Меню

Параметры цепи переменного тока формулы



В помощь изучающему электронику

Формулы, вычисления, .

— Цепь переменного тока —

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка «Массовой радиобиблиотеки» изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1961 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Основные понятия
Сопротивление в цепи переменного тока
В омическом (активном) сопротивлении ток совпадает по фазе с напряжением (фазовый угол равен нулю), поэтому расчет сопротивления конструктивных элементов РЭА в цепях переменного тока производится по формулам, выведенным для цепи постоянного тока. По мере повышения частоты начинает проявляться так называемый поверхностный эффект, сопротивление проводника увеличивается, так как происходит вытеснение тока к поверхности проводника. Этот эффект характеризуется глубиной проникновения тока δ. Величина δ численно равна такому расстоянию от поверхности (проводника), на котором плотность тока составляет 36% от плотности тока на поверхности (уменьшается в e раз). Существенно, что, хотя сопротивление проводника увеличивается с ростом частоты, оно по-прежнему остается активным, ток и напряжение в проводнике совпадают по фазе.
Глубина проникновения тока вычисляется по формуле
где:
Конденсатор в цепи переменного тока
Индуктивность в цепи переменного тока

С — емкость конденсатора С при настройке контура в резонанс на частоту генератора;
ΔС = СВ — СН — соответственно большее и меньшее, чем С, значения емкости конденсатора С, соответствующие уменьшению напряжения на контуре до 0,707 от резонансного значения.

При ω в 1/сек, и ΔС в ф,

8—длина воздушного зазора, см;
В — индукция, тл (обычно выбирают 5 = 0,7 тл);
I —
ток, а.

Мощность переменного тока

Pa = U I cosφ [ва];

Pp = U I sinφ [ва];

Оглавление.

Основные понятия. Замкнутая и разветвленная цепи постоянного тока

Основные понятия, Сопротивление в цепи переменного тока , Конденсатор в цепи переменного тока, Индуктивность в цепи переменного тока, Мощность переменного тока

Основные зависимости, Последовательный колебательный контур, Параллельный колебательный контур

Входная цепь приемника

RC и LC фильтры — общие положения, RC фильтры, LC фильтры

Аттенюаторы, Согласование источника с нагрузкой по мощности, току и напряжению

Основные параметры передающих антенн, Параметры приемных антенн, Вибраторные антенны, Рамочные антенны, Приемные ферритовые антенны, Формулы для расчета вибраторных антенн

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ — Общие положения, ИОНОСФЕРА И ЕЕ ВЛИЯНИЕ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН, Преломление и отражение радиоволн в ионосфере, Особенности распространения сверхдлинных и длинных волн, Особенности распространения средних волн, Особенности распространения коротких волн, РАСПРОСТРАНЕНИЕ УЛЬТРАКОРОТКИХ ВОЛН В ПРИЗЕМНОМ ПРОСТРАНСТВЕ, Распространения радиоволн над поверхностью земли, дальний прием

Источник

Цепи переменного тока. Определение и основные характеристики.

Цепи переменного тока

Приветствую всех на нашем сайте в рубрике “Основы электроники”!

В предыдущей статье мы обсудили понятия тока, напряжения и сопротивления, но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным 🙂 Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока. А область довольно-таки обширна! Смотрите сами – все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов. Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные “махинации” с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Зачем вообще нужно изменять напряжение переменного тока? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Распространение переменного тока

Как видите, с электростанции “выходит” высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели – а именно потребителей. Возникает вопрос – к чему такие сложности? Что же, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про сопротивление). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит.

Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны “толстые” провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно 🙂 А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули – преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока – его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока…

Генератор переменного тока.

Итак, генератор – это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

Генератор

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.

Магнит создает поле, вектор индукции которого B изображен на рисунке. Проводящая рамка площадью S равномерно вращается вокруг своей оси с угловой скоростью w. Поскольку рамка вращается, угол между нормалью к плоскости рамки и магнитным полем постоянно меняется. Запишем формулу для его расчета:

Здесь \alpha_0 – это угол в начальный момент времени (t = 0). Примем его равным 0, таким образом:

Вспоминаем курс физики и записываем выражение для магнитного потока, проходящего через рамку:

Величина магнитного потока, как и угол \alpha зависит от времени. Согласно закону Фарадея при вращении проводника в магнитном поле в нем (в проводнике) возникает ЭДС индукции, которую можно вычислить по следующей формуле:

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы – зависимость тока от времени будет иметь синусоидальный характер:

Переменный ток

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Основные параметры синусоидального сигнала.

Сигнал

На этом рисунке изображено два сигнала (красный и синий 🙂 ). Отличаются они только одним параметром – а именно начальной фазой. Начальная фаза – это фаза сигнала в начальный момент времени, то есть при t = 0. При обсуждении генератора мы приняли величину \alpha_0 равной нулю, так вот это и есть начальная фаза. Для данных графиков уравнения выглядят следующим образом:

Синий график: i(t) = I_msin(wt)

Красный график: i(t) = I_msin(wt + \beta)

Для второй формулы (wt + \beta) это фаза переменного тока, а \beta – это начальная фаза. Часто для упрощения расчетов принимают начальную фазу равной нулю.

Значение i(t) в любой момент времени называют мгновенным значением переменного тока. Вообще все эти термины справедливы для любых гармонических сигналов, но раз уж мы обсуждаем переменный ток, то будем придерживаться этой терминологии 🙂 Максимальное значение функции sin(x) равно 1, соответственно, максимальная величина тока в нашем случае будет равна I_m – амплитудному значению.

Следующий параметр сигнала – циклическая частота переменного тока w – она, в свою очередь, определяется следующим образом:

Где f – частота переменного тока. Для привычных нам сетей 220 В частота равна 50 Гц (это значит, что 50 периодов сигнала укладываются в 1 секунду). А период сигнала равен:

Среднее значение тока за период можно вычислить следующим образом:

Эта формула представляет собой ни что иное как суммирование всех мгновенных значений переменного тока. А поскольку среднее значение синуса за период равно 0:

На этом мы на сегодня и заканчиваем, надеюсь, что статья получилась понятной и окажется полезной. В скором времени мы продолжим изучать электронику в рамках нашего нового курса, так что следите за обновлениями и заходите на наш сайт!

Источник

Электрические цепи переменного тока

Переменный ток получил гораздо большее распространение в промышленности и в быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Переменный ток позволяет легко изменять величину напряжения с помощью трансформаторов, что необходимо при передаче электроэнергии на большие расстояния.

Электрический ток, возникающий под действием э. д. с, которая изменяется по синусоидальному закону, называют переменным. По существу, переменный ток — это вынужденные колебания тока в электрических цепях.

Амплитудой переменного тока называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.

Периодом называется время, в течение которого происходит полное колебание тока в проводнике.

Частота — величина, обратная периоду.

Фазой называется угол или , стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.

Периодический режим: . К такому режиму может быть отнесен и синусоидальный:

— амплитуда;

— начальная фаза;

— угловая скорость вращения ротора генератора.

При f=50Гц T= 1/f=0,02 с, 314рад/с.

График синусоидальной функции называется волновой диаграммой.

Расчет цепей переменного тока с использованием мгновенных значений тока, напряжения и ЭДС требует громоздкой вычислительной работы. Поэтому изменяющиеся непрерывно во времени токи, напряжения и ЭДС заменяют эквивалентными во времени величинами.

При расчете электрических цепей синусоидальную функцию выражают по формуле Эйлера через экспоненциальные функции:

— поворотный множитель;

— комплексная амплитуда напряжения;

— сопряженная комплексная амплитуда напряжения.

Таким образом, синусоидальное напряжение можно представить на комплексной плоскости вращающимся вектором. Тогда амплитудное значение напряжения будет представлять собой модуль или длину вектора напряжения.

Вектор напряжения на комплексной плоскости

Так как в цепи с синусоидальным напряжением ток тоже будет подчиняться этому закону, то аналогично можно записать

— комплексная амплитуда тока; *

— сопряженная комплексная амплитуда тока.

Разделив напряжение на ток, получим закон Ома в комплексном виде:

При напряжение на сопротивлении согласно закону Ома . Таким образом, следует отметить, что на активном сопротивлении напряжение и ток совпадают по фазе и (см. рисунок).

Кривые напряжения и тока в активном сопротивлении

Величину переменного напряжения или тока можно оценить значением амплитуды или средним значением за полупериод или действующим значением. При изменении напряжения или тока по закону синуса среднее значение напряжения определяется:

При большой частоте вращения ротора генератора, т. е. при большой частоте колебаний э. д. с. и силы тока, измерять их амплитуды на практике крайне неудобно. По этой причине ввели величины, названные действующими значениями э. д. с, силы тока и напряжения.

Действующим значением силы переменного тока называют силу такого постоянного тока, при прохождении которого по той же цепи и за то же время выделяется такое же количество теплоты, как и при прохождении переменного тока.

При синусоидальном законе действующие значения тока и напряжения:

Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующие значения. Соответственно градуируются и шкалы этих приборов.

Ток, протекающий через индуктивность L (рис. 7), меняется по закону синуса /’ = Im sin(co/ + у;).

Кривые напряжения и тока в индуктивном сопротивлении

Напряжение на индуктивности определяется выражением

-индуктивное сопротивленияе

Индуктивное сопротивление выражают в омах, оно играет роль сопротивления в цепи переменного тока с катушкой индуктивности.

В идеальной индуктивности ток отстает от напряжения на 90°.

Если напряжение на емкости меняется по закону синуса , то

-емкостное сопротивление.

Емкостное сопротивление выражается в омах, оно играет роль сопротивления в цепи переменного тока с конденсатором.

Кривые напряжения и тока в емкостном сопротивлении

В идеальной емкости ток опережает напряжение на 90°

Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:

Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:

— ток принужденного режима при di/dt=0

— ток свободного режима.

Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.

При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.

В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.

Мощность цепи переменного тока

В периодическом синусоидальном режиме

Используя известное тригонометрическое преобразование

и обозначив , получим

Среднее за период значение гармонической функции удвоенной частоты равно нулю.

Измерение мгновенного значения мощности переменного тока затруднено из-за сравнительно большой частоты колебаний (v = 50 Гц). Поэтому на практике принято пользоваться средней мощностью тока. Средняя мощность — это отношение энергии, потребляемой за один период, к периоду:

— энергетическое значение коэффициента мощности,

Потребляемая на участке цепи с резистором средняя мощность получила название активной мощности. Она необратимо преобразуется в джоулеву теплоту и другие виды энергии. Мощность, потребляемую на участках цепи с емкостным и индуктивным сопротивлениями, называют реактивной мощностью.

При передаче электрической энергии по цепи переменного тока ее необратимые преобразования происходят только на тех участках цепи, которые содержат резисторы. Такие участки цепи называют активной нагрузкой. На активной нагрузке электроэнергия превращается в теплоту или механическую работу.

Участок цепи с индуктивностью или емкостью называют реактивной нагрузкой. На участках цепи, которые состоят из чистых емкостных или индуктивных сопротивлений, электроэнергия не потребляется. В цепи с реактивными нагрузками происходит только перекачка энергии от генератора к нагрузке и обратно с неизбежными потерями в подводящих проводах.

При заданных Р и U ток является функцией cosj. Потери мощности на сопротивлении

В цепи с резистором j=0.

Коэффициент мощности cosj показывает, какая часть полной мощности, вырабатываемой генератором и передаваемой нагрузке, необратимо используется нагрузкой. Он играет важную роль в электротехнике. В самом деле, если в цепи имеется значительный сдвиг по фазе между колебаниями тока и э. д. с, то коэффициент мощности мал и нагрузка потребляет от генератора малую активную мощность. Вместе с тем генератор должен вырабатывать полную мощность S. Эту же мощность должен отдавать генератору первичный двигатель. Таким образом, при низком коэффициенте мощности нагрузка потребляет лишь часть энергии, которую вырабатывает генератор. Оставшаяся часть энергии перекачивается периодически от генератора к потребителю и обратно и рассеивается в линиях электропередачи.

Максимально благоприятные условия передачи электроэнергии создаются в цепи, работающей в режиме резонанса. В самом деле, при приближении к резонансу амплитуда силы тока оказывается максимальной и коэффициент мощности стремится к единице. В этом случае активная мощность приближается к полной мощности, т. е. достигает максимума.

Повышение к. м. является важной народнохозяйственной задачей, от решения которой зависит эффективность использования вырабатываемой электроэнергии.

Уменьшение к. м. в промышленных цепях происходит в основном за счет содержащихся в них трансформаторов и асинхронных электродвигателей, имеющих значительные индуктивные сопротивления. Поэтому повысить к. м. при таких нагрузках можно путем подключения параллельно основной цепи компенсирующих конденсаторов, позволяющих приблизиться к режиму резонанса токов.

С целью повышения к. м. и экономии электроэнергии не следует допускать холостого хода (т. е. работы без нагрузки) трансформаторов и асинхронных электродвигателей, ибо в этом случае они представляют собой чисто индуктивные сопротивления и вызывают дополнительные потери мощности.

Коэффициент мощности (к. м.) ни в коем случае нельзя путать с коэффициентом полезного действия (к. п. д.). Так, например, при определенном соотношении емкости и индуктивности коэффициент мощности в данной цепи может оказаться равным единице. Коэффициент же полезного действия цепи всегда меньше единицы.

Мощность цепи переменного тока

Мощность в активном сопротивлении

Мгновенное значение мощности для цепи с резистором:

Из рисунка видно, что потребляемая резистором мгновенная мощность остается все время положительной, но пульсирует с удвоенной по отношению к силе тока и э. д. с. частотой.

Действующее значение мощности:

Активная мощность в цепи с идеальной катушкой индуктивности и конденсатором равна 0. Реактивная мощность определяется выражением:

Аналогично можно проделать для цепи с идеальным конденсатором:

В произвольной цепи переменного тока потребляемая одновременно активной и реактивной нагрузками суммарная мощность

Но так как , следовательно, . Мы приходим к выводу, что суммарная средняя мощность, потребляемая полной цепью переменного тока, равна активной мощности.

где S — полная мощность, вырабатываемая генератором переменного тока, ВА;

a — сдвиг по фазе между колебаниями э. д. с. и силы тока.

Источник

Электрический ток. Закон Ома для цепей постоянного и переменного тока.

Онлайн расчёт электрических величин напряжения, тока и мощности для участка цепи,
полной цепи, цепи с резистивными, ёмкостными и индуктивными элементами.
Теория и практика для начинающих.

Начнём с терминологии.
Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное сечение проводника S за единицу времени Δt: I = Δq/Δt.
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление — это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.
Теперь можно переходить к закону Ома.

Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь. По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно для проводников, обладающих постоянным сопротивлением. При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы, этот закон в простейшем виде уже использоваться не может.

Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим связь силы электрического тока с сопротивлением и напряжением.
Формулировка закона Ома для участка цепи может быть представлена так: сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде:
I=U/R,

Закон Ома для участка цепигде
I – сила тока в проводнике, измеряемая в амперах [А];
U – электрическое напряжение (разность потенциалов), измеря- емая в вольтах [В];
R – электрическое сопротивление проводника, измеряемое в омах [Ом]
.

Производные от этой формулы приобретают такой же незамысловатый вид: R=U/I и U=R×I.

Зная любые два из трёх приведённых параметров можно произвести и расчёт величины мощности, рассеиваемой на резисторе.
Мощность является функцией протекающего тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)

Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.

Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари!
Считайте, учитывайте размерность, не стирайте из памяти, что:

Единицы измерения напряжения: 1В=1000мВ=1000000мкВ;
Единицы измерения силы тока:1А=1000мА=1000000мкА;
Единицы измерения сопротивления:1Ом=0.001кОм=0.000001МОм;
Единицы измерения мощности:1Вт=1000мВт=100000мкВт
.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатую таблицу, позволяющую в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.

ТАБЛИЦА ДЛЯ ПРОВЕРКИ РЕЗУЛЬТАТОВ РАСЧЁТОВ ЗАКОНА ОМА.

Вводить в таблицу нужно только два имеющихся у Вас параметра, остальные посчитает таблица.

Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр , после чего закон приобретает солидное название — закон Ома для полной цепи:
I=U/(R+r) .

Для многозвенных цепей возникает необходимость преобразования её к эквивалентному виду:

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 .
А онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких проводников можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока — под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов — это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитываем действующее значение напряжение интересующей нас формы:

Для синуса U = Uд = Uа/√2;
для треугольника и пилы U = Uд = Uа/√3;
для меандра U = Uд = Uа.

С этим разобрались!

Теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае смотреться это будет так:

Закон Ома для переменного тока

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: Закон Ома для переменного тока
Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице ссылка на страницу и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами: XC = 1/(2πƒС) , XL = 2πƒL .

Нарисуем таблицу для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента — необходимо указать значение частоты f !

КАЛЬКУЛЯТОР ДЛЯ ОНЛАЙН РАСЧЁТА ПОЛНОГО СОПРОТИВЛЕНИЯ ЦЕПИ.

Теперь давайте рассмотрим практический пример применения закона Ома в цепях переменного тока и рассчитаем простенький бестрансформаторный источник питания.

Токозадающими цепями в данной схеме являются элементы R1 и С1.

Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом — 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в — 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА: Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10-100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 — 30 Ом, С1 — 1 Мкф, частотой сети f — 50 Гц и подставим всё это хозяйство в таблицу.
Получили полное сопротивление цепи, равное 3,183кОм. Многовато будет — надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости — 3,18 Мкф, при котором Z = 1,04кОм.

Всё — закон Ома выполнил свою функцию, расчёт закончен, всем спать полчаса!

Источник

Читайте также:  Фоновый ток утечки узо 1