. Чем ниже температура, тем эффективнее теплоотдача.
Поправочные коэффициенты кабеля в зависимости от температуры окружающей среды
Температура отличается в зависимости от региона и времени года, поэтому в ПУЭ можно найти таблицы для конкретных значений. Если температура существенно отличается от расчетной, придется использовать коэффициенты поправки. Базовое значение температуры в помещении или снаружи составляет 25 градусов Цельсия. Если кабель прокладывается под землей, то температура изменяется на 15 градусов Цельсия. Однако именно под землей она остается постоянной.
Несколько базовых понятий
А для чего вообще необходимо рассчитывать сечение проводов? Нельзя ли ограничиться подбором «на глаз»?
Нет, нельзя, так как совсем несложно впасть в две крайности:
- Проводник недостаточного сечения начинает сильно перегреваться. Это ведет к оплавлению изоляции проводки, созданию условий для самовозгорания, для коротких замыканий. Все это становится причиной разрушительных пожаров, часто сопровождающихся человеческими трагедиями.
- Проводники избыточного диаметра, безусловно, такими опасностями не грозят. Но зато они и существенно дороже (особенно если разговор идет о медных кабелях), и не столь удобны в работе. Получаются совершенно неоправданные материальные и трудовые затраты.
Так что руководствоваться следует принципом разумной достаточности. Тем более что произвести необходимые вычисления – по силам каждому, кто хоть немного разбирается в азах математики и физики.
Для начала вспомним некоторые понятия, многим, наверное, и без того хорошо известные. Но просто для того, чтобы в дальнейшем изложении не появилось разночтений.
С этим вопросом часто бывает путаница, в том числе в статьях, опубликованных на интернет-сайтах.
Итак, в качестве проводника в проводах и кабелях может использоваться одна проволока — с точки зрения электрической проводимости — это оптимальный вариант.
Но для достижения гибкости кабельной продукции приходится использовать более сложные конструкции – множество тонких проволочек, обычно скрученных при этом в «косичку». Чем больше таких проволочек – тем более гибким получается проводник.
Однако, это не следует путать с многожильностью провода. Под отдельной жилой подразумевается именно отдельный проводник. Чтобы стало понятнее – смотрим на иллюстрацию.
На картинке ниже – примеры одножильного провода. Просто с левой стороны – жесткий однопроволочный, а с правой – более гибкий многопроволочный вариант.
И слева, и справа — это одножильный провод.
Если провод (кабель) конструктивно совмещает два изолированных друг от друга проводника или больше, он становится двухжильным, трехжильным и т.п. Но он также может оставаться одно- или многопроволочным.
Двухжильный многопроволочный провод
Аналогичная ситуация и с кабелями. По определению, кабель – это конструкция из нескольких изолированных друг от друга проводников, заключенных в общую изолирующую и защитную оболочку. А вот проводники также могут быть одно- или многопроволочными.
Трехжильные силовые кабели – с однопроволочными или многопроволочными жилами
Жесткие однопроволочные изделия хороши для неподвижных участков проводки, например, вмуровываемых в стены. Многопроволочные провода и кабели отлично подходят для тех участков, где бывает нужна подвижность — типичным примером являются шнуры питания бытовой техники и осветительных приборов.
Итак, все последующие расчеты будут вестись для сечения жилы провода или кабеля.
При оценке условий расположения проводов в дальнейшем могут быть варианты, когда придется представлять разницу, например, между тремя одножильными проводами, протянутыми в одной трубе, или одним трехжильным кабелем.
Два взаимосвязанных параметра, которые порой по неопытности путают. Смотрим на схему – по ней все станет понятно.
Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм².
Во всех справочника обычно используется параметр сечения, так как именно по этому критерию производится классификация различных марок проводов и кабелей.
Но это хорошо, если известна марка кабеля (провода). Если нет, то сечение остается подсчитать, опираясь на диаметр, который можно измерить штангенциркулем или микрометром.
Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.
Формулу площади круга должны, наверное, помнить все. Но тем не менее – приведем ее на всякий случай.
Предлагаем ознакомиться: Расчет кабеля по мощности формула
Sc = π × d² / 4 ≈ 3.14 × d² / 4 ≈ 0.785 × d²
Знак «примерно равно» применен только потому, что взято округление числа π до сотых, всем известное значение π≈ 3,14. Но в нашем случае такой точности – более чем достаточно!
Это формула сечения однопроволочного проводника. А если нужно найти сечение неизвестного провода, с многопроволочной жилой?
Тоже ничего сложного. Жила распушается, чтобы появилась возможность подсчитать количество проволочек в «косичке». И останется только микрометром или штангенциркулем промерить диаметр одной проволочки.
Sc = n × π × d² / 4 ≈ n × 3.14 × d² / 4 ≈ 0.785 × n × d²
где n – это количество проволочек в одной жиле.
Источник
Что такое плотность тока
Содержание статьи
- Что такое плотность тока
- Что такое электрический ток
- Как рассчитать номинальный ток
Плотность постоянного электрического тока можно сравнить с плотностью газа, текущего в трубе под давлением. Плотность тока равна отношению силы тока в амперах (А) к площади поперечного сечения проводника в квадратных миллиметрах (Поз. 1 на рисунке). От материала проводника ее значение не зависит. Сечение проводника берется по нормали (перпендикулярно) к его продольной оси.
Если, допустим, провод имеет диаметр D = 1 мм, то площадь его поперечного сечения будет S = 1/4(πD^2) = 3,1415/4 = 0,785 кв. мм. Если по такому проводу течет ток I в 5 А, то его плотность j будет равна j = I/S = 5/0,785 = 6,37 А/кв. мм.
Значения плотности тока в технике
Хотя само значение плотности тока от материала проводника не зависит, в технике его выбирают, исходя из его удельного электрического сопротивления и длины провода. Дело в том, что при большой плотности тока проводник с ним нагревается, его сопротивление от этого возрастает, и потери электроэнергии в проводке или обмотке увеличиваются.
Однако, если взять провода слишком толстыми, то и вся проводка получится чрезмерно дорогой. Поэтому расчет бытовой проводки ведут, исходя из так называемой экономической плотности тока, при которой общие долговременные расходы на электросеть минимальны.
Для квартирной проводки, провода в которой не очень длинные, берут значение экономической плотности в пределах 6-15 А/кв. мм. в зависимости от длины проводов. Медный провод диаметром 1,78 мм (2,5 кв. мм) в ПВХ изоляции, замурованный под штукатурку, выдержит и 30, и даже 50 ампер. Но при потребляемой квартирой мощности в 5 кВт плотность ток в нем будет (5000/220) = 23 А, а его плотность в проводке – 9,2 А/кв. мм.
Экономическая плотность тока в линиях электропередач много ниже, в пределах 1-3,4 А/кв. мм. В электрических машинах и трансформаторах промышленной частоты 50/60 Гц – от 1 до 10 А/кв. мм. В последнем случае ее вычисляют, исходя из допустимого нагрева обмоток и величины электрических потерь.
О плотности тока высокой частоты
Плотность тока высоких частот (теле и радиосигналы, например) рассчитывают с учетом так называемого скин-эффекта (skin – по-английски «кожа»). Суть его в том, что электромагнитное поле оттесняет ток к поверхности провода, поэтому для получения нужной его плотности приходится брать диаметр провода больше, а чтобы не тратить лишней меди, делать его пустотелым, в виде трубки.
Скин-эффект имеет значение не только при передаче больших мощностей. Если, допустим, сделать разводку кабельного телевидения по квартире слишком тонким коаксиальным кабелем, то потери в нем из-за скин-эффекта во внутреннем проводе могут оказаться чрезмерно велики. Аналоговые каналы при этом будут рябить, а цифровые – рассыпаться в квадратики.
Глубина скин-эффекта зависит от частоты сигнала, и плотность тока при этом плавно падает до нуля в центре провода. В технике для упрощения расчетов глубину залегания скин-поверхности считают там, где плотность тока падает в 2,72 раза по сравнению с поверхностной (Поз. 2 на рисунке). Величина 2,72 выводится в технической электродинамике из соотношения электрической и магнитной постоянной, что облегчает расчеты.
Плотность тока смещения
Ток смещения довольно сложное понятие электродинамики, но именно благодаря ему переменный ток проходит через конденсатор, и антенна излучает сигнал в эфир. Ток смещения тоже имеет свою плотность, но определить ее не так-то просто.
Даже в очень хорошем конденсаторе электрическое поле слегка «выпирает» в стороны между пластинами (Поз. 3 на рисунке), поэтому к пересекаемой током смещения поверхности нужно давать некоторую добавку. Для конденсатора ее величиной еще можно пренебречь, но если речь об антенне, то там эта виртуальная, пересекаемая током смещения поверхность значит все.
Чтобы найти плотность тока смещения, приходится решать сложные уравнения электродинамики или производить компьютерное моделирование процесса. К счастью, для многих случаев инженерной практики знать ее величину не требуется.
Источник
Что такое плотность тока
Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения. Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий. Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.
Плотность электрического тока
Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.
Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.
Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.
Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.
В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.
Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.
Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.
Сила тока и плотность
Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.
Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом. Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными. Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.
Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.
Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.
Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2. В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2. В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.
Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S. Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника. Таким образом, плотность и сила тока самым тесным образом связаны между собой.
Источник
Плотность тока
Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:
где — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу площади
; вектор
(такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их
где
В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость.
В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)
то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где
Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:
(сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны).
Содержание
Плотность тока и мощность
Работа, совершаемая электрическим полем над носителями тока, характеризуется, очевидно [2] , плотностью мощности [энергия/(время• объем)]:
Чаще всего эта мощность рассеивается в среду в виде тепла, но вообще говоря она связана с полной работой электрического поля и часть ее может переходить в другие виды энергии, например такие, как энергия того или иного вида излучения, механическая работа (особенно — в электродвигателях) итд.
Закон Ома
В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома:
где
где — удельное сопротивление.
В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность в этом случае вообще говоря должна рассматриваться как тензор, а умножение на нее — как умножение вектора на матрицу.
Формула для работы электрического поля (плотности ее мощности)
вместе с законом Ома принимает для изотропной электропроводности вид:
и
где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор
4-вектор плотности тока
В теории относительности вводится четырёхвектор плотности тока (4-ток), составленный из объёмной плотности заряда ρ и 3-вектора плотности тока =(c\rho, \vec
4-ток является прямым и естественным обобщением понятия плотности тока на четырехмерный пространственно-временной формализм и позволяет, в чатстности, записывать уравнения электродинамики в ковариантном виде [3] .
Примечания
- ↑ Чаще в таких случаях она даже не называется явно скаляром, но просто не упоминается ее векторный характер.
- ↑ Это прямо следует из формул, приведенных выше вкупе с определением работы или с формулой мощности .
- ↑ достаточно красивом и компактном.
- Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
Wikimedia Foundation . 2010 .
Смотреть что такое «Плотность тока» в других словарях:
плотность тока — Векторная величина, равная сумме плотности электрического тока проводимости, плотности электрического тока переноса и плотности электрического тока смещения. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия Синонимы плотность… … Справочник технического переводчика
ПЛОТНОСТЬ ТОКА — одна из основных характеристик электрического тока; равна электрическому заряду, переносимому в 1 с через единичную площадку, перпендикулярную направлению тока … Большой Энциклопедический словарь
плотность тока — одна из основных характеристик электрического тока; равна электрическому заряду, переносимому в 1 с через единичную площадку, перпендикулярную направлению тока. * * * ПЛОТНОСТЬ ТОКА ПЛОТНОСТЬ ТОКА, векторная характеристика электрического тока (см … Энциклопедический словарь
плотность тока — [current density, specific current] величина тока I, приходящаяся на единицу поверхности S электрода поверхность плотности тока jпов = I/S, А • м 2 или на единицу объема V электролита объемная плотность тока j0 = I/V, А • м 3. В зависимости от… … Энциклопедический словарь по металлургии
Плотность тока — Current density Плотность тока. Поток, текущий к или от единичной площади поверхности электрода. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) … Словарь металлургических терминов
плотность тока — srovės tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Srovės stipris, tenkantis vienetiniam plotui. Matavimo vienetas: A/m². atitikmenys: angl. current density vok. Stromdichte, f rus. плотность тока, f pranc. densité de… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
плотность тока — srovės tankis statusas T sritis chemija apibrėžtis Elektros srovės stipris vienetiniame plote. atitikmenys: angl. current density rus. плотность тока … Chemijos terminų aiškinamasis žodynas
плотность тока — srovės tankis statusas T sritis fizika atitikmenys: angl. current density vok. Stromdichte, f rus. плотность тока, f pranc. densité de courant, f … Fizikos terminų žodynas
ПЛОТНОСТЬ ТОКА — векторная хар ка I электрич. тока, численно равная отношению силы тока dI сквозь малый элемент поверхности, нормальный к направлению движения заряж. частиц, образующих ток, к площади dS этого элемента: I = dl/dS. Направление I совпадает с… … Большой энциклопедический политехнический словарь
ПЛОТНОСТЬ ТОКА — одна из осн. характеристик электрич. тока; равна электрич. заряду, переносимому в 1 с через единичную площадку, перпендикулярную направлению тока. Единица измерения в СИ А/м2 … Естествознание. Энциклопедический словарь
Источник