Меню

Переменный ток получение передача применение



3.5.4 Переменный ток. Производство, передача и потребление электрической энергии

Видеоурок 1: Генератор переменного электрического тока

Видеоурок 2: Задачи на переменный ток

Лекция: Переменный ток. Производство, передача и потребление электрической энергии

Переменный ток

Переменный ток — это колебания, которые могут происходить в цепи в результате подключения её к источнику переменного напряжения.

Всех нас окружает именно переменный ток — он имеется во всех цепях в квартирах, передача по проводам происходит именно тока переменного напряжения. Однако, практически все электроприборы работают от постоянно электричества. Именно поэтому на выходе из розетки ток выпрямляется и в виде постоянного переходит к бытовой технике.

Именно переменный ток проще всего получить и передать на любое расстояние.

При изучении переменного тока мы воспользуемся цепью, в которую будем подключать резистор, катушку и конденсатор. В данной цепи напряжение определяется по закону:

Как мы знаем, синус может быть отрицательным и положительным. Именно поэтому значение напряжения может принимать различное направление. При положительном направлении течения тока (против часовой стрелки) напряжение больше нуля, при отрицательном направлении — меньше нуля.

Резистор в цепи

Итак, давайте рассмотрим случай, когда в цепь с переменным током подключен только резистор. Сопротивление резистора называется активным. Будем рассматривать ток, который течет по цепи против часовой стрелки. В таком случае и ток, и напряжение будут иметь положительное значение.

Для определения силы тока в цепи используют следующую формулу из закона Ома:

В этих формулах I и U — максимальные значения тока и напряжения. Отсюда можно сделать вывод, что максимальное значение тока равно отношению максимального напряжения к активному сопротивлению:

Эти две величины изменяются в одинаковой фазе, поэтому графики величин имеют одинаковый вид, но разные амплитуды.

Конденсатор в цепи

Запомните! Невозможно получить постоянный ток в той цепи, где есть конденсатор. Он является местом для разрыва протекания тока и изменение его амплитуды. При этом переменный ток отлично течет по такой цепи, изменяя полярность конденсатора.

При рассматривании такой цепи будем предполагать, что в ней имеется исключительно конденсатор. Ток течет против часовой стрелки, то есть является положительным.

Как нам уже известно, напряжение на конденсаторе связано с его возможностью накопления заряда, то есть его величиной и ёмкостью.

Так как ток является первой производной от заряда, то можно определить, по какой формуле его можно вычислить, найдя производную с последней формулы:

Как можно заметить, в данном случае сила тока описывается законом косинуса в то время, как значение напряжения и заряда можно описать законом синуса. Это значит, что функции находятся в противоположной фазе и имеют аналогичный вид на графике.

Все мы знаем, что функции косинуса и синуса одинакового аргумента отличаются на 90 градусов друг от друга, поэтому можно получить следующие выражения:

Отсюда максимальное значение силы тока можно определить по формуле:

Величина в знаменателе — это и есть сопротивление на конденсаторе. Данное сопротивление называется емкостным. Находится и обозначается оно следующим образом:

При увеличении емкостного сопротивления, амплитудное значение тока падает.

Обратите внимание, в данной цепи использование закона Ома уместно только в том случае, когда необходимо определить максимальное значение тока, определить ток в любой момент времени по данному закону нельзя из-за разности фаз напряжения и силы тока.

Катушка в цепи

Рассмотрим цепь, в которой имеется катушка. Представим, что она не имеет активного сопротивления. В таком случае, казалось бы, ничего не должно препятствовать движению тока. Однако это не так. Все дело в том, что при прохождении тока через катушку начинает возникать вихревое поле, которое препятствует прохождению тока в результате образования тока самоиндукции.

Сила тока принимает следующее значение:

Снова можно заметить, что ток изменяется по закону косинуса, поэтому для данной цепи справедлив сдвиг фаз, который можно заметить и на графике:

Отсюда максимальное значение тока:

В знаменателе можем увидеть формулу, по которой определяется индуктивное сопротивление цепи.

Чем больше индуктивное сопротивление, тем меньшее значение имеет амплитуда тока.

Катушка, сопротивление и конденсатор в цепи.

Если в цепи одновременно присутствуют все виды сопротивлений, то определить значение величины тока можно следующим образом, преобразив закон Ома:

Знаменатель называется полным сопротивлением. Он состоит из суммы квадратов активного (R) и реактивного сопротивления, состоящего из емкостного и индуктивного. Полное сопротивление носит название «Импеданс».

Электроэнергия

Нельзя представить современную жизнь без использования электрических приборов, которые работают за счет энергии, которую происходит электрический ток. Весь технический прогресс основывается на электричестве.

Получение энергии из электрического тока имеет огромный ряд преимуществ:

1. Электрический ток достаточно просто производится, поскольку во всем мире существуют миллиарды электростанций, генераторов и прочих приспособлений для образования электроэнергии.

2. Передать электроэнергию можно на огромные расстояния за короткие сроки и без значительных потерь.

3. Имеется возможность преобразовывать электрическую энергию в механическую, световую, внутреннюю и другие виды.

Источник

Как получить переменный электрический ток?

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Читайте также:  Thomson t32ed05u 01b уменьшить ток подсветки

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

Формула электродвижущая сила

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Источник

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Читайте также:  Резистор 2 килоома переменного тока

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Читайте также:  Ток потребления днат 250

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Производство и передача переменного электрического тока

Переменным током называется ток, величина и направление которого периодически меняются. Именно благодаря переменному току в наших домах сегодня есть свет и тепло. Только благодаря переменному току работают все промышленные предприятия и производства нашего времени. Не будь переменного тока, технологический прогресс современной цивилизации был бы попросту невозможен.

Устройство генератора

Для получения переменного тока используются электромеханические устройства, называемые индукционными генераторами. В них получаемая тем или иным способом механическая энергия передается ротору, ротор вращается, в результате механическая энергия вращения ротора преобразуется в электрическую энергию посредством электромагнитной индукции.

Напомним, что если вращать магнит внутри проводящей рамки, то в рамке будет индуцироваться переменный ток. На этом принципе и работает генератор. Только в промышленном генераторе роль рамки играет статор, а роль магнита — ротор с намагничивающей обмоткой, по сути — вращающийся электромагнит.

В промышленном генераторе статор представляет собой огромную стальную конструкцию в виде кольца с пазами на его внутренней стороне. В эти пазы уложена медная трехфазная обмотка. Магнитное поле, как мы уже сказали, создается ротором, который представляет собой стальной сердечник с парой (или с несколькими парами, в зависимости от номинальной скорости вращения ротора) полюсов, формируемых током обмотки ротора. Постоянный ток подается к обмотке ротора от возбудителя.

Генератор на электростанции

По принципиальной схеме двухполюсного индукционного генератора переменного тока легко понять, что силовые линии магнитного поля ротора пересекают витки обмотки статора, при этом один раз за один оборот магнитный поток ротора изменяет свое направление по отношению к одним и тем же виткам статора.

Таким образом в обмотке статора получается именно переменный ток, а не пульсирующий постоянный. Если речь идет об атомной электростанции, то механическое вращение ротор генератора получает от пара, который под огромным давлением подается на лопасти турбины сопряженной с ротором. Пар на атомной электростанции получается из воды, которая разогревается теплом от ядерной реакции, подводимым к воде через теплообменник.

В России частота переменного тока в сети равна 50 Гц, это значит, что ротору двухполюсного генератора необходимо совершить 50 оборотов за секунду. Так, на атомной электростанции ротор совершает 3000 оборотов в минуту, что как раз и дает частоту генерируемого тока в 50 Гц. Направление генерируемого тока изменяется по синусоидальному (гармоническому) закону.

Обмотка генератора разделена на три части, поэтому переменный ток получается трехфазным. Это значит, что в каждой из трех частей обмотки статора получаемые ЭДС смещены по фазе относительно друг друга на 120 градусов. Действующее значение генерируемого на электростанции напряжения может быть от 6,3 до 36,75 кВ, в зависимости от вида генератора.

Высоковольтная линия электропередачи

Чтобы передать электрическую энергию на большое расстояние, используются высоковольтные линии электропередач (ЛЭП). Но если электричество передавать без преобразования, при том же напряжении какое выходит с генератора, то потери энергии при передаче окажутся колоссальными, и до конечного потребителя практически ничего не дойдет.

Дело в том, что потери энергии в передающих проводах пропорциональны квадрату величины тока и прямо пропорциональны сопротивлению проводов (см. Закон Джоуля-Ленца). Значит для более эффективной передачи и распределения электроэнергии, напряжение необходимо сначала в несколько раз повысить, чтобы во столько же раз уменьшился ток и следовательно сильно сократились транспортные потери. И только повышенное напряжение имеет смысл передавать на ЛЭП.

Трансформаторная подстанция

Поэтому электричество от электростанции сначала подается на трансформаторную подстанцию. Здесь напряжение повышается до 110-750 кВ и только после — подается на провода ЛЭП. Но потребителю необходимо 220 или 380 вольт, поэтому в конце линии высокое напряжение обратно понижают, при помощи опять же трансформаторных подстанций, до 6-35 кВ.

На подстанции вблизи нашего дома или встроенной в дом, установлен трансформатор. Здесь напряжение снова понижается — от 6-35кВ до 220 (380) вольт, которые уже раздаются потребителям. Через вводно-распределительное устройство в разные помещения расходится сеть проводов и кабелей.

Источник