Переходного сопротивления контакта между проводами

Что такое переходное контактное сопротивление и как с ним бороться

Что такое переходное контактное сопротивление и как с ним боротьсяИз размещенных на сайте Электрик Инфо ранее статей можно заметить, что как только вопрос касается способов соединения проводов, то сразу возникают споры вокруг того, какой из вариантов соединения лучше и надежнее. Наиболее качественным соединением контактов всегда будет то, которое обеспечивает наиболее низкое значение переходного контактного сопротивления как можно более длительное время.

Контактные соединения в большом количестве входят во все электрические цепи и аппараты и являются их очень ответственными элементами. Так как от состояния электрических контактов в наибольшей степени зависит безаварийная работа электрооборудования и электропроводки, то в этой статье давайте разберемся что же это такое — «переходное контактное сопротивление» и от каких факторов зависит его величина. Опираться при этом будем на теорию электрических аппаратов , так как именно именно в этой дисциплине вопросы электрическ ого контакт ирования исследован ы наиболее хорошо и подробно.

Электрический контакт (в отвлечённом смысле). Состояние, возникающее при соприкосновении двух проводников.

Итак. Контактное соединение – это конструктивное устройство, в котором осуществляется электрическое и механическое соединения двух или нескольких отдельных проводников, которые входят в электрическую цепь. В месте соприкосновения проводников образуется электрический контакт – токопроводящее соединение, через которое ток протекает из одной части в другую.

Простое наложение контактных поврехностей соединяемых проводников не обеспечивает хорошего контакта, так как действительное соприкосновение происходит не по всей поверхности, а только в немногих точках. Причина этого — неровность поверхности контактирующих элементов и даже при очень тщательной шлифовке на поверхностях остаются микроскопические возвышения и впадины.

В книгах по электрическим аппаратам можно встретить подтверждение этому на фотографиях сделанных с помощью микроскопа. Действительная площадь спорикосновения во много раз меньше общей контактной поверхности.

Из-за малой площади соприкосновения контакт представляет довольно значительное сопротивление для прохождения тока. Сопротивление в месте перехода тока из одной контактной поверхности в другую называется переходным контактным сопротивлением. Сопротивление контакта всегда больше, чем сплошного проводника таких же размеров и формы.

Переходное контактное сопротивление – это резкое увеличение активного сопротивления в месте перехода тока из одной детали в другую.

Его величина определяется по формуле, которая вываедена опытным путем в результате многочисленных исследований :

Rп = ε / ( 0,102 F m ),

г де ε – коэффициент, который зависит от свойств материала контактов, а т а кже от способа обработки и чистоты контактной поверхности ( ε зависит от физических свойств материалов контактов , удельного электрического сопротивления, механической прочности, способности материалов контактов к окислению, теплопроводности ) , F – сила контактного нажатия, Н, m – коэффициент, зависящий от числа точек соприкосновения контак т ных поверхностей. Этот коэффициент может принимать значения от 0,5 до 1. Для плос костного контакта m = 1.

Из уравнения также следует, что сопротивление контакта не зависит от размера контактных поверхностей и для контакта определяется прежде всего силой давления (контактного нажатия).

Контактное нажатие – усилие, с которым одна контактная поверхность воздействует на другую. Число соприкосновений в контакте быстро растет при нажатии. Даже при небольших давлениях в контакте происходит пластическая деформация, вершины выступов сминаются и с увеличением давления все новые точки приходят в соприкосновение. Поэтому при создании контактных соединений применяют различные способы нажатия и скрепления проводников:

— механическое соединение при помощи болтов (для этого используются различные клеммники)

— приведение в соприкосновение при помощи упругого нажатия пружин (клеммники с плоско-пружинным зажимом, например WAGO),

Читайте также:  Что такое обратный провод при электросварочных работах

Если два проводника соприкасаются в контакте, то число площадок и суммарная площадь соприкосновения будут зависеть от величины силы нажатия и от прочности материала контакта (его временного сопротивления на смятие).

Переходное контактное сопротивление тем меньше, чем больше сила нажатия, так как от нее зависит действительная площадь соприкосновения. Однако давление в контакте целесообразно увеличивать только до некоторой определенной величины, потому что при малых значениях давления переходное сопротивление уменьшается быстро, а при больших – почти не изменяется.

Таким образом, давление должно быть достаточно большим для того, чтобы обеспечить малое переходное сопротивление, но не должно вызывать пластических деформаций в металле контактов, что может привести к их разрушению.

Свойства контактного соединения могут с течением времени меняться. Только новый, тщательно обработанный и зачищенный контакт при достаточном давлении имеет наименьшее возможное переходное контактное сопротивление.

В процессе эксплуатации под действием разнообразных факторов внешнего и внутреннего характера переходное сопротивление контакта увеличивается. Контактное соединение может настолько ухудшиться, что иногда становится источником аварии.

В очень большей степени переходное контактное сопротивление зависит от температуры. При протекании тока контакт нагревается и повышение температуры вызывает увеличение переходного сопротивления. Однако увеличение переходного сопротивления контакта идет медленнее, чем увеличение удельного сопротивления материала контакта, так как при нагреве снижается твердость материала и его временное сопротивление смятию, что, как известно, уменьшает переходное сопротивление.

Нагрев контакта приобретает особенно важное значение и в связи с его влиянием на процесс окисления контактных поверхностей. Окисление вызывает очень сильное увеличение переходного сопротивления. При этом окисление поверхности контакта идет тем интенсивнее, чем выше температура контакта.

Медь окисляется на воздухе при обычных температурах жилых помещений (около 20 о С). Образующаяся при этом окисная пленка не обладает большой прочностью и легко разрушается при сжатии. Особенно интенсивное окисление меди начинается при температурах выше 70 о С.

Алюминиевые контакты на воздухе окисляются более интенсивно, чем медь. Они быстро порываются пленкой окиси алюминия, которая является очень устойчивой и тугоплавкой и обладает такая пленка довольно высоким сопротивлением – порядка 10 12 ом х см.

Отсюда можно сделать вывод, что добиться нормального контактирования со стабильным переходным контактным сопротивлением, которое не будет увеличиваться в процессе эксплуатации в этом случае очень тяжело. Именно по этому использовать алюминий в электропроводке неудобно и опасно и большинство проблем с электропроводкой, которые описываются в книгах и в Интернете случаются именно при использовании проводов и кабелей с алюминиевыми жилами.

Таким образом, состояние контактных поврехностей оказывает решающее влияние на рост переходного сопротивления контакта. Для получения устойчивости и долговечности контактного соединения должна быть выполнена качественная зачистка и обработка контактной поверхности, а также создано оптимальное давление в контакте. Показателями хорошего качества контактов служат его переходное контактное сопротивление и температура нагрева.

Фактически используя любой из известных способов соединения проводов (клеммники разных видов, сварка проводов, пайка, опрессовка) можно добиться стабильно низкого переходного контактного сопротивления. При этом, важно соединять провода правильно, обязательно соблюдая технологию с использованием необходимого для каждого способа соединения и ответвления проводов материалов и инструмента.

Источник

Особенности измерений переходных сопротивлений контактов коммутирующих устройств. Микроомметр МИКО-21

Для измерения переходного сопротивления на рынке существует множество различных приборов, которые отличаются принципом действия, метрологическими характеристиками, степенью автоматизации, массогабаритными показателями и ценой. Но существуют и определенные требования, нормы, рекоменадации и особенности измерения переходных сопротивлений контактов, учитывая которые можно не ошибиться выбором необходимого прибора.

Нелинейный характер переходного сопротивления

Окисная пленка и неметаллические включения обуславливают повышенное переходное сопротивление (далее R пер.) контактов. Его величина уменьшается при увеличении измерительного тока, поэтому наиболее достоверные измерения будут при токах, близких к рабочим токам выключателей. А при малом измерительном токе микроомметра значение R пер. может оказаться выше допустимого паспортного значения и потребуется не нужная разборка выключателя для зачистки контактов.

Читайте также:  Провод для беспроводных наушников sony

Поэтому, если в паспорте выключателя не указано значение тока, при котором следует измерять сопротивление его контактов, то целесообразно следовать ГОСТ 17441-84 (п. 2.6.2), в котором рекомендуемая сила длительно протекающего измерительного тока не должна превышать 0,3 номинального тока контактного соединения.

Влияние встроенного трансформатора тока (ТТ) на измерение R пер баковых выключателей

При подаче измерительного тока через полюс бакового выключателя во вторичной обмотке ТТ возникает переходный процесс, который проявляется в индуцировании в первичную цепь импульса напряжения, постепенно спадающего до нуля. Это изменяющееся напряжение суммируется падением напряжения на R пер., созданного измерительным током, и воспринимается микроомметром как дополнительное (внесение из вторичной обмотки ТТ) сопротивление, включенное последовательно R пер. и изменяющееся во времени. Время затухания переходного процесса спада внесенного сопротивления зависит от многих факторов и может меняться от 1,0 до 60 с. Переходный процесс, в цепи содержащей ТТ, возникает не только при включении тока, но и при его выключении.

Сложность измерения сопротивлений в различных соединениях

В силовой электрической цепи полюса высоковольтного выключателя кроме переходного сопротивления контактов присутствует и сопротивление различных соединений. Чаще всего приборы комплектуются только измерительным кабелем зажимом типа «крокодил», и при неправильном его подключении к контактам между аппаратным зажимом и шпилькой ввода — переходное сопротивление может иметь завышенныо значения, прибор покажет значение выше паспортной величины, и будет выполнен совершенно не нужный ремонт контактов выключателя.

Если же снимать потенциальные сигналы не аппаратных зажимов, а со шпилек, то в измеряемый участок цепи окажется включенным только переходное сопротивление контактов выключателя. Но закрепить «крокодилы» непосредственно за шпильки часто не удается из-за отсутствия доступа к ним, поэтому прибор должен комплектоваться специальными выносными потенциальными контактами.

Электромагнитная обстановка на энергетических объектах

Игнорирование перечисленных выше особенностей может приводить к тому, что приборы, показывающие в условиях офиса отличные метрологические характеристики оказываются малопригодными для применения в условиях электрической подстанции.

Так, например, на рынке средств измерений электрического сопротивления в диапазоне от 1µΩ и более существуют микроомметры у которых измерительный ток представляет собой выпрямленный ток 50Гц. В связи этим не смотря на его большое значение (свыше 100А), данный прибор практически не пригоден для измерения переходного сопротивления баковых выключателей. другой стороны существуют микроомметры достаточно большим коэффициентом стабилизации силы тока, но при внесении этого прибора в сколь-нибудь существенное магнитное или электрическое поле относительная погрешность измерений может достигать сотен процентов.

Эти и другие особенности измерений электрического сопротивления в условиях подстанции известны компании «СКБ ЭП» свыше 15 лет, момента выпуска ее первого микроомметра МИКО-1.

Летом 2015 года «СКБ ЭП» запустила в производство первую партию нового микроомметра МИКО-21 — это мобильный и хорошо защищенный (композитный кейс) прецизионный прибор (погрешность не более ± 0,05%), но по цене общепромышленного микроомметра. Он полностью автономен и, в отличии от микроометров предыдущего поколения, имеет новый тип аккумулятора, что позволяет выполнить намного большее количества измерений от его полного заряда до полного разряда (продолжительность непрерывной работы в нормальных условиях, не менее 8 часов).

Осенью того же года компания провела полномасштабные испытания установочной партии в условиях реальной эксплуатации, на подстанциях Иркутскэнерго. Часть испытаний проходила на «Участке высоковольтного электрооборудования Иркутской ГЭС» при обследовании бакового выключателя фирмы ALSTOM HGF-1012 на 110кВ.

Элегазовый баковый выключатель ALSTOM HGF-1012, 110кВ

Элегазовые баковые выключатели, отличаются наличием встроенных трансформаторов тока, что затрудняет точное измерение переходных сопротивлений контактной системы выключателя. Для решения данной задачи, специалистами «СКБ ЭП» в новом микроомметре МИКО-21 были реализованы дополнительные режимы работы, при использовании которых учитывается индуктивность трансформаторов тока. Приведем результаты измерений переходных сопротивлений контактов выключателя сведенных в таблицу:

Читайте также:  Как разветвить электрические провода
Тип выключателя ALSTOM HGF-1012, 110кВ
Режим измерения Тестовый ток Фаза А Фаза В Фаза С
«Режим 1» 10 А 269,94 мкОм 279,51 мкОм 276,54 мкОм
«Режим 1» 50 А 269,73 мкОм 294,69 мкОм 300,61 мкОм
«Режим 1» 100 А 269,67 мкОм 299,73 мкОм 310,65 мкОм
«Режим 1» 200 А 269,56 мкОм 299,89 мкОм 311,01 мкОм
«Режим 2 с ТТ» 200 А 91,760 мкОм 93,403 мкОм 98,941 мкОм
«Режим 2 с ТТ» 100 А 90,808 мкОм 93,306 мкОм 88,133 мкОм
«Режим 3 с ТТ» 200 А 90,781 мкОм 93,348 мкОм 88,151 мкОм

Примечание: «Режим 1» — измерения без встроенных трансформаторов тока и для любых разборных и неразборных соединений; «Режим 2 с ТТ» — измерения со встроенными трансформаторами тока использованием энергосбережения; «Режим 3 с ТТ» — измерения со встроенными трансформаторами тока, но при максимальной длительности измерительного тока и без использования алгоритмов энергосбережения.

Как видно из данного примера, показания обычного режима микроомметра отличаются от показаний в специальных режимах измерения практически в три раза, при этом измерения в обычном режиме выходят из нормы сопротивления выключателя, что говорит о неэффективности измерения без специальной настройки к данному типу оборудования.

Испытания микроомметра МИКО-21

Не менее важной функцией МИКО-21, является встроенный архив паспортных значений высоковольтных выключателей указанием максимально и/или минимально допустимого значения переходного сопротивления контактов, а также паспорта на отбраковываемые резисторы указанием допустимых значений верхнего и нижнего порогов сопротивления. Наличие архива паспортных значений электрических сопротивлений позволяет прибору автоматически определять и сигнализировать о выходе результата измерений за допустимые границы.

В микроомметре запрограммировано 4 способа запуска процесса измерения:

  • «Однократный» — запуск происходит по нажатию кнопки «Старт»;
  • «По замыканию цепи» — запуск на измерение происходит после возникновения электрического контакта между измеряемой цепью и токовыми и потенциальными контактами измерительного кабеля;
  • «Периодический» — запуск измерения происходит через заранее заданные интервалы времени. Режим может быть использован для проведения отбраковки изделий;
  • «Периодическая цепь» — предназначен для автоматического периодического запуска измерения по факту замыкания измерительной цепи.

МИКО-21 имеет цветной графический дисплей высокой яркости, а управление прибором может осуществляться (по выбору пользователя) либо через пленочную клавиатуру, либо через сенсорный экран дисплея. Кроме того, прибор может работать под управлением персонального компьютера, что очень удобно при автоматизации измерений или для дополнительной обработки полученных результатов.

Результаты измерения сопротивления на экране МИКО-21

Комплектация прибора предусматривает измерительные кабели как зажимами «крокодил» или быстро устанавливаемыми струбцинами, оснащенными качественными контактами из бериллиевой бронзы, так и зажимами типа «игольчатые подпружиненные сдвоенные щупы». Последние позволяют оперативно проводить множество измерений на шинных токопроводах, соединениях в трубопроводах, металлических обшивках летательных аппаратов и т.п. Для случая сильно загрязненных или окрашенных поверхностей имеется вариант поворачивающимися при нажатии щупами.

При измерениях на подстанции прибор устанавливается либо возле выключателя, либо в люльке подъемника. Для второго случая имеются облегченные кабели на все классы напряжений. Так, для выключателей на 750кВ суммарная длина двух кабелей не превышает 10 м, а масса менее 4 кг при токе 200А.

Высокая точность измерения сопротивления и разнообразные способы запуска прибора позволяет использовать микроомметр не только для измерения переходного сопротивления главных контактов высоковольтного выключателя и различных контактных соединений, но и в исследовательских лабораториях и цехах заводов для высокоточных измерений сопротивлений. В частности прибор может быть использован для:

  • отбраковки резисторов (автоматическим сравнением результатов измерений заранее заданным допуском),
  • измерений удельного сопротивления проводников,
  • проверки правильности сечения провода,
  • определения длины и массы бухты провода без разматывания и взвешивания,
  • определения температурного коэффициента сопротивления (ТКС) стабильных резисторов, шунтов и любых металлов.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector