Меню

Отсечка тока при защите трансформаторов



Дифференциальная токовая отсечка трансформатора. Принцип действия, пусковые органы, выбор основных параметров

Ответ:«Правила» [1] допускают применение на трансформаторах мощностью до 25 MB-А дифференциальной защиты с обычными реле тока (например, типа РТ-40), отстроенными по току срабатывания от бросков тока намагничивания и переходных значений тока небаланса, если при этом обеспечивается требуемая чувствительность. Достоинством такой защиты, называемой дифференциальной отсечкой, является меньшая стоимость и меньшая сложность при наладке, чем у защиты с реле серий РНТ и ДЗТ.

Ток срабатывания дифференциальной отсечки выбирается по условию отстройки от бросков тока намагничивания трансформатора:

Большой ток срабатывания является главным недостатком дифференциальной отсечки. Дифференциальная отсечка применяется довольно редко и только в тех случаях, когда ее kч >= 2. Практически это возможно, если вторичные номинальные токи плеч защиты отличаются друг от друга на несколько процентов и если максимальный и минимальный токи КЗ за трансформатором близки по значению.

Пример 13. Определяется возможность применения дифференциальной отсечки на трансформаторе 4 МВ*А, (35 ± 2×2,5%) кВ/10,5 кВ (рис. 2-31). Токи трехфазного КЗ в максимальном и минимальном режимах одинаковы и равны 680 А, приведенным к напряжению 35 кВ.

Решение. 1. Определяются первичные и вторичные номинальные токи в плечах дифференциальной защиты. При коэффициентах трансформации трансформаторов тока, указанных на схеме (рис. 2-31), они примерно равны: в плече ВН (35 кВ) — 3,8 А, в плече НН (10 кВ) — 3,67 А. Расчет рекомендуется оформлять таблицей, как в предыдущих примерах.

2. Определяется первичный ток небаланса по выражениям (2-35), (2-39) и (2-40). В выражении (2-39) коэффициент, учитывающий переходный режим, принимается kanep=2. Третья составляющая тока небаланса (при отсутствии специальных устройств для выравнивания вторичных токов)

Для данного примера

3. Определяется первичный ток срабатывания дифференциальной отсечки.

а) По условию (2-36) отстройки от тока небаланса Ic.з >= 1,3 * 193 = 250 А.

б) По условию (2-37), в котором kн = 3- 4, или по условию (2-57):

Iс.з= (3 — 4) I ном .тр = 196 — 264 А. Принимается Iс.з = 264 А.

4. Коэффициент чувствительности определяется по вторичным токам: по табл. 2-1

Надежность несрабатывания дифференциальной отсечки проверяется после наладки защиты путем пятикратного включения трансформатора под напряжение.

5. Производится расчетная проверка трансформаторов тока в соответствии с указаниями §1-5; в том числе проверка надежности работы реле типа РТ-40 при КЗ на стороне ВН трансформатора в зоне действия дифференциальной отсечки (f

Рисунок 1 – Прохождение тока к.з. и действие максимальной токовой защиты при повреждении одного из параллельно работающих трансформаторов (автотрансформаторов).

При рассмотрении принципа действия дифференциальной защиты условно принимается, что защищаемый трансформатор имеет коэффициент трансформации, равный единице, одинаковое соединение обмоток и одинаковые трансформаторы тока с обеих сторон.
Если схема дифференциальной защиты выполнена правильно и трансформаторы тока имеют точно совпадающие характеристики, то при прохождении через трансформатор тока нагрузки или тока сквозного к.з. ток в реле дифференциальной защиты трансформатора отсутствует. Следовательно, дифференциальная защита трансформатора, так же как дифференциальная защита линий, на такие режимы не реагирует.

Рис. 9-2. Принцип действия дифференциальной защиты трансформатора (автотрансформатора):
а — токораспределение при сквозном к.з.; б — токораспределение при к.з. в трансформаторе (в зоне действия дифференциальной защиты)

При к.з. в трансформаторе или любом другом месте между трансформаторами тока направление токов I1 и I2 изменится на противоположное, как показано на рисунке 2, б. Т.е. в зоне дифференциальной защиты в реле проходит полный ток к.з., деленный на коэффициент трансформации трансформаторов тока. Под влиянием этого тока защита срабатывает и производит отключение поврежденного трансформатора.
Дифференциальной отсечкой называется дифференциальная защита мгновенного действия, имеющая ток срабатывания больше броска намагничивающего тока. Принципиальная схема дифференциальной отсечки двухобмоточного трансформатора приведена на рисунке 3.
Броски намагничивающего тока в первый момент включения трансформатора могут иметь большие значения и даже превышать ток срабатывания дифференциальной от сечки, выбранный с указанным коэффициентом надежности отстройки. Однако эти токи очень быстро затухают, что дает возможность отстроиться от них за счет собственного времени действия реле дифференциальной отсечки. Для этого в схеме дифференциальной отсечки применяют выходное промежуточное реле (реле У на рисунке 3) типа РП-251, которое имеет время срабатывания 0,07—0,08 с.

Рисунок 3 – Принципиальная схема дифференциальной отсечки двухобмоточного трансформатора.

Основным достоинством дифференциальной отсечки является простота схемы и быстродействие. Недостатком является большой ток срабатывания, вследствие чего защита в ряде случаев оказывается недостаточно чувствительной.
Принципиальные схемы дифференциальной защиты с реле РНТ-565 приведены на рисунке 4.
Быстронасыщающийся трансформатор реле РНТ-565 является одновременно и промежуточным трансформатором для компенсации неравенства вторичных токов в плечах дифференциальной защиты и имеет для этой цели специальные уравнительные обмотки. Ток во вторичной обмотке БНТ, к которой подключено реле, определяется суммарным магнитным потоком в сердечнике, который создается как рабочей, так и уравнительными обмотками. Для того чтобы при прохождении через трансформатор сквозного тока нагрузки или к.з. ток во вторичной обмотке был равен нулю, необходимо правильно включить рабочую и уравнительные обмотки в дифференциальную схему и так подобрать число витков обмоток, чтобы компенсировать неравенство вторичных токов трансформаторов тока и установить необходимый ток срабатывания.

Рисунок 4 – Принципиальная схема токовых цепей дифференциальной защиты двухобмоточного трансформатора с реле типа РНТ-565 (РНТ-562).

При выполнении дифференциальной защиты двухобмоточного трансформатора (рисунок 4) цепи от трансформаторов тока с обеих его сторон присоединяются к уравнительным обмоткам У1 и У2 так, чтобы при прохождении через трансформатор сквозного тока токи в уравнительных обмотках были направлены встречно. В принципе для компенсации неравенства вторичных токов трансформаторов тока можно было бы использовать только одну уравнительную обмотку БНТ. Однако при использовании обеих обмоток обеспечивается более точная компенсация неравенства вторичных токов.

Дифференциальная токовая защита трансформатора с применением реле, имеющих торможение. Основные органы, принцип действия, выбор параметров срабатывания. Принцип действия реле типа ДЗТ.

Ответ:Для повышения чувствительности продольных дифференциальных защит широко используется принцип торможения сквозным (циркулирующим) током [3]. Как видно из схемы дифференциальной защиты с торможением (рис. 2-24,а), при внешнем (сквозном) КЗ этот ток (кк-макс.вн) проходит по тормозной обмотке дифференциального реле (ют). В это же время по дифференциальной (рабочей) обмотке реле (шр) проходит ток небаланса (Ьнб)- МДС рабочей обмотки направлена на срабатывание реле, тормозной обмотки — на увеличение тока срабатывания реле, предотвращающее его срабатывание при внешних КЗ. Для обеспечения несрабатывания реле при внешних КЗ на тормозной обмотке реле должно быть включено число витков:

где Iк.макс.вн _ периодическая слагающая тока (при t = 0 с) при расчетном внешнем трехфазном КЗ на той стороне трансформатора, где включена тормозная обмотка, в максимальном режиме работы системы и с учетом влияния РПН трансформатора (§ 2-2); Iнб — ток небаланса (первичный), определяемый по выражениям (2-35), (2-39)-(2-41); ωр -расчетное число витков рабочей обмотки реле на стороне, где включена тормозная обмотка; kн -коэффициент надежности, учитывающий ошибку реле и необходимый запас, принимается равным 1,5; tgα — тангенс угла наклона к оси абсцисс касательной, проведенной из начала координат к характеристике срабатывания реле (тормозной), соответствующей минимальному торможению (кривая 2 на рис. 2-25), для реле ДЗТ-1 (снятых с производства) принимается равным 0,83, для реле ДЗТ-11 — 0,75-0,8. Для других реле этой серии tgα может быть значительно меньше и должен определяться по заводским или снятым экспериментально тормозным характеристикам:

Тормозные характеристики реле ДЗТ-11 (рис. 2-25) построены при нормальной затяжке противодействующей пружины для таких углов между рабочим (Iр) и тормозным (Iт) токами в реле, при которых обеспечивается максимальное (кривая 1) и минимальное (кривая — 2) торможение. Область, расположенная ниже характеристики 2, является областью надежного несрабатывания реле; область, расположенная выше характеристики 1, — областью надежного срабатывания. При этом для обеспечения чувствительности защиты точка, соответствующая расчетным случаям КЗ в зоне действия защиты и определяемая величинами Fp и Fт, должна находиться не менее чем на 10 % своих координат выше характеристики 1.

При КЗ в зоне действия защиты (при одностороннем питании) по рабочей и тормозной обмоткам проходит один и тот же ток (рис. 2-24,6), т.е. Iр = Iт. Однако выбранное по выражению (2-48) соотношение чисел витков рабочей и тормозной обмоток (ωр > ωт) должно обеспечивать преобладание рабочей МДС ( Fp > Fт) и, следовательно, надежное срабатывание реле.

Выбор места включения тормозной обмотки. При выполнении дифференциальной защиты понижающих трансформаторов с реле, имеющими одну тормозную обмотку, при одностороннем питании трансформатора имеется возможность исключить влияние тормозной обмотки при КЗ в зоне действия защиты. Для этого на двухобмоточных понижающих трансформаторах тормозная обмотка должна включаться в плечо дифференциальной защиты не со стороны питания (как показано на рис. 2-24 для пояснения принципа действия защиты), а в плечо противоположное.

На трехобмоточных понижающих трансформаторах с односторонним питанием рекомендуется выбирать место включения тормозной обмотки таким образом, чтобы определяющим для выбора тока срабатывания было условие (2-37) отстройки от броска тока намагничивания при включении трансформатора под напряжение:

где kн = 2,1 — 3,7хк* (пояснения даны в § 2-4, расчет — в примере 10), наибольшее значение kн= 1,5, наименьшее — 1).

Для этого тормозная обмотка включается, как правило, в плечо той стороны трансформатора, где внешнее КЗ вызывает больший ток (сторона, имеющая сопротивление обмотки трансформатора, равное примерно нулю). Если же отстройка от тока небаланса при КЗ на другой стороне требует увеличения Iс.з больше чем 1,5Iном.тр, рекомендуется включить тормозную обмотку реле ДЗТ -11 (ДЗТ-1) на сумму токов плеч защиты питаемых сторон (пример 11).

Включение тормозной обмотки этих реле в плечо со стороны питания не рекомендуется, поскольку при больших токах в случае КЗ на стороне питания и при отношении чисел витков тормозном и рабочей обмоток более 0,4 может существенно снизиться кратность тока в исполнительном органе, что вызовет отказ защиты.

Для трансформаторов с РПН при Δ UРПН= ±16% отношение ωтωр>= 0,4 является типичным. Действительно, даже без учета регулирования напряжения на стороне среднего напряжения и без учета составляющей I'»нб расчетное значение Iнб = I’нб +I»нб= (0,1 ± 0,16) Iк.макс.вн = 0,26Iк.макс.вн и по формуле (2-48) ωт= 1,5*0,26*ωр/0,8 = 0,49ωр. Как видно из зависимостей кратности вторичного тока (в исполнительном органе) I2* от кратности первичного тока I1* для реле ДЗТ-11 (рис. 2-26), при реле может отказать уже при I1*>= 25. Этому значению соответствует при nт =100/5 Iк >= 2500 А, при nт =150/5; Iк>=3750 Аи т.п., где Iк — ток при КЗ на выводах трансформатора со стороны питания. Такие значения токов вполне вероятны для современных распределительных сетей 110 и 35 кВ. Поэтому включение тормозной обмотки реле ДЗТ-11 со стороны питания допустимо только после проверки надежности работы реле при Iк.макc, при трехфазном КЗ на этой стороне в зоне действия защиты (рис. 2-26). Расчет чисел витков остальных обмоток реле ДЗТ-11 (кроме тормозной) производится так же, как для реле РНТ (§ 2-4).

Дата добавления: 2017-02-20 ; просмотров: 4125 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Расчет зоны действия ТО, принцип действия

Токовая отсечка – это разновидность максимальной токовой защиты с ограниченной зоной действия, предназначенная для быстрого отключения короткого замыкания. Отсечки бывают мгновенные и с малой выдержкой времени до 0,6 секунд. Отличие отсечки от мтз в отсутствии у токовой отсечки реле времени.

Селективность действия токовой отсечки достигается ограничением ее зоны действия. Эта защита отстраивается от тока КЗ в конце защищаемой линии или места, до которого она должна действовать. Ниже рассмотрим принцип действия различных токовых отсечек и их расчет.

Читайте также:  Чем измерить коэффициент трансформации трансформатора тока

Мгновенная токовая отсечка на линии с односторонним питанием

Зона действия токовой отсечки на линии с односторонним питанием

Зона действия токовой отсечки определяется графически. На рисунке наша защищаемая линия между точками АВ. Сначала строится кривая зависимость значения тока короткого замыкания от расстояния до точки КЗ. Точка КЗ в нашем примере – это конец линии, точка А.

Затем строится прямая параллельная оси расстояния равная току срабатывания отсечки. Область пересечения прямой и кривой представляет собой зону действия защиты. В нашем примере зона действия защиты – это отрезок ВБ.

Также зону действия токовой отсечки можно определить по выражению:

формула определения зоны действия токовой отсечки

  • xЛ – сопротивление линии, для которой выбираем защиту
  • EC – эквивалентная ЭДС генераторов системы
  • xC – сопротивление системы

Ток срабатывания защиты определяется по выражению ниже:

формула определения тока срабатывания токовой отсечки

  • kН – коэффициент надежности
  • IK.MAX – максимальный ток короткого замыкания в конце линии

Коэффициент надежности учитывает погрешности при расчете тока кз и погрешность срабатывания реле.

Коэффициент чувствительности отсечки рассчитывается по выражению:

формула определения коэффициента чувствительности отсечки

где в числителе максимальный ток КЗ в начале защищаемой линии, в примере это точка В, а в знаменателе ток срабатывания защиты.

Мгновенная токовая отсечка на линии с двусторонним питанием

Зона действия токовой отсечки на линии с двусторонним питанием

Рассмотрим схему линии с двусторонним питанием. По обоим концам расположены генераторы. Вначале необходимо определить максимальные токи короткого замыкания в конце линии с обеих сторон. Тот из токов, величина которого будет больше, и будет принят за максимальный ток короткого замыкания.

На линиях с двусторонним питанием ставится два комплекта отсечек с обеих сторон линии. Зоны действия определяются аналогично, как и для линии с односторонним питанием.

На рисунке у нас одна отсечка защищает при кз в точке А, вторая при кз в точке В. Зона действия первой – ВБ, второй – АГ. Максимальный ток кз в нашем случае больше Ik(A). Его и принимаем за расчетный для обеих отсечек.

Ток срабатывания защиты выбирается по большему из двух выражений:

условие выбора тока токовой отсечки на линии с двусторонним питанием

Второе выражение используют при расчетах на линиях с двусторонним питанием. При наличии двух источников питания (генераторов), между ними проходят токи качания.

Максимальный ток качания определяется как сумма ЭДС генераторов деленная на сопротивление цепи между двумя генераторами, включая сопротивления генераторов (сверхпереходные x”d).

Мгновенные токовые отсечки являются самыми простыми защитами. К их плюсам можно отнести быстродействие и простоту схемы. К недостаткам относится область действия, так как она не распространяется на всю линию. Кроме линий, токовые отсечки применяются на трансформаторах. Стоит упомянуть и токовые отсечки, с выдержкой времени. А если соединить отсечку с выдержкой времени, мгновенную и максимальную токовую защиту, то получится трехступенчатая защита, которая может заменить более сложные защиты.

Токовая отсечка трансформатора

Токовая отсечка трансформатора является самой простой защитой трансформатора, которая защищает его от однофазных и междуфазных коротких замыканий. Принцип действия аналогичен принципу действия токовой отсечки линии.

Зона действия токовой отсечки на линии с односторонним питанием

Отсечка не будет срабатывать при повреждениях, сопровождаемых малыми токами, например, витковые замыкания, замыкания на землю в обмотке. Устанавливается токовая отсечка на трансформаторах мощностью менее 6300кВА. Если на трансформаторе установлена дифференциальная защита, то токовая отсечка не требуется.

Перейдем к расчету параметров защиты. Начнем с тока срабатывания защиты.

Ток срабатывания токовой отсечки отстраивается от броска тока намагничивания и от максимального тока короткого замыкания за трансформатором. Бросок тока намагничивания, который появляется при пуске трансформатора, составляет 3-5 от номинального.

формула расчета тока срабатывания ТО трансформатора

  • kН – коэффициент надежности, зависит от типа реле
  • IK.MAX – максимальный ток короткого замыкания за трансформатором
  • IНАМ – ток намагничивания трансформатора, равный 3-5 от номинального тока трансформатора

Ток срабатывания реле (уставка) определяется по выражению ниже:

формула расчета тока срабатывания реле ТО

  • kСХ – коэффициент схемы
  • IС.З. – ток срабатывания защиты
  • nТТ – коэффициент трансформации ТТ

Коэффициент чувствительности токовой отсечки трансформатора

формула расчета коэффициента чувствительности ТО трансформатора

К преимуществам отсечки относится её быстродействие. Мгновенное отключение позволяет уменьшить возможные повреждения трансформатора и оборудования, запитанного от трансформатора.

К недостаткам можно отнести то, что зона действия отсечки ограничена. Поэтому отсечка вместе с газовой защитой трансформатора и максимальной токовой защитой составляют защиту трансформаторов малой мощности.

Сохраните в закладки или поделитесь с друзьями

Источник

Особенности применения и срабатывания разных защит трансформатора

Источником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе.

Основные защиты трансформатора

БлинкерЛюбая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами.

Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:

  1. Дифференциальная защита. Она предохраняет от повреждений и коротких замыканий как в обмотках, так и на наружных выводах. Действует только на отключение;
  2. Газовая защита. Защищает от превышения давления внутри расширительного бачка вследствие выделения газов или же выброса масла, а также от снижения его уровня ниже определённого критического показания;
  3. Тепловая защита. Она организована в основном на термосигнализаторах (ТС), которые подают сигнал на пульт персонала или же на включения вентиляторов охлаждения. Такой вид дополнительной защиты служит как предупреждающий при начальных стадиях аварийных ситуаций. При этом выбор самого ТС не важен, главное, выставить правильно диапазон, при котором должен подаваться сигнал. Максимально допустимый нагрев масла составляет 95 градусов;
  4. Защита минимального напряжения. Предусматривает отключение при снижении входного уровня напряжения ниже допустимого. Зачастую имеет выдержку времени, которая даст возможность не реагировать на небольшие просадки;
  5. От замыкания на землю. Выполняется путём установки трансформаторов тока в соединение корпуса и заземляющего контура;
  6. Максимальная токовая (МТЗ) выполняет роль защитного механизма как при коротких замыканиях в цепи вторичного тока, так и при больших перегрузках.

Защита трансформатора дифференциальная

Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

  1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
  2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
  3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
  4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.

Дифф защита

Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т — это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

Принцип действия газовой защиты трансформаторов

Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

В специальном окошке при выделении газов можно увидеть пузырьки.

Окошко трансформатораРеле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и расширительным баком.

Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

Транфсорматор

Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.

Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

Максимальная токовая защита трансформатора

Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

Для трансформаторов выбор предохранителей осуществляется из такого соотношения

формула

Iвс — ток плавкой вставки предохранителя;

Iн. тр. — номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

Предохранитель — самый простой способ защитить трансформатор от превышения тока.

МТЗ защита

Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.

Читайте также:  Цифровая защита тока параметры

Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

Схема 2

Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.

Защита печных трансформаторов

Работа печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов.

В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта.

Источник

Отсечка тока при защите трансформаторов

Принцип действия и область применения отсечки. Токовой отсечкой называется быстродействующая максимальная токовая защита с ограниченной зоной действия. В зону действия отсечки на понижающих трансформаторах входит часть обмотки и выводы со стороны ВН, где включены реле отсечки ТО (рис. 17). При КЗ за трансформатором (точка К1) отсечка не действует благодаря отстройке ее тока срабатывания от максимального значения тока при КЗ в этой точке. Поэтому отсечка не чувствует КЗ также на отходящих линиях НН (точка K 2 ) и может выпол­няться без выдержки времени.

Быстродействие является главным достоинством отсечки, так как быстрое отключение уменьшает раз­меры повреждения трансформатора, обеспечивает продолжение нормальной работы электродвигателей и другой нагрузки, подключенных к тому же питаю­щему источнику 2 , m 1 , M 2 ), и, кроме того, позво­ляет иметь небольшую выдержку времени на последующей максимальной токовой защите питающего трансформатора 110/10 кВ или питающей линии 10 кВ (МТЗ на рис. 17).

Рис. 17. Схема подстанции 10 кВ, поясняющая зоны несрабаты­вания (точки K 1 и K 2) и срабатывания ( K 3) токовой отсечки ТО на трансформатореТ1 .
При использовании совре­менных электронных реле времени допускается уста­навливать выдержку времени на последующей мак­симальной токовой защите от 0,3 до 0,4 с. Недостат­ком токовой отсечки является ограниченная зона действия, в связи с чем отсечка устанавливается как дополнение к максимальной токовой защите транс­форматора (§ 8). При выполнении дифференциальной защиты трансформатора (§ 11) отсечка не устанав­ливается.

Схемы выполнения, типы реле и расчет тока сра­батывания. Правильная (селективная) работа токо­вой отсечки обеспечивается выбором тока срабатыва­ния по условию

где I к.мах.вн — максимальное значение тока трехфаз­ного КЗ за трансформатором, т. е. вне зоны дей­ствия отсечки, приведенного к стороне ВН, где уста­новлена отсечка, А; k н — коэффициент надежности, значения которого зависят от типа применяемых то­ковых реле: 1,3 — 1,4 — для реле типа РТ-40 и при­мерно 1,6 — для реле РТ-80 (ИТ-80) и РТМ.

Ток I к.мах.вн. определяется в точке K 1 (рис. 17) при максимальном режиме питающей энергосистемы, когда ее сопротивление имеет минимально возможное значение (§ 3). При выборе тока срабатывания от­сечки по выражению (21) обеспечивается также ее несрабатывание (отстройка) при бросках тока на­магничивания, возникающих при включениях транс­форматора под напряжением со стороны 10 кВ.

Ток срабатывания токовых реле отсечки (уставка) определяется по выражению, общему для всех вто­ричных токовых реле, т. е. реле, включенных через трансформаторы тока:

где I с. о — первичный ток срабатывания отсечки, вы­бранный по условию (21); пт. т — коэффициент транс­формации трансформаторов тока ТТ на стороне ВН трансформатора; k сх коэффициент схемы при сим­метричном режиме, показывающий, во сколько раз ток в реле защиты (отсечки) больше, чем вторичный ток трансформаторов тока

Рис. 18. Схемы включения максимальных реле тока токовой от­сечки трансформаторов

Для схемы соединения трансформаторов тока в неполную звезду ксх = 1 для всех видов КЗ (рис. 18, а). Для схемы соединения трансформаторов тока на разность токов двух фаз (рис. 18,6) при симметричном нагрузочном режиме и при трехфазном КЗ k сх = √ з , но для двухфазных КЗ А — В и В —С значение k сх = 1. Из сравнения этих схем видно, что при одинаковых значениях I с . и пт. т ток срабатыва­ния (уставка) токовых реле в схеме рис. 18,6 по ус­ловию (22) получится в 1,73 раза большим, чем для схемы рис. 18, а. Это имеет большое значение при оценке чувствительности, которая осуществляется с помощью так называемого коэффициента чувстви­тельности:

где I р. min — минимальное значение тока в реле при металлическом двухфазном КЗ на выводах ВН защи­щаемого трансформатора (точка K на рис. 18), А; I с.р. — ток срабатывания реле (уставка), вычислен­ный по условию (22).

Значение k ч. по «Правилам» [1] должно быть равно примерно 2.

Для схемы на рис. 18, а при всех вариантах двухфазного КЗ и для схемы на рис. 18,6 при КЗ между фазами А и В, В и С k сх = 1 и, следовательно,

где I к. min . — минимальное значение первичного тока при трехфазном КЗ на выводах ВН защищаемого трансформатора, вычисленное при наибольшем со­противлении питающей системы.

Но несмотря на то, что значения токов в реле от­сечки при этих видах КЗ для схем на рис. 18, а и б одинаковы, коэффициент чувствительности суще­ственно, в 1,73 раза, выше для схемы 18, а, так как при прочих равных условиях ток срабатывания реле этой схемы в 1,73 меньше, чем у реле схемы 18,6.

Например, I со =1000А; I k . min . = 2500 А: птт = = 100/5 = 20. По выражению (24) ток в реле при двухфазных КЗ

Ток срабатывания реле (уставки) для схемы на рис. 18, а I c .р.. = 1000*1/20 = 50 А, а для схемы на рис. 18,6 — I с.р. = 1000*1,73/20 = 86,5 А, т. е. в 1,73 раза выше.

Коэффициент чувствительности, вычисленный по выражению (23), для схемы на рис. 18, а кч = 108/50 = 2,16, а для схемы на рис. 18,6 — k ч = 108/86,5=1,25, т. е. в 1,73 раза меньше и, кроме того, значительно ниже, чем требуют «Правила» [1]. Поэтому схема включения реле на разность то­ков двух фаз (рис. 18,6) для защиты трансформато­ров не применяется.

Для стандартной схемы соединения трансформа­торов тока (неполная звезда — рис. 18, а) с учетом того, что значения коэффициента схемы при всех ви­дах КЗ равны 1, можно вычислить коэффициент чув­ствительности по первичным токам:

Однако это выражение справедливо лишь в тех случаях, когда расчетная проверка трансформаторов тока показывает, что их полная (и токовая) погреш­ность при токе КЗ, несколько превышающем первич­ный ток срабатывания отсечки, не более 10%. Если же токовая погрешность оказывается более 10%, что вынужденно допускается, например, при использова­нии реле прямого действия (РТМ, РТВ), то проверку чувствительности отсечки следует производить по выражению (23), для которого вторичный ток I р. min . должен вычисляться по выражению, аналогичному (24), но с учетом действительного расчетного значе­ния токовой погрешности. В рассмотренном выше примере, при токовой погрешности трансформаторов тока, например, равной 30%, коэффициент чувстви­тельности уменьшится до 1,5, а при 50 %-ной по­грешности токовая отсечка может и не сработать (см. § 8).

Для защиты трансформаторов б кВ со схемой со­единения обмоток ∆/ Y , установленных для питания электродвигателей собственных нужд электростанций, предлагалась схема защиты с тремя трансформато­рами тока, соединенными в треугольник (рис. 18, в). В сельских и городских электросетях, да и на элек­тростанциях, такая схема не нашла применения из-за необходимости установки третьего трансформатора тока и третьего реле, что делает ее дороже, чем схе­ма на рис. 18, а. Однако в учебных целях разберем особенности этой схемы (рис. 18,в).

Каждое из трех реле 1-3 включено на разность токов двух соответствующих трансформаторов тока. Следовательно, при симметричном режиме ток в каж­дом реле в 1,73 раза больше вторичного тока транс­форматоров тока. Поэтому для схемы соединения трансформаторов тока в треугольник коэффициент схемы k сх. = 1,73 и, следовательно, ток срабатывания реле (уставка), вычисленный по выражению (22), будет в 1,73 раза больше, чем при прочих равных условиях для реле схемы на рис. 18, а. Однако при установке трех токовых реле при любом из вариан­тов двухфазного КЗ в одном из реле пройдет удвоен­ный ток двухфазного КЗ: 2 I k . И коэффициент чув­ствительности окажется даже больше, чем для схемы на рис. 18, а, в 2/1,73= 1,15 раза. Но если устано­вить только два реле, исключив, например, реле 2 на рис. 18,0, коэффициент чувствительности снизится в 2 раза из-за того, что при одном из вариантов двух­фазного КЗ (В и С в данном случае) удвоенный ток пройдет по той цепи, в которой нет реле, а в двух других реле пройдет лишь однократный ток двухфаз­ного КЗ. Таким образом, двух релейная схема в этом случае окажется значительно менее чувствительной, чем схема на рис. 18,а, которая и принята за стан­дартную.

Источник

1-4. Расчеты токовых отсечек

Токовой отсечкой (cutoff) обычно называют одну из ступеней двухступенчатой максимальной токовой защиты, которая защищает только часть линии или часть обмотки трансформатора, расположенные ближе к источнику питания, и срабатывает без специального замедления, то есть t = 0 с. В трехступенчатой максимальной токовой защите линий средняя ступень обычно используется как отсечка с небольшим замедлением.

Расчет тока срабатывании селективной токовой отсечки без выдержки времени, установленной на линии, на понижающем трансформаторе и на блоке линия-трансформатор. Селективность токовой отсечки мгновенного действия обеспечивается выбором её тока срабатывания Iс.о большим, чем максимальное

значение тока КЗ I (3) к.макс при повреждении в конце защищаемой линии электропередачи (точки КЗ и К5 на рис. 1-14) или на стороне НН защищаемого понижающего трансформатора (точка КЗ на рис. 1-15):

Коэффициент надёжности kн для токовых отсечек без выдержки времени, установленных на линиях электропередачи и понижающих трансформаторах, при использовании цифровых реле, может приниматься в пределах от 1,1 до 1,15. Для сравнения можно отметить, что при использовании в электромеханических дисковых реле РТ-80 электромагнитного элемента (отсечки) принимают в расчетах kн = 1,5-1,6.

При определении максимального значения тока КЗ при повреждении в конце линии электропередачи напряжением 35 кВ и ниже рассматривается трёхфазное КЗ при работе питающей энергосистемы в максимальном режиме, при котором электри­ческое сопротивление энергосистемы является минимальным. Для линий 110 кВ и выше максимальное значение тока КЗ в выражении (1-17) может соответствовать однофазному КЗ на землю (что характерно для линий 110 кВ, отходящих от шин мощных подстанций с автотрансформаторами 330-750/110 кВ).

Определение максимального тока трёхфазного КЗ за трансформатором с регулированием напряжения необходимо производить при таком положении регулято­ра напряжения, которое соответствует наименьшему сопротивлению трансформатора.

Кроме отстройки токовой отсечки от максимального значения тока КЗ по условию (1-17), необходимо обеспечить её несрабатывание при бросках тока намагничивания (БТН) силовых трансформаторов. Эти броски тока возникают в момент включения под напряжение ненагруженного трансформатора и могут в первые несколько периодов превышать номинальный ток трансформатора в 5—7 раз. Однако выбор тока срабатывания отсечки трансформатора по условию (1-17), как правило, обеспечивает и отстройку от бросков тока намагничивания.

Читайте также:  Потребители электрического тока автомобиля

При расчете токовой отсечки линии электропередачи, по которой питается несколько трансформаторов, необходимо в соответствии с условием (1-17) обеспечить несрабатывание отсечки при КЗ за каждым из трансформаторов на ответвлениях от линии (если они имеются) и дополнительно проверить надёжность несрабатывания отсечки при суммарном значении бросков тока намагничивания всех трансформаторов, подключённых как к защищаемой линии, так и к предыдущим линиям, если они одновременно включаются под напряжение. Условие отстройки отсечки от бросков тока намагничивания трансформаторов имеет вид:

где— сумма номинальных токов всех трансформаторов, которые могут одновременно включаться под напряжение по защищаемой линии; кн — коэффициент надёжности, значение которого зависит от времени срабатывания токовой отсечки; например, при выполнении отсечки на реле РТМ, собственное время срабатывания которых может составлять всего лишь один период (20 мс), следует принимать наибольшее значение kн > 5, а при выполнении отсечки по схеме с промежуточными реле принимается меньшее значение kн = 3 — 4 поскольку суммарное время срабатывания максимального реле тока и промежуточного реле этих схем составляет около 5 периодов (100 мс) и значение бросков тока намагничивания за это время заметно снижается .

В цифровых реле серии SPACOM несрабатывание мгновенной ступени (I>>>) при БТН трансформаторов обеспечивается

либо введением небольшой задержки (0,1 с вместо минимальной уставки 0,04 с и тогда kн в выражении (1-18) может приниматься равным 3 — 4),

либо путём использования специального переключателя, с помощью которого можно обеспечить при включении линии автоматическое удвоение уставки отсечки по току; при этом в выражении (1-18) следует учитывать лишь половину суммы номинальных токов всех трансформаторов.

При необходимости можно использовать оба мероприятия, т.е. небольшое замедление и автоматическое удвоение уставки по току.

На линиях 10 и 6 кВ с трансформаторами на ответвлениях, которые защищаются плавкими предохранителями (например, типа ПКТ-10), в условии (1-17) значение I (3) к.макс должно соответствовать току трёхфазного КЗ за наиболее мощным из трансформаторов. Далее следует определить время плавления вставок

предохранителей этого трансформатора при расчетном токе КЗ, равном току срабатывания отсечки, выбранному из условий (1-17) и (1-18). Для учёта допускаемого стандартом разброса времятоковых характеристик плавких предохранителей ПКТ следует значение этого тока уменьшить на 20%: Iрас = Iс.о / 1,2. Если время плавления tпл = 0,1 c, то следует либо увеличить ток срабатывания отсечки до такого значения, при котором обеспечивается расплавление вставок предохранителей до момента отключения защищаемой линии, т.е. не более 0,1 с, либо увеличить время срабатывания отсечки.

Чувствительность токовых отсечек оценивается коэффициентом чувствительности, требуемые значения которых указаны в Правилах, а также величиной (протяжённостью) защищаемой части линии электропередачи. Коэффициент чувствительности определяется по выражениям (1-4) и (1-5). Рассмотрим это на примерах.

Для токовых отсечек, устанавливаемых на понижающих трансформаторах’ и выполняющих функции основной быстродействующей токовой защиты (при отсутствии дифференциальной защиты), чувствительность определяется по току наиболее неблагоприятного вида повреждения — как правило, двухфазного КЗ на выводах ВН трансформатора (точка К2 на рис. 1-15) в минимальном, но реально возможном режиме работы энергосистемы. Значение коэффициента чувствительности должно быть около 2,0. Такие же требования существуют для токовых отсечек на блоках линия-трансформатор.

Для токовых отсечек без выдержки времени, устанавливаемых на линиях электропередачи и выполняющих функции дополнительных защит (рис. 1-14), коэффициент чувствительности должен быть около 1,2 при КЗ в месте установки отсечки в наиболее благоприятном по условию чувствительности режиме.

Коэффициент чувствительности токовых отсечек, выполненных на реле прямого действия типа РТМ, должен проверяться с учетом действительного значения токовой погрешности трансформаторов тока, если оно превосходит 10%.

Для оценки эффективности токовой отсечки, установленной на линии электропередачи, полезно определить зону действия отсечки в процентах от всей длины линии. Протяжённость зоны действия отсечки зависит от характера изменения расчетных значений тока при перемещении точки КЗ вдоль защищаемой линии. По нескольким значениям тока КЗ строится кривая спада тока (рис.1-14). Могут быть построены две кривые: для трёхфазных КЗ в максимальном режиме работы энергосистемы и для двухфазных КЗ в минимальном режиме. Кривые достаточно точно строятся по трём значениям тока: при КЗ в начале, середине и в конце линии. Далее проводится горизонтальная прямая, ордината которой соответствует большему значению тока срабатывания отсечки, выбранному по выражению (1-17) и (1-18). Абсцисса точки пересечения горизонтальной прямой с кривой спада тока КЗ соответствует длине зоны действия отсечки в выбранном режиме работы питающей энергосистемы и при выбранном виде КЗ. Приведённый пример построения кривых тока КЗ (первичного) и определение зоны действия отсечки по первичному значению её тока срабатывания является правильным лишь при условии, что погрешность трансформаторов тока не превышает 10%. С увеличением погрешности трансформаторов тока зона действия отсечки уменьшается.

Как видно из примера графического определения зон действия отсечек, рис. 1-14, протяжённость этих зон может быть весьма значительной: примерно 70% длины

линии JI1 и около 50% длины линии JI2, но может быть гораздо меньшей в других случаях.

Отсечка с выдержкой времени на линиях электропередачи. Небольшая выдержка времени позволяет задержать срабатывание отсечки последующей линии (Л1 на рис. 1-14) при КЗ на предыдущей линии Л2 для того, чтобы успела сработать мгновенная отсечка повреждённой линии Л2. Для отсечки с небольшой выдержкой времени можно выбрать значительно меньшее значение тока срабатывания по сравнению с током срабатывания мгновенной отсечки по нескольким причинам.

Ток срабатывания по выражению (1-17) выбирается из условия отстройки от токов при КЗ в более удалённых точках, например при КЗ в конце зоны действия мгновенной отсечки предыдущей линии Л2 (рис. 1-14), при КЗ за трансформатором приёмной подстанции или трансформатором на ответвлении защищаемой линии, имея в виду, что трансформаторы оборудованы быстродействующими защитами. Можно выбирать ток срабатывания отсечки с выдержкой времени на последующей линии по выражению (1- 2), т.е. по условию согласования чувствительности с мгновенной отсечкой на предыдущей линии. Пример карты селективности приведён на рис.1-16.

Как видно из рис. 1-16, именно средняя ступень трёхступенчатой токовой защиты (I») может значительно ускорить отключение КЗ на линии.

В дополнение к этому нужно отметить, что для отсечек с замедлением не требуется выполнения условия (1-18) отстройки отсечки от бросков тока намагничивания трансформаторов, поскольку эти токи быстро затухают. На линиях с трансформаторами на ответвлениях при выполнении защиты трансформаторов с помощью плавких предохранителей (например, типа ПКТ-10 или ПСН-35) и при КЗ в трансформаторе селективность между плавкими предохранителями и токовой отсечкой питающей линии можно обеспечить благодаря замедлению действия отсечки.

Неселективная токовая отсечка без выдержки времени. Применяется в тех случаях, когда требуется мгновенное отключение таких КЗ, которые приводят к аварии, если их отключать с выдержкой времени. Например, трёхфазное КЗ у шин электростанции или подстанции с синхронными электродвигателями может вызвать значительное понижения напряжения на зажимах генераторов и синхронных электродвигателей. Если быстро не

отключить такое КЗ, произойдет нарушение синхронной параллельной работы этих электрических машин с энергосистемой, что

приведёт к расстройству энергоснабжения, а возможно, и к повреждению электрооборудования.

Большую опасность для электрооборудования представляет термическое воздействие сверхтоков КЗ. Как известно, степень термического воздействия электрического тока прямо пропорциональна значению тока (в квадрате) и времени его прохождения. Если по каким-либо причинам нельзя уменьшить значение тока КЗ до такого, при котором можно без опасения отключать повреждённый элемент с выдержкой времени селективной максимальной токовой защиты, то необходимо уменьшить время отключения КЗ. Одним из наиболее простых и дешёвых способов быстрого отключения КЗ является использование неселективных токовых отсечек без выдержки времени в сочетании с устройствами автоматики (АПВ, АВР), которые полностью или частично ликвидируют отрицательные последствия работы неселективных отсечек.

Ток срабатывания неселективной токовой отсечки, предназначенной для обеспечения устойчивой параллельной работы синхронных электрических машин, выбирается из условия её надёжного срабатывания в тех зонах, где трёхфазные КЗ вызывают снижение напряжения в месте установки отсечки ниже допустимого значения остаточного напряжения Uост (рис. 1-17,а). Значение тока срабатывания неселективной отсечки (в амперах) определяется по выражению

где Uс.мин — междуфазное напряжение (ЭДС) питающей энергосистемы в минимальном режиме её работы, может приниматься в пределах 0,9 — 0,95 номинального, В; zc мин — сопротивление энергосистемы (в минимальном режиме её работы) до места установки отсечки, Ом; kо — коэффициент, отражающий зависимость остаточного напряжения Uост в месте установки рассчитываемой отсечки от удалённости трёхфазного КЗ (zк = =ko zc мин), определяется по зависимости U*ост = f(ko), приведенной на рис. 1-17,б; kн — коэффициент надёжности, принимаемый равным 1,1 — 1,2. Значения остаточного напряжения U*ост , необходимые для обеспечения параллельной работы синхронных электрических машин и различных категорий потребителей, определяются для конкретных случаев службами (группами) электрических режимов; в приближённых расчетах принимают, что для обеспечения динамической стойкости синхронных

генераторов необходимо обеспечить U*ост=> 0,6; синхронных электродвигателей не менее 0,5.

Для обеспечения успешного действия устройства АПВ (или АВР) после срабатывания неселективной токовой отсечки необходимо выполнить несколько условий, дополнительных к условию (1-19), в том числе:

а) выполнить согласование чувствительности и времени срабатывания неселективной отсечки с плавкими предохранителями, автоматическими выключателями или быстродействующими защитами всех элементов, питающихся по защищаемой линии и расположенных в зоне действия неселективной отсечки; это необходимо для того, чтобы при КЗ на любом из этих элементов плавкие вставки предохранителей сгорели бы раньше или защита сработала бы раньше или хотя бы одновременно со срабатыванием неселективной отсечки; при этом время гашения электрической дуги в плавких предохранителях может не учитываться, т.к. она погаснет после отключения линии;

б) обеспечить отстройку неселективной отсечки от бросков тока намагничивания трансформаторов по условию (1-18);

в) обеспечить отстройку неселективной отсечки от КЗ на шинах низшего (среднего) напряжения каждого из трансформаторов, включённых в зоне действия неселективной отсечки, а если это невозможно, то выполнить согласование чувствительности и времени срабатывания неселективной отсечки с защитными устройствами всех элементов низшего (среднего) напряжения.

Применяются и другие способы ускорения отключения опасных повреждений, например, так называемое «ускорение действия защиты по напряжению прямой последовательности». Для этой цели используется реле напряжения, включённое через фильтр напряжения прямой последовательности, например, типа РНФ-2, которое выпускает ЧЭАЗ.

Реле напряжения настраивается таким образом, что оно замыкает свои контакты при снижении напряжения прямой последовательности в месте установки защиты ниже 0,5 — 0,6 номинального. При этом максимальная токовая (или дистанционная) защита линии действует помимо основной выдержки времени либо мгновенно, либо с очень небольшим замедлением. Эти мероприятия применяются как дополняющие работу основных быстродействующих селективных защит линий электропередачи, сборных шин и других элементов электроустановок.

Ток срабатывания неселективной токовой отсечки, предназначенной для обеспечения термической стойкости, например, голых проводов линий, выбирается по формуле, полученной из выражения (1-15):

где обозначения такие же, как и в выражении (1-15). Например, при сечении проводов 2

s = 35 мм 2 и tоткл = 0,4 с (неселективная отсечка плюс АПВ линии) ток срабатывания отсечки должен быть установлен не более 3850 А (первичных). Для обеспечения успешного действия АПВ после неселективного отключения линии отсечкой необходимо выполнить все те же условия, которые перечислены выше, а также произвести расчетную проверку пригодности трансформаторов тока по их погрешностям.

22 Октябрь, 2014 36703 ]]> Печать ]]>

Источник