Меню

Площадь контакта для тока



Что такое переходное сопротивление контактов и как его измерять?

В электротехнике очень часто возникает необходимость коммутации электрических цепей. Каждое электромеханическое коммутирующее устройство имеет, как минимум, одну пару соединительных контактов. Вопреки ожиданиям, нередко можно наблюдать, что контакты нагреваются. Виной тому является переходное сопротивление контактов, от которого невозможно полностью избавиться.

Контактное пятно образуется в результате любого соприкосновения проводников. В точке соединения проводов всегда возникает сопротивление, которое превышает величину удельных сопротивлений материалов проводника. Существует несколько причин такого явления, о которых речь пойдёт в данной статье. А для начала выясним, что подразумевают под термином переходного сопротивления контактов.

Что это такое?

Сопротивление, возникающее в зоне соприкосновения контактных поверхностей, при преодолении током точек касания, носит название переходного сопротивления контактов. Другими словами – это скачкообразное увеличение активного сопротивления в результате прохождения тока через контактное пятно. Математически такое явления можно выразить как отношение падения напряжения на контактах к протекающему через них току: ΔU/I

Как видно из формулы данная величина обратно пропорциональна силе контактного нажатия: Rn = ε/F, где ε – коэффициент, зависящий от физических свойств материала и чистоты обработки поверхности. Эту зависимость можно продемонстрировать на графике (рис. 1).

График зависимости от приложенной силы нажатия

Рис. 1. График зависимости от приложенной силы нажатия

Нагревание контактных поверхностей – одна из причин быстрого их износа. Поэтому наиболее качественным соединением считается такое, для которого сопротивление контактного перехода является самым низким. В идеале оно должно равняться нулю. Но в силу ряда причин достичь такого значения на практике невозможно.

Причины возникновения

Для сплошного проводника справедлива формула: R = ρ * ( l / S ), где ρ – удельное сопротивление, l длина, S сечение проводника. Казалось бы, решение очень простое – надо увеличить площадь контактных площадок в конструкции электрического аппарата. К сожалению, такое усовершенствование не решает задачи кардинально. И дело даже не в том, что применять закон Ома к плоскостным контактам следует с учётом площади прикосновения поверхностей. Оказывается, что увеличение контактной площадки не сильно увеличивает площадь контактного пятна.

Если посмотреть под микроскопом на поверхность плоской контактной площадки, то можно заметить неровности (рис. 2). Касание контактов происходит лишь в некоторых точках. Даже тщательная шлифовка мало помогает. Дело в том, что в результате замыкания и размыкания контактов образуется искра (электрическая дуга), которая увеличивает неровности контактных поверхностей.

Структура плоских контактных площадок

Рис. 2. Структура плоских контактных площадок

Обратите внимание на то, как увеличивается контактное пятно под действием силы нажатия (рисунок справа). Это объясняет причину зависимости сопротивления контактного перехода от нажатия, (график такой зависимости представлен на рисунке 1).

От чего зависит переходное сопротивление контактов?

Мы выяснили, что от площадей соприкасаемых поверхностей мало что зависит. На нагрев участка механического соединения влияют и другие явления. Например, окисление меди приводит к повышению температуры нагрева на скрутках соединительных проводов. Аналогичный процесс происходит также при соединении алюминиевых проводников.

В результате окисления проводников на их поверхностях образуется тонкая оксидная плёнка. С одной стороны, наличия пленок препятствует проникновению кислорода вглубь металла, предотвращая дальнейшее его разрушение, но с другой стороны они являются ещё одной причиной роста переходных сопротивлений.

Когда медь окисляется, то на поверхности контактной площадки образуется устойчивая плёнка. А это всегда приводит к увеличению сопротивляемости перехода. Устранить дефект можно путём протирания контактов спиртом. Регулярная процедура чистки помогает содержать коммутационные устройства в актуальном состоянии.

Алюминиевый контакт лучше поддаётся влиянию контактного нажатия, благодаря пластичности этого металла. С целью увеличения силы нажатия применяются болты, пружинные зажимы и различные клеммники.

Медные соединительные провода часто припаивают. В местах спайки переходное сопротивление минимальное.

Подводя итог, можем констатировать:

Переходное сопротивление стали

  1. Простое соприкосновение контактных поверхностей не обеспечивает надёжного контакта, поскольку соединение происходит не по всей поверхности, а лишь в немногих точках.
  2. на преодоление контактного перехода почти не влияют размеры и формы контактных площадок (см. график на рис. 3).
  3. Контактное нажатие существенно влияет на структуру перехода. Однако, это влияние проявляется только при сравнительно незначительных усилиях. После некоторого значения приложенной силы, вызвавшей смятие, сопротивляемость току стабилизируется.
  4. Со временем на медных и алюминиевых контактах образуется защитная плёнка, увеличивающая сопротивление. Для борьбы с этим явлением используют сплавы, покрывают поверхности серебром. Окисление активизируется при повышении температуры (для меди свыше 70 ºC). Температура в свою очередь зависит от токов нагрузки.
  5. Очень интенсивно на открытом воздухе окисляется алюминий. Оксидная плёнка алюминия обладает довольно большим удельным сопротивлением.

Рис. 3. Переходное сопротивление стали

Чтобы добиться нужного результата, следует учитывать комплексное влияние всех вышеперечисленных факторов. Правилами устройств электроустановок строго регламентируется сопротивление контактной группы. Нарушение этих требований может привести к авариям.

Нормы по ПУЭ 7

Правилами предусмотрено соблюдение важных параметров, включая допустимые значения для контактных переходов. Измерения сопротивления постоянному току проводятся при испытаниях разъединителей и отделителей. Нормы по ПУЭ 7 требуют, чтобы показания величин для отделителей и разъединителей, предназначенных для работы под напряжением от 110 кВ, соответствовали данным заводов-изготовителей.

По правилам ПУЭ 7 для разъединителей типа РОН3, рассчитанных на номинальное напряжение 400 – 500 кВ (при номинальном токе 2000 А) переходное сопротивление не должно превышать 200 мкОм. Для ЛРН (110 – 220 кВ/ 600 А сопротивление контактов должно составлять 220 мкОм.

Требования для остальных типов отделителей, применяемые в сетях 110 – 500 кВ:

  • Номинальному току 600 А соответствует сопротивление 175 мкОм;
  • 1000 А – 120 мкОм;
  • 1500 – 2000 А – наибольшее допустимое сопротивление 50 мкОм.

Измерения выполняются между точкой «контактный ввод» и на клемме «контактный вывод».

Методика измерения

Можно использовать формулу ΔU/I и провести вычисления с помощью амперметра и вольтметра. Этим методом измеряют переходное параметры контактов мощных силовых выключателей. Для этого амперметр включают последовательно с контактами, а вольтметр параллельно. Перед амперметром добавляют балластный резистор, параметры которого подбирают так, чтобы рабочий ток контактов соответствовал току контактного сопротивления (с учётом требований ПУЭ).

Данная процедура довольно громоздкая. Целесообразно воспользоваться милиомметром.

При выборе омметра следует учитывать следующие обстоятельства:

  1. Границы измерений должны находиться в диапазоне контроля прибора.
  2. Нижний предел диапазона омметра должен начинаться от 10 мкОм.
  3. Погрешность измерений не должна превышать 0,5%.

Существуют специальные приборы, предназначенные для измерений переходного сопротивления контактов. Выше приведённые требования уже учтены в таких приборах. Один из измерителей показан на рисунке 4. Результат измерений отображается непосредственно на цифровом дисплее.

Измерительный прибор

Рис. 4. Измерительный прибор METREL

При измерениях следует учитывать загрязнение контактов и рабочую температуру агрегата. Наличие сторонних включений на площадках контактов, равно как и заниженная температура может исказить показания измерителя в большую сторону. Чтобы получить наиболее реальные параметры, необходимо выбирать токи и напряжения, близкие по значению к номинальным, характерным для конкретного разъединителя. Следует также помнить о том, что контакты обладают первоначальным временным сопротивлением, которое снижается после прогрева.

Существуют профессиональные измерительные приборы, у которые можно регулировать выходную мощность в довольно больших пределах. Они обеспечивают более высокую точность измерения.

Источник

Что такое переходное контактное сопротивление и как с ним бороться

Что такое переходное контактное сопротивление и как с ним боротьсяИз размещенных на сайте Электрик Инфо ранее статей можно заметить, что как только вопрос касается способов соединения проводов, то сразу возникают споры вокруг того, какой из вариантов соединения лучше и надежнее. Наиболее качественным соединением контактов всегда будет то, которое обеспечивает наиболее низкое значение переходного контактного сопротивления как можно более длительное время.

Контактные соединения в большом количестве входят во все электрические цепи и аппараты и являются их очень ответственными элементами. Так как от состояния электрических контактов в наибольшей степени зависит безаварийная работа электрооборудования и электропроводки, то в этой статье давайте разберемся что же это такое — «переходное контактное сопротивление» и от каких факторов зависит его величина. Опираться при этом будем на теорию электрических аппаратов , так как именно именно в этой дисциплине вопросы электрическ ого контакт ирования исследован ы наиболее хорошо и подробно.

Электрический контакт (в отвлечённом смысле). Состояние, возникающее при соприкосновении двух проводников.

Итак. Контактное соединение – это конструктивное устройство, в котором осуществляется электрическое и механическое соединения двух или нескольких отдельных проводников, которые входят в электрическую цепь. В месте соприкосновения проводников образуется электрический контакт – токопроводящее соединение, через которое ток протекает из одной части в другую.

Простое наложение контактных поврехностей соединяемых проводников не обеспечивает хорошего контакта, так как действительное соприкосновение происходит не по всей поверхности, а только в немногих точках. Причина этого — неровность поверхности контактирующих элементов и даже при очень тщательной шлифовке на поверхностях остаются микроскопические возвышения и впадины.

В книгах по электрическим аппаратам можно встретить подтверждение этому на фотографиях сделанных с помощью микроскопа. Действительная площадь спорикосновения во много раз меньше общей контактной поверхности.

Читайте также:  Базисная мощность при расчете токов кз

Из-за малой площади соприкосновения контакт представляет довольно значительное сопротивление для прохождения тока. Сопротивление в месте перехода тока из одной контактной поверхности в другую называется переходным контактным сопротивлением. Сопротивление контакта всегда больше, чем сплошного проводника таких же размеров и формы.

Переходное контактное сопротивление – это резкое увеличение активного сопротивления в месте перехода тока из одной детали в другую.

Его величина определяется по формуле, которая вываедена опытным путем в результате многочисленных исследований :

Rп = ε / ( 0,102 F m ),

г де ε – коэффициент, который зависит от свойств материала контактов, а т а кже от способа обработки и чистоты контактной поверхности ( ε зависит от физических свойств материалов контактов , удельного электрического сопротивления, механической прочности, способности материалов контактов к окислению, теплопроводности ) , F – сила контактного нажатия, Н, m – коэффициент, зависящий от числа точек соприкосновения контак т ных поверхностей. Этот коэффициент может принимать значения от 0,5 до 1. Для плос костного контакта m = 1.

Из уравнения также следует, что сопротивление контакта не зависит от размера контактных поверхностей и для контакта определяется прежде всего силой давления (контактного нажатия).

Контактное нажатие – усилие, с которым одна контактная поверхность воздействует на другую. Число соприкосновений в контакте быстро растет при нажатии. Даже при небольших давлениях в контакте происходит пластическая деформация, вершины выступов сминаются и с увеличением давления все новые точки приходят в соприкосновение. Поэтому при создании контактных соединений применяют различные способы нажатия и скрепления проводников:

— механическое соединение при помощи болтов (для этого используются различные клеммники)

— приведение в соприкосновение при помощи упругого нажатия пружин (клеммники с плоско-пружинным зажимом, например WAGO),

Если два проводника соприкасаются в контакте, то число площадок и суммарная площадь соприкосновения будут зависеть от величины силы нажатия и от прочности материала контакта (его временного сопротивления на смятие).

Переходное контактное сопротивление тем меньше, чем больше сила нажатия, так как от нее зависит действительная площадь соприкосновения. Однако давление в контакте целесообразно увеличивать только до некоторой определенной величины, потому что при малых значениях давления переходное сопротивление уменьшается быстро, а при больших – почти не изменяется.

Таким образом, давление должно быть достаточно большим для того, чтобы обеспечить малое переходное сопротивление, но не должно вызывать пластических деформаций в металле контактов, что может привести к их разрушению.

Свойства контактного соединения могут с течением времени меняться. Только новый, тщательно обработанный и зачищенный контакт при достаточном давлении имеет наименьшее возможное переходное контактное сопротивление.

В процессе эксплуатации под действием разнообразных факторов внешнего и внутреннего характера переходное сопротивление контакта увеличивается. Контактное соединение может настолько ухудшиться, что иногда становится источником аварии.

В очень большей степени переходное контактное сопротивление зависит от температуры. При протекании тока контакт нагревается и повышение температуры вызывает увеличение переходного сопротивления. Однако увеличение переходного сопротивления контакта идет медленнее, чем увеличение удельного сопротивления материала контакта, так как при нагреве снижается твердость материала и его временное сопротивление смятию, что, как известно, уменьшает переходное сопротивление.

Нагрев контакта приобретает особенно важное значение и в связи с его влиянием на процесс окисления контактных поверхностей. Окисление вызывает очень сильное увеличение переходного сопротивления. При этом окисление поверхности контакта идет тем интенсивнее, чем выше температура контакта.

Медь окисляется на воздухе при обычных температурах жилых помещений (около 20 о С). Образующаяся при этом окисная пленка не обладает большой прочностью и легко разрушается при сжатии. Особенно интенсивное окисление меди начинается при температурах выше 70 о С.

Алюминиевые контакты на воздухе окисляются более интенсивно, чем медь. Они быстро порываются пленкой окиси алюминия, которая является очень устойчивой и тугоплавкой и обладает такая пленка довольно высоким сопротивлением – порядка 10 12 ом х см.

Отсюда можно сделать вывод, что добиться нормального контактирования со стабильным переходным контактным сопротивлением, которое не будет увеличиваться в процессе эксплуатации в этом случае очень тяжело. Именно по этому использовать алюминий в электропроводке неудобно и опасно и большинство проблем с электропроводкой, которые описываются в книгах и в Интернете случаются именно при использовании проводов и кабелей с алюминиевыми жилами.

Таким образом, состояние контактных поврехностей оказывает решающее влияние на рост переходного сопротивления контакта. Для получения устойчивости и долговечности контактного соединения должна быть выполнена качественная зачистка и обработка контактной поверхности, а также создано оптимальное давление в контакте. Показателями хорошего качества контактов служат его переходное контактное сопротивление и температура нагрева.

Фактически используя любой из известных способов соединения проводов (клеммники разных видов, сварка проводов, пайка, опрессовка) можно добиться стабильно низкого переходного контактного сопротивления. При этом, важно соединять провода правильно, обязательно соблюдая технологию с использованием необходимого для каждого способа соединения и ответвления проводов материалов и инструмента.

Источник

ПЛОЩАДИ КОНТАКТА И ПЯТНА КОНТАКТА

ПЛОЩАДИ КОНТАКТА И ПЯТНА КОНТАКТА

Площади контакта и давления на контакте

Взаимный контакт деталей происходит по вершинам и выступам шероховатости, которая деформируется под действием внешней нагрузки.

Контактирование реальных тел будет осуществляться в отдельных зонах, т. е. контакт будет дискретным (рис. ). Для характеристики процесса контактирования твердых тел вводят понятия площадей поверхности контакта.

Рис. Схема контакта поверхностей тел. Fn – внешняя нагрузка, A – общая площадь поверхности, Ak – площадь поверхности контакта.

При этом различают: номинальную площадь контакта Aa; контурную площадь контакта Ak; фактическую площадь контакта Ar (рис.).

Рис. Структурные компоненты реального контакта шероховатых поверхностей:

Aа – номинальная площадь контакта; Aк – контурная площадка;

DAr – фактическая площадь единичного пятна контакта.

Под номинальной площадью контакта Aa (НПК) понимают такую площадь, по которой соприкасались бы тела, если бы их поверхности имели идеально гладкую геометрическую форму.

Номинальная площадь контакта совпадает со всей площадью контактирующей поверхности детали. Например, если контактируют два тела с различными типами поверхностей: волнистой и абсолютно плоской, то для первого тела номинальная площадь касания равна площади волнистой поверхности, для второго – площади прямоугольника.

При контакте плоских тел НПК определяется их геометрическими размерами. При контакте тел с криволинейными поверхностями НПК зависит не только от размеров, но и от приложенной нагрузки и механических свойств этих тел, т. е. от факторов, определяющих их деформацию.

Номинальная площадь контакта определяется выражением

а номинальное давление

При наличии волнистости, контактирование тел осуществляется по самым высоким неровностям (вершинам волн, пикам шероховатости). Под воздействием силовых факторов (нагрузка, вес) происходит деформирование элементов волнистости. Деформация элементов волнистости будет определять размеры площадок контакта.

Контурная площадь контакта Ак (КПК) – суммарная площадь пятен касания, обусловленная деформацией вершин волн. Контурные площадки удалены друг от друга на расстояние шага волны.

Контурная площадь контакта составляет 5–15 % от Аа, а контурное давление

Контурная площадь контакта определяется волнистостью поверхностей, нагрузкой и механическими свойствами контактирующих тел.

С увеличением нагрузки поверхности тел сближаются, происходит внедрение выступов более твердого тела в материал более мягкого. При этом наблюдается как упругая, так и пластическая деформация контактирующих выступов, в контакт вступают новые микронеровности. Образуется множество расположенных на различных уровнях площадок контакта с размером 3–50 мкм. Именно на этих площадках осуществляется реальный (фактический) контакт.

Фактическая площадь контакта Аr (ФПК) – суммарная площадь, на которой происходит контакт микронеровностей, образующих шероховатость поверхностей. Фактическая площадь контакта обычно мала и составляет в ненагруженном состоянии 0,01…0,1 % от Аа, при высоких нагрузках 1–10% от Аа.

После снятия нагрузки 30–70% ФПК исчезает вследствие упругого восстановления материала.

Суммарная площадь фактического контакта равна

а фактическое давление

Контакт может быть ненасыщенным – число контактирующих микронеровностей nr меньше числа микронеровностей nс, расположенных на контурной площадке; и насыщеннымnr = nс.

Фактическая площадь контакта Аr меняется после первой и последующей нагрузки:

– фактический контакт увеличивается при увеличении нагрузки, уменьшении шероховатости (Rа), росте радиуса закруглений выступов r и с увеличением времени действия нагрузки.

– фактический контакт уменьшается с увеличением предела текучести материала контактирующих тел, с увеличением упругих характеристик, увеличением высоты неровности (шероховатости).

При сопряжении тел из разнородных материалов ФПК определяется физико-механическими свойствами более мягко материала и геометрией более твердого.

Площадь фактического контакта играет исключительную роль во всех физических и химических процессах, которые могут протекать на границе раздела деталей.

Расчет фактической площади контакта и деформации

Выступы контактирующих поверхностей под действием нагрузки деформируются упруго и пластически. При малых нагрузках имеет место упругая деформация (после снятия нагрузки форма профиля восстанавливается), а с ростом нагрузки развивается пластическая деформация.

При разработке физической модели для расчета площади фактического контакта тел учитываются следующие экспериментальные факты:

Читайте также:  Как получают постоянный ток из переменного с помощью полупроводниковых диодов

– контакт шероховатых поверхностей имеет дискретный характер, при этом отдельные неровности по форме близки к сферическим сегментам;

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

– элементарные пятна фактического контакта возникают в результате как упругих, так и пластических деформаций;

– фактическая площадь касания пропорциональна приложенной нагрузке, с ростом которой увеличение площади происходит в основном за счет возникновения новых пятен контакта при сохранении среднего размера пятна в пределах 10–20 мкм.

При контактных давлениях, не превышающих предела текучести материала sт, напряженно-деформированное состояние тела определяется из решения задачи Герца о контакте упругой сферы с упругим полупространством.

В пластическое состояние материал переходит при средних нормальных давлениях на контакте в соответствии с зависимостью

где sт – предел текучести материала при одноосном напряженном состоянии, c – коэффициент, учитывающий влияние формы тела (для сферы по результатам экспериментально-теоретических исследований).

Тогда материал перейдет в пластическое состояние при

где HB – твердость материала по Бринеллю.

Рассчитаем упругую деформацию двух приведенных в контакт сфер радиусами R1 и R2 (рис. ) применяя формулу Герца:

где Аri – площадь контакта двух сфер, Е1, Е2, m1, m2 – модули упругости и коэффициенты Пуассона тел, Fn – нормальная нагрузка, ai – сближение тел, вызванное их деформацией.

Рис. Контакт двух сфер

При упругом контакте отдельной сферической неровности радиусом R с плоской поверхностью приведенные формулы преобразуются к виду

При пластической деформации сферы или внедрении ее в пластическое полупространство площадь и деформацию приближенно можно оценить по выражениям, полученным в предположении, что среднее нормальное давление на контакте равно твердости более мягкого материала:

Если радиусы неровности поверхности в двух взаимно перпендикулярных направлениях неодинаковы, то в расчетах можно использовать эквивалентный радиус .

При контакте шероховатой поверхности 1 с гладкой плоскостью 2 (рис) площадь фактического контакта равна сумме площадок контактов, образованных в результате деформирования отдельных выступов:

где n – число контактирующих выступов.

Рис. Схема контакта идеально гладкой и шероховатой поверхностей

При расчетах ФПК шероховатую поверхность обычно моделируют набором сферических сегментов радиусом R, вершины которых соответствуют опорной кривой реальной поверхности (рис).

Для текущего уровня p относительная опорная длина профиля

где hp – длина отрезков, l – длина контактов.

Для модели будет иметь место равенство (аналогично показанной формуле)

где Аp – площадь сечения шероховатого слоя на уровне p, т. е. относительная опорная длина профиля принимается равной относительной площади шероховатого слоя на некотором уровне, Аk – контурная площадь контакта.

Следовательно, площадь сечения

где b и v – параметры, зависящие от вида обработки поверхности (b = 1–10, v = 1,6–3); a – сближение тел, вызванное их деформацией, Rmax – максимальная высота неровностей.

Тогда фактическая площадь контакта

где ay – коэффициент, учитывающий упругую осадку выступов и их расплющивание. При упругом контакте ay = 0,5, а при пластическом ay ≈ 1 (см. рис.).

Рис. Контакт сферы с упругим (а) и пластическим (б) полупространством

Исходя из приведенных формул, сближение при упругом контакте (ay = 0,5) определяется по выражению

Если деформация выступов пластическая, то фактическая площадь равна

а сближение при пластическом контакте

При расчете контакта двух шероховатых поверхностей вместо b, v, Rmax необходимо подставить их эквивалентные значения, учитывающие свойства двух тел:

где K – коэффициент, зависящий от v1 и v2.

Методы измерения фактической площади контакта

Методы оценки ФПК делят на три группы (по классификации ), основанные на:

– явлении массопереноса между приведенными в контакт телами;

– передаче и переносе энергии;

– деформации неровностей и сближении контактирующих тел.

Метод красок – на поверхность одного из сопрягаемых тел наносят слой краски и приводят в контакт с другим телом. По размерам, форме и числу пятен после разъединения судят о ФПК. Основной недостаток – низкая точность измерения.

Метод угольных пленок – поверхность одного из сопрягаемых тел покрывают распылением в вакууме угольной пленкой (h = 0,3 мкм). Во время контакта пленка разрушается. Замеряют разрушенные участки. Метод дает завышенные значения.

Метод радиоактивных изотопов – слой радиоактивного вещества наносят на поверхность одного тела и приводят в контакт с другим. Радиоактивное вещество локализуется на вершинах вступающих в контакт неровностей. По интенсивности излучения и его распределению по поверхности судят о числе и размерах пятен контакта. В качестве радиоактивного вещества применяют, например, раствор хлористого цинка, содержащий изотоп Zn65. Основной недостаток – трудность тарировки и зависимость результатов измерений от времени экспозиции.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Для этой группы характерна низкая точность измерения, возможность для применения только для неподвижного контакта шероховатых тел, трудность получения тонкослойных покрытий одинаковой толщины.

Метод измерения электропроводности контакта – через два приведенных в контакт тела пропускают электрический ток. По величине тока и напряжения определяют электрическое сопротивление и фактическую площадь контакта. Недостатки: низкая точность и ограниченная область применения.

Метод измерения теплопроводности контакта – роль измерителя играет разность в теплопроводности зоны контакта с материалом тел.

Акустический метод – основан на явлении распространения упругих волн (ультразвуковых), в объеме твердого тела. Мерой ФПК является коэффициент отражения волн от границы раздела сопрягаемых тел (отношение отраженной энергии к энергии падающей волны). Недостатки – воздействие ультразвуковой волны может привести к изменению структуры контактирующих тел, рассеяние ультразвуковых колебаний на неровностях поверхности, зависимость результатов измерений от фрикционного нагрева сопрягаемых тел.

Метод прозрачных моделей – два прозрачных образца приводят в контакт и пропускают пучок параллельных лучей света. Измерение ФПК основано на прохождении и рассеивании пучков в телах и воздушном зазоре между ними. Дает завышенные значения для контакта гладких поверхностей.

Метод Мехау – основан на нарушении внутреннего отражения света на пятнах фактического контакта оптически прозрачного образца с непрозрачным. На участках фактического контакта свет рассеивается, что под микроскопом видно как темные пятна на зеркальном фоне. Метод обеспечивает получение надежных результатов измерения ФПК для шероховатых поверхностей, применим для статического и динамического контакта. Дает завышенные значения измерений для контакта гладких поверхностей.

Третья группа – включает расчетно-экспериментальные методы определения ФПК, основанные на результатах измерения сближения двух контактирующих тел и исходной шероховатости поверхностей. Данная группа методов измерения наименее распространена, так как необходимо производить различные типы измерений (сближение, профили шероховатости) и применять расчеты, что приводит к снижению точности определения ФПК.

Источник

Электрические контакты: принцип работы, типы, защита контактов

контактыЭлектрические контакты — это соприкасающиеся поверхности материалов, обладающие электропроводностью и соединяющие между собой несколько токоведущих элементов в электрической цепи. Это может быть также приспособление, которое обеспечивает соединение и переход электрического тока из одной контактирующей детали в другую.

  1. Разновидности контактов
  2. По форме контакты бывают
  3. Электрическое сопротивление контактов
  4. Искрение на контактах и электрическая дуга
  5. Устройства искро- и дугогашения

Разновидности контактов

Известны 3 разновидности контактов: неразъемный контакт (соединение двух шин болтом), скользящий (с помощью реостата) и коммутирующий.

По форме контакты бывают

  • точеные, они, в основном, используются для малых токов, при этих контактах происходит небольшое нажатие, а для того, чтобы уменьшить сопротивление контактов, применяются не окисляющиеся драгоценные металлы;
  • линейные, с большой степенью нажатия и контактированием по линии, для производства этих контактов используется медь;
  • поверхностные, применяются с большой степенью нажатия для контактирования при больших токах между двух поверхностей.

Электрические контакты: принцип работы, типы, защита контактов

Электрические контакты также бывают подвижные и неподвижные.

  • Подвижные контакты в процессе работы замыкаются, соединяясь между собой, либо размыкаются, разъединяясь с помощью механического или электромеханического привода, при этом устройства между собой остаются надежно скреплены.

В процессе работы неподвижных контактов, токоведущие надежно и плотно соединенные между собой элементы не перемещаются друг относительно друга.

Чтобы создать замкнутую электрическую цепь, нужно произвести несколько контактов.

Одним из примеров подвижного контакта является устройство рычажного контакта, рассчитанное на средние и большие токи, в котором в качестве материала применяется медь.

Электрические контакты: принцип работы, типы, защита контактов

  • Шарнирный контакт, где неподвижный элемент и подвижный элемент соединяются между собой с помощью силы, воздействующей на рычаг, может служить еще одним примером подвижного контакта.
  • Скользящие контакты — это еще одна разновидность подвижных контактов, у которых, как и в щеточноколлекторном устройстве электрических машин постоянного тока, один элемент перемещается относительно других.

Электрические контакты: принцип работы, типы, защита контактов

Также к подвижным контактам можно отнести герметизированные магнитоуправляемые контакты или герконы, простейший пример которых представляет собой запаянную стеклянную колбу миниатюрного размера, с двумя плоскими впаянными контактными пружинами, состоящими из мягкой магнитной стали.

Если эти герметизированные магнитоуправляемые контакты (герконы) поместить в созданное обмоткой или постоянным магнитом магнитное поле, то их пружины будут намагничиваться и затем притягиваться друг к другу.

В это время происходит замыкание контактов и, как следствие, может замкнуться электрическая цепь. Контакты из-за силы упругости пружин разомкнутся только после полного исчезновения магнитного поля. Поверхности пружин на контактах покрываются тонким слоем драгоценного металла, имеющего малое удельное электрическое сопротивление (платина, золото, серебро).

Читайте также:  Ток глухаря весной аудио

С помощью герконов можно производить коммутации в электрических цепях при малых значениях тока от 0,5 до 1А. Колбу геркона вакуумируют или заполняют инертным газом.

Элементы геркона имеют малую массу и высокое быстродействие контактов от 0,5 до 1,0 мс.

Износоустойчивость — это самое важное из свойство герконов. У некоторых видов герконов количество переключений может достичь до двух тысяч в секунду, а срабатываний до сотен миллионов.

Герсиконы — это герметические магнитоуправляемые силовые контакты, являющиеся разновидностью герконов, которые позволяют произвести коммутации в электрических цепях при значениях тока 60А, 100А или 180А и при напряжении 220 440В.

Интересное видео о физике электрических контактов смотрите ниже:

Электрическое сопротивление контактов

Работу контактов определяет переходное электрическое сопротивление, которое зависит от площади контактирования. Чтобы уменьшить переходное сопротивление контактов, необходимо увеличить силу прижатия контактов.

В зависимости от силы переходного сопротивления, ток в цепи, вызывает нагрев контактов, который, в свою очередь, способствует увеличению переходного сопротивления и приводит к еще большему нагреву.

Таким образом достигается допустимый максимум рабочей температуры, находящийся в пределах от 100 до 120°С. По мере увеличения значения номинального тока коммутирующего аппарата, контактное переходное сопротивление должно уменьшаться с помощью повышения контактного нажатия, при этом обязательно необходимо увеличить поверхность охлаждения.

Состав материала из которого изготавливают токоведущие элементы контактов содержит материалы с минимальным удельным электрическим сопротивлением — серебро, медь или металлокерамические композиции.

Искрение на контактах и электрическая дуга

При значительных напряжениях и токах во время размыкания электрической цепи, между расходящимися контактами, образуется электрический разряд. В это же время, в площадке контактирования, при расхождении контактов происходит резкий рост переходного сопротивления и разогрев контактов до их расплавления и образования контактного перешейка из расплавленного металла.

В результате высокой температуры, контакты могут разогреваться и рваться, при этом металл контактов испаряется, а между контактами образуется ионизирующий проводящий воздушный промежуток, в котором под воздействием высокого напряжения, возникает электрическая дуга, которая снижает быстродействие коммутационного аппарата и способствует дальнейшему разрушению контактов.

Чтобы прекратить появление дуги, нужно увеличить сопротивление в цепи с помощью увеличения расстояния между контактами, или применить специальные меры для ее погашения.

Разрывная или коммутируемая мощность контактов — это произведение предельных значений тока и напряжения в цепи, при которых на минимальном расстоянии, между контактами электрическая дуга не образуется.

Электрическая дуга гаснет, когда в цепях переменного тока мгновенное значение тока достигнет нуля и может вновь появиться, если напряжение на контактах будет расти быстрее, чем произойдет восстановление электрической прочности промежутка между контактами.

В любом случае, в цепи переменного тока дуга неустойчива, а разрывная мощность контактов выше в несколько раз, чем в цепи постоянного тока.

В маломощных электрических аппаратах электрическая дуга на контактах появляется редко, но очень часто происходит опасное для чувствительных аппаратов искрение или пробой изоляционного промежутка. Пробой образуется в слаботочных цепях во время быстрого размыкания контактов и может привести к ложным отключениям и значительно сокращает срок службы контактов. С целью уменьшения искрения, применяются устройства искрогашения.

Ещё одно интересное видео об электрических контактах:

Устройства искро- и дугогашения

Электрические контакты: принцип работы, типы, защита контактов

Самый эффективный способ для гашения электрической дуги — это ее охлаждение с помощью соприкосновения с изоляционными стенками специальных камер, которые отбирают теплоту дуги или за счет ее перемещения в воздухе.

В современных аппаратах широкое распространение получили дугогасительные камеры с узкой щелью и магнитным дутьем.

Дугу можно рассматривать как проводник с током; если его поместить в магнитное поле, то возникнет сила, которая вызовет перемещение дуги. При своем движении дуга обдувается воздухом; попадая в узкую щель между двумя изоляционными пластинами, она деформируется и вследствие повышения давления в щели камеры гаснет (рис. 2.4).

Щелевая камера образована двумя стенками 1, выполненными из изоляционного материала. Зазор между стенками очень мал. Катушка 4, включенная последовательно с главными контактами 5, возбуждает магнитный поток Ф, который направляется ферромагнитными наконечниками 2 в пространство между контактами. В результате взаимодействия дуги и магнитного поля появляется сила F, вытесняющая дугу к пластинам 7.

Эта конструкция дугогасительной камеры применяется и на переменном токе, так как с изменением направления тока изменяется направление потока Ф, а направление силы F остается неизменным.

Для уменьшения искрения на маломощных контактах постоянного тока применяют включение диода параллельно нагрузочному устройству (рис. 2.5). При этом цепь после коммутации (после отключения источника) замыкается через диод, таким образом уменьшается энергия искрообразовния.

Источник

Площадь контакта для тока

Электрический контакт – соприкосновение тел, которое обеспечивает непрерывность электрической цепи, а также устройство, содержащее соприкасающиеся детали.

Электрический контакт твердых тел возникает при возникновении на их поверхностях участков, проводящих ток. Реальная площадь контакта в сотни раз меньше номинальной площади контактирующих поверхностей из-за шероховатости, неровности, наличия непроводящих пленок. При этом под воздействием нагрузки разные участки площади деформируются по-разному, электрический ток проходит только через пятна контакта, линии тока стягиваются к ним, в итоге возникает «сопротивление стягивания» (рис. 1).

а – кажущаяся Аа и воспринимающая нагрузку А b площади контакта;

б – сопротивление стягивания в электрическом контакте.

а – радиус контактного пятна;

заштрихованные области – с непроводящими пленками.

Сопротивление стягивания для контакта материалов с удельным сопротивлением ρ:

На величину сопротивления стягивания, кроме геометрии контактирующих поверхностей, влияет также и частота тока. На переменном токе свой вклад в проводимость контактного пятна вносит скин-эффект, уменьшающий эффективную площадь прохождения тока. Эффективная толщина слоя проводника определяется глубиной проникновения электромагнитного поля δ:

где f – частота поля, µ0=4π∙10 -7 н/м – магнитная постоянная.

Расчеты показывают, что для определенного радиуса контактного пятна сопротивление стягивания снижается при увеличении частоты поля.

Таким образом, общее контактное сопротивление (переходное сопротивление) складывается из сопротивления стягивания единичного пятна, учета распределения пятен и деформации контактирующих поверхностей.

Проблема создания надежных электрических контактов до сих пор является не решенной. Трудность этой задачи заключается в следующем:

— Поскольку поверхности электрических контактов являются шероховатыми, а сопротивление проводника обратно пропорционально площади его поперечного сечения, то рабочая площадь электрического контакта заметно меньше его геометрических размеров. Форма неровностей поверхности, значительно влияет на величину переходного сопротивления и эксплуатационные свойства электрических контактов: износоустойчивость трущихся поверхностей, коррозионную устойчивость и др.

— Окружающая среда оказывает существенное влияние на работу электрических контактов. В случае контакта между разнородными металлами, имеющими разные электрохимические потенциалы, при взаимодействии содержащихся в атмосфере различных оксидов (СО2, SO2 и др.) с влагой воздуха образуются растворы кислот, которые являясь электролитом, вызовут гальванический процесс между электродами контактной пары. Электрохимическая коррозия приведет к постепенному разрушению контактного соединения. Кроме того, с течением времени возможно окисление самих контактных поверхностей, приводящее к возрастанию переходного сопротивления.

— На долговечность электрических контактов также оказывают влияние такие факторы как: возможный перегрев площади контакта, фреттинг, электромиграция, различные коэффициенты термического расширения контактирующих проводников, сила тока и др.

Для уменьшения сопротивления контакта существуют следующие способы:

1. Для болтовых соединений возможно использовать токоведущие шины с продольными разрезами на контактирующих поверхностях, разделяющими общую площадь соединения. Дзекцером Н.Н. показано, что за счет этого обеспечивается более равномерное распределение давления под болтами и повышается реальная площадь контакта. Переходное сопротивление шин с пазами ниже на 30-40%, чем при их отсутствии.

2. Необходимо обеспечить параллельность контактных поверхностей, поскольку любое отклонение направлений при сборке приведет к снижению площади контакта, увеличению его сопротивления и нагрева. Также перед сборкой контактных соединений рекомендуется их предварительная зачистка.

3. Выбранная величина давления должна обеспечивать необходимую площадь контакта, но не превышать предела упругости для предотвращения его механического отказа.

4. Применение многоточечных контактных элементов из специальных упругих сплавов. Они формируют параллельные проводящие мостики и резко снижают переходное сопротивление. Эти элементы можно использовать и для электрических соединений из разнородных металлов. Для сильноточных контактов применение данного способа может потребовать значительного увеличения их площади, это будет определяться величиной номинального тока единичного многоточечного элемента.

5. Использование специальных смазок и электропроводящих составов. Смазки защищают соединения от окисления, а также снижают нестабильность контактного падения напряжения, что приводит к повышению их надежности. Электропроводящие составы формируют множество проводящих цепочек между контактными поверхностями, защищают от окисления, тем самым снижая переходное сопротивление. Но при циклической нагрузке электрического соединения применение этих составов требует проведения дополнительных испытаний.

Источник