Меню

Переменный электрический ток формулы определения



Переменный электрический ток

Постоянный и переменный электрический ток

Действие электрического тока состоит в том, что носители заряда движутся по цепи под действием электрического поля источника тока и совершают работу на сопротивлении нагрузки (энергия при этом выделяется в виде тепла). Исторически первыми источниками тока были гальванические элементы. В таких элементах электрическое поле не меняет направление. В цепи, подключенной к гальваническому элементу, носители движутся также в одном направлении.

Гальванические элементы

Рис. 1. Гальванические элементы.

Однако это не единственная возможность движения носителей. Носители могут не совершать поступательное движение, а колебаться вокруг некоторого среднего положения. При этом на сопротивлении нагрузки также будет выделяться мощность.

Электрический ток, в котором носители заряда движутся в одном направлении, называется постоянным. Если носители заряда не движутся в одном направлении, а совершают гармонические колебания вокруг некоторого среднего положения, такой электрический ток называется переменным.

Постоянный и переменный ток

Рис. 2. Постоянный и переменный ток.

Электрические параметры переменного тока

Переменный ток, так же, как и постоянный, имеет все электрические параметры: напряжение, силу тока, мощность. Мгновенные значения этих параметров имеют то же самое выражение и смысл. Однако в случае переменного тока мгновенные значения параметров постоянно меняются во времени. Поэтому они неудобны для использования.

Для практического применения удобно взять такие параметры переменного тока, при которых он совершал бы такое же тепловое и механическое действие, как и постоянный. Такие параметры называются действующими.

То есть для нахождения действующих значений переменного тока исходят из равенства средних мощностей. Если постоянный ток на нагрузке выделяет некоторую мощность, то действующие значения переменного тока должны быть таковы, чтобы на той же нагрузке средняя мощность, выделяемая переменным током, была той же.

Если посчитать среднюю мощность переменного тока за один период колебания на активном сопротивлении, используя мгновенные значения силы тока, получим формулу:

Из этой формулы можно получить действующее значение силы тока. Оно должно быть таким, чтобы на том же сопротивлении R выделялась та же мощность:

Действующее значение напряжения находится аналогично:

Отметим, что формула электрической мощности переменного тока для сопротивления с реактивной составляющей сложнее и включает учет сдвига фаз между током и напряжением. Эта тема рассматривается отдельно.

Для переменного тока действующие значения напряжения и силы тока в $\sqrt 2$ раза меньше амплитудных. Именно эти значения указываются на всех приборах переменного тока. В обычной осветительной сети переменного тока 220 В — это действующее значение. Реально мгновенное значение напряжения может превышать 310 В.

Рис. 3. Амплитудные и действующие значения.

Что мы узнали?

Ток, при котором носители заряда движутся не постоянно в одном направлении, а колеблются вокруг некоторого среднего положения, называется переменным. Он характеризуется теми же параметрами что и постоянный ток, однако при этом используются действующие значения напряжения и тока, которые в $\sqrt 2$ раз меньше амплитудных.

Источник

Что такое переменный ток

Что такое переменный ток. Определение переменного тока

Переменный ток – это направленное движение заряженных частиц, направление движения которых меняется на противоположное через равные промежутки времени. Если постоянный ток течет в одном направлении и не меняется по величине, то переменный ток может быть в данный момент положительным, а через определенный промежуток времени отрицательным.

Получение переменного тока

Получение переменного тока

Вырабатывают переменный ток генераторы переменного напряжения, которые преобразуют механическую энергию в электрическую. Форма переменного тока может быть различной и зависит от его назначения. Форма переменного тока промышленного назначения и для бытовых нужд населения носит синусоидальный характер.

Он имеет такие характеристики как амплитуда, частота и период. Периодом синусоидального тока является его полный цикл колебания и измеряется временем совершения одного цикла колебания. Такие циклы повторяются и поэтому переменный ток еще называют циклическим.

Период обозначается буквой Т и выражается в секундах. Другим параметром синусоидального тока является частота, которая обратно пропорциональна периоду т. е. F = 1/Т. Если период переменного тока равен 1 секунде, то частота его будет равна 1 Гц.

Период, частота и амплитуда переменного тока

Период, частота и амплитуда переменного тока

Существует два стандарта переменного тока – это 50 Гц и 60 Гц. В России используется частота сети 50 Гц, а в Канаде и США 60 Гц. Такой параметр как амплитуда, определяется его наибольшей величиной в определенный промежуток времени, она может иметь отрицательное или положительное значение.

Читайте также:  Частота вращения холостого хода двигателя постоянного тока параллельного возбуждения

Что такое трехфазный переменный ток

Если два синусоидальных сигнала одновременно достигают наибольшей амплитуды и нуля, то можно говорить что эти сигналы имеют одинаковую фазу, т. е. совпадают по фазе. Если эти сигналы имеют разные значения максимума и нуля, то они сдвинуты по фазе.

Электрическая схема соединений треугольник

Электрическая схема соединений треугольник

В трехфазном переменном токе имеется три сигнала однофазного синусоидального тока сдвинутых относительно друг друга на 120°. Из многофазных электрических сетей в основном выбрана трехфазная сеть, как наиболее оптимальная. Трехфазная сеть состоит из 3-х однофазных сетей.

Такую однофазную сеть в трехфазной сети называют фазой. Возможны два вида соединения фаз в трехфазной сети – это соединение «треугольником» и «звездой». При соединении «звездой» одни концы генератора соединяются вместе и образуют нулевую точку, а другие провода обмоток идущие к нагрузкам называются линейными.

Напряжение между линейными проводами и нулевыми проводами называются фазным напряжением. А напряжение между линейными проводами называют линейным напряжением. Нулевой провод используется в случаях неравномерной нагрузки, позволяя выравнивать напряжение фаз.

Нейтральный провод применяется в схеме освещения, где создать равномерную нагрузку нелегко, так как не все лампы включаются одновременно и равномерно по фазам. Между фазными и линейными напряжениями имеется зависимость: Uл = √3*Uф ≈ 1,73*Uф. В трехфазных сетях по схеме «звезда» Uл – 380 В, а Uф = 220 В.

Фазное и линейное напряжение в трехфазных цепях схемы звезда

Фазное и линейное напряжение в трехфазных цепях схемы звезда

Если нагрузка в электрической цепи по схеме «звезда» в трех фазах одинакова, т. е. симметрична, то в нейтральном проводе тока нет, или он минимальной величины. А если ток нейтрали незначителен, то и сечение нулевого провода значительно меньше, чем сечение линейного провода. Когда нагрузка одинакова, ток в нейтрали будет равен нулю.

Нейтраль в этом случае не нужна. Тогда используют схему соединения трехфазной сети «треугольник», где все концы соединяются с началами обмоток генератора и образуют схему «треугольник» без нейтрали. В схеме «треугольник» фазные и линейные напряжения равны Uл = Uф, а токи определяются по формуле – IЛ = √3*IФ, где линейный ток в 1,73 раза больше фазного.

Соединение по схеме «треугольник» иногда используется в освещении, но в основном такую схему применяют в трехфазных сетях с небольшим перекосом фаз. Также тяжёлый запуск асинхронных электродвигателей осуществляется по схеме «звезда», чтобы снизить большой пусковой ток электродвигателя, а достигнув рабочего режима, переходят на схему «треугольник».

Источник

Переменный ток

Ранее мы познакомились с постоянным электрическим током — направленным движением зарядов, для которого сила тока постоянна. В случае, если значение силы тока непостоянно, тогда ток будем называть переменным.

Для школьной физики переменный ток рассматривается в двух, в общем-то, похожих случаях:

  • вынужденные колебания (на вход цепи подаётся внешняя разность потенциалов/ток, которые изменяются гармонически).
  • колебания в LC (состоящем из катушек индуктивности и конденсаторов) или LCR (состоящем их катушек индуктивности, конденсаторов и сопротивлений) контурах.

Рассмотрение свободных колебаний в случае переменного тока аналогично постоянному. Точно так же существует закон Ома для цепи переменного тока, рассчитываются мощности и энергии (работы) для такого случая.

Для школы характерно описание переменного тока через гармонические законы. Переменными параметрами в цепи могут быть ЭДС (\displaystyle \varepsilon ), напряжение на элементе (\displaystyle U), сила тока (\displaystyle I), заряд конденсатора (\displaystyle q). Рассмотрим ЭДС источника гармонический колебаний:

\displaystyle \varepsilon =<<\varepsilon data-lazy-src=

  • \displaystyle <<\varepsilon data-lazy-src=
  • \displaystyle t— момент времени, в который изучается значение ЭДС,
  • \displaystyle <<\varphi data-lazy-src=
  • \displaystyle <<U data-lazy-src=
  • \displaystyle t— момент времени, в который изучается значение напряжения,
  • \displaystyle <<\varphi data-lazy-src=
  • \displaystyle <<I data-lazy-src=
  • \displaystyle t— момент времени, в который изучается значение силы тока,
  • \displaystyle <<\varphi data-lazy-src=
  • \displaystyle <<q data-lazy-src=
  • \displaystyle t— момент времени, в который изучается значение заряда конденсатора,
  • \displaystyle <<\varphi data-lazy-src=