Меню

От чего зависит ток в цепи переменного тока



Цепи переменного тока. Определение и основные характеристики.

Цепи переменного тока

Приветствую всех на нашем сайте в рубрике “Основы электроники”!

В предыдущей статье мы обсудили понятия тока, напряжения и сопротивления, но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным 🙂 Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока. А область довольно-таки обширна! Смотрите сами – все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов. Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные “махинации” с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Зачем вообще нужно изменять напряжение переменного тока? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Распространение переменного тока

Как видите, с электростанции “выходит” высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели – а именно потребителей. Возникает вопрос – к чему такие сложности? Что же, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про сопротивление). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит.

Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны “толстые” провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно 🙂 А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули – преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока – его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока…

Генератор переменного тока.

Итак, генератор – это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

Генератор

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.

Магнит создает поле, вектор индукции которого B изображен на рисунке. Проводящая рамка площадью S равномерно вращается вокруг своей оси с угловой скоростью w. Поскольку рамка вращается, угол между нормалью к плоскости рамки и магнитным полем постоянно меняется. Запишем формулу для его расчета:

Здесь \alpha_0 – это угол в начальный момент времени (t = 0). Примем его равным 0, таким образом:

Вспоминаем курс физики и записываем выражение для магнитного потока, проходящего через рамку:

Величина магнитного потока, как и угол \alpha зависит от времени. Согласно закону Фарадея при вращении проводника в магнитном поле в нем (в проводнике) возникает ЭДС индукции, которую можно вычислить по следующей формуле:

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы – зависимость тока от времени будет иметь синусоидальный характер:

Переменный ток

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Основные параметры синусоидального сигнала.

Сигнал

На этом рисунке изображено два сигнала (красный и синий 🙂 ). Отличаются они только одним параметром – а именно начальной фазой. Начальная фаза – это фаза сигнала в начальный момент времени, то есть при t = 0. При обсуждении генератора мы приняли величину \alpha_0 равной нулю, так вот это и есть начальная фаза. Для данных графиков уравнения выглядят следующим образом:

Синий график: i(t) = I_msin(wt)

Красный график: i(t) = I_msin(wt + \beta)

Для второй формулы (wt + \beta) это фаза переменного тока, а \beta – это начальная фаза. Часто для упрощения расчетов принимают начальную фазу равной нулю.

Значение i(t) в любой момент времени называют мгновенным значением переменного тока. Вообще все эти термины справедливы для любых гармонических сигналов, но раз уж мы обсуждаем переменный ток, то будем придерживаться этой терминологии 🙂 Максимальное значение функции sin(x) равно 1, соответственно, максимальная величина тока в нашем случае будет равна I_m – амплитудному значению.

Следующий параметр сигнала – циклическая частота переменного тока w – она, в свою очередь, определяется следующим образом:

Где f – частота переменного тока. Для привычных нам сетей 220 В частота равна 50 Гц (это значит, что 50 периодов сигнала укладываются в 1 секунду). А период сигнала равен:

Среднее значение тока за период можно вычислить следующим образом:

Эта формула представляет собой ни что иное как суммирование всех мгновенных значений переменного тока. А поскольку среднее значение синуса за период равно 0:

На этом мы на сегодня и заканчиваем, надеюсь, что статья получилась понятной и окажется полезной. В скором времени мы продолжим изучать электронику в рамках нашего нового курса, так что следите за обновлениями и заходите на наш сайт!

Источник

Все, что нужно знать об электрических цепях переменного тока: виды, структура и расчеты

Фото 1

Хотя постоянный ток качественнее переменного, в электросетях в основном применяется второй. Причины — удешевление двигателей (генераторов), мизерные потери при транспортировке электричества на большие расстояния и возможность преобразовывать ток трансформированием.

Далее рассмотрим, какими бывают электрические цепи переменного тока и из чего они состоят.

Электрические цепи переменного тока

Переменный ток, в отличие от постоянного, с определенной периодичностью меняет направление и величину. Генерируется он путем вращения проволочного витка в магнитном поле или, наоборот, магнитного поля при неподвижном витке.

Наводимая ЭДС зависит от синуса угла, на который повернут ротор генератора. Потому все переменные электрические величины являются синусоидальными. Существует два вида цепей переменного тока – одно- и трехфазные.

Фото 2

Параметры переменного тока:

  1. амплитуда: максимальное отклонение от нуля. Оно достигается при положении плоскости витка перпендикулярно силовым линиям поля. В момент времени, когда плоскость витка и силовые линии становятся параллельными, ЭДС падает до нуля, затем меняет знак;
  2. частота: число полных циклов за секунду (в основном используется ток частотой в 50 Гц);
  3. мгновенное значение: величина параметра в данный момент времени;
  4. действующее значение (см. ниже).
Читайте также:  Как превращения энергии происходят внутри источника тока

Однофазные

В однофазной цепи генератор имеет одну обмотка для индукции ЭДС и к ней подключен один проводник. Источников тока может быть и несколько, но они должны работать в одной фазе и на одной частоте.

Трехфазные

Фото 3

В статоре генератора 3-фазной цепи имеется 3 обмотки для индукции, сдвинутые друг относительно друга на угол в 120 n градусов, где n — число пар полюсов. Соответственно, наводимые в каждой обмотке ЭДС отличаются по фазе на угол в 120 градусов (электрический угол).

При отдельном подключении каждой обмотки для передачи энергии требуется 6 проводов. Систему называют несвязной и сегодня она не применяется ввиду повышенных затрат материалов.

Экономически более целесообразна связанная система, когда обмотки соединены одним из двух способов:

  1. «звездой». Обмотки одной стороной замкнуты в одной точке. Это дает возможность применить один нулевой провод, общий для всех фаз, то есть система получается 4-проводной. А если токи в фазах равны (симметричная нагрузка), необходимость в использовании нулевого провода отпадает: токи гасят друг друга (их векторная сумма равна нулю). В этом случае применяется 3-проводная система;
  2. «треугольником». Обмотки образуют замкнутый контур: каждая своим концом подключается к началу следующей. В каждой фазе формируется линейное напряжение, равное фазному. Но величина фазного тока окажется в 1,72 раза ниже линейного.

Трехфазная система электроснабжения превосходит однофазную в следующем:

Фото 4

  1. требуется меньше материалов для изготовления силовых кабелей;
  2. для одной установки доступно два напряжения: фазное (фаза – нейтраль) и линейное (фаза – фаза). То есть при изменении схемы подключения нагрузки со «звезды» на «треугольник», получают два уровня мощности;
  3. есть возможность получать вращающееся магнитное поле, чем удешевляется конструкция электродвигателей и других устройств. Для этого в статоре двигателя размещают равноудаленно три обмотки, подключенные к разным фазам;
  4. система уравновешена. К примеру, 3-фазные люминесцентные светильники почти не мерцают, в отличие от 1-фазных. В таком светильнике имеется три лампы или группы ламп, подключенных к разным фазам. Когда светимость одной лампы уменьшается, соседняя разгорается. Происходит взаимокомпенсация.

Структура

Электрическая цепь — совокупность устройств и элементов, имеющая целью доставить ток потребителю и преобразовать его в другой вид энергии: тепло, свет или механическую работу.

Фото 5

В цепи различают три части:

  1. источник питания;
  2. транслирующая часть: провода, выключатели, трансформаторы, стабилизаторы и пр. Все то, что используется для передачи, трансформации электрической энергии и поддержания ее качества на должном уровне;
  3. потребители: лампы, электродвигатели, нагреватели и пр.

Источник питания — генератор, аккумулятор, солнечную батарею — называют внутренней частью цепи, остальные компоненты — внешней. Также источник называют активным элементом, прочие — пассивными. Электрическая цепь функционирует только в замкнутом виде, то есть в непрерывном. При размыкании сила тока в ней падает до нуля, хотя участок со стороны генератора или батареи остается под напряжением.

По числу выводов компоненты цепи делятся на два вида:

  1. двухполюсные: имеют одну пару выводов. Пример — диод, резистор;
  2. многополюсные: имеют более двух выводов. Пример — трансформатор (4 вывода).

Процессы в электрической цепи описываются законами Ома и Кирхгофа.

Компоненты в ней соединяются тремя способами:

  • последовательно;
  • параллельно;
  • комбинированным способом.

Применяют такие термины:

  1. ветвь. Участок из последовательно соединенных элементов в параллельной или комбинированной цепи. Законы электротехники гласят: сила тока в пределах ветви одинакова, независимо от величины сопротивления составляющих ее компонентов, а общее сопротивление ветви равно сумме сопротивлений всех ее компонентов. В цепи только с последовательным соединением компонентов, ветвей не выделяют, ее так и называют — неразветвленная цепь;
  2. узел. Место, где цепь разветвляется. Принято считать, что сумма токов, сходящихся в узле, равна сумме токов, исходящих из него. Падение напряжения для параллельных ветвей между точками разветвления и схождения — одинаково;
  3. контур. Совокупность ветвей, представляющая собой замкнутый путь для тока.

По функциональности отдельные части в структуре электрической цепи делятся на такие виды:

Фото 6

  1. силовая. Включает в себя элементы, генерирующие, проводящие, преобразующие и потребляющие электроэнергию;
  2. вспомогательная. Различные дополнительные устройства, не относящиеся к силовой части. Например, установки компенсации реактивной мощности, предохранители;
  3. измерительная. Относящиеся к этой части приборы позволяют отследить параметры сети и подключенных к ней устройств;
  4. управляющая. Оборудование для регулировки параметров устройств либо их включения/отключения.;
  5. сигнализирующая. Сообщает путем включения сигнальных устройств об изменениях в параметрах сети.

По сложности электрические цепи делят на:

  • простейшие: источник, подключенный к потребителю;
  • простые: содержат один контур;
  • сложные: насчитывают несколько контуров.

В сложных цепях выделяют:

  • многоконтурные;
  • многоузловые;
  • плоскостные;
  • объемные.

Расчет цепи

Основная цель расчета — определение на отдельных участках цепи:

Фото 7

  • напряжения;
  • силы тока;
  • мощности и угла сдвига фаз.

В простых случаях, когда в цепи присутствует только резистивная нагрузка, неудобный для расчетов переменный ток заменяют так называемым действующим значением. Это постоянный ток, эквивалентный данному переменному, то есть выделяющий то же количество тепла.

Для синусоидальных переменных тока и напряжения, справедливы выражения:

  • I = Imax / корень из 2 = Imax / 1.41;
  • U = Umax / корень из 2 = Umax / 1.41;
  • где I и U — действующие значения, соответственно, тока и напряжения;
  • Imax и Umax — амплитуды тока и напряжения, то есть их максимальные отклонения от нуля.

Стандартное напряжение в бытовой электросети 210-230 В — это действующее значение. Реальное значение колеблется в пределах от -296 до 296 В (210 В) или от -324 до 324 В (230 В).

Аналогично, когда говорят, что прибор мощностью 2,2 кВт потребляет ток в 10 А, подразумевают действующее значение, тогда как реальная его величина колеблется в пределах от -14 до 14 А.

Фото 8

График синусоидального переменного тока

Задача усложняется при наличии в комплексе таких элементов:

  • катушки индуктивности: возникают ЭДС само- и взаимоиндукции;
  • конденсаторы: появляются токи – зарядные и разрядные.

Под влиянием этих процессов напряжение и ток сдвигаются по фазе друг относительно друга, разница составляет 90 градусов, при этом в системах:

  • с индуктивностью – U опережает I;
  • с конденсаторами – напряжение отстает от тока.

В подобных цепях действуют те же законы, что и в цепях постоянного тока, но заменить переменные напряжения и ток на действующие значения нельзя, существует два пути:

  1. оперирование мгновенными значениями переменных величин;
  2. запись их в векторной (комплексной) форме.

В первом варианте приходится иметь дело с тригонометрическими уравнениями, поскольку мгновенные значения тока и других параметров выражаются через функцию «sin(ωt)», где ω — угловая частота вращения ротора генератора, t — время. Решение таких уравнений отличается сложностью, потому этот путь непопулярен. Векторными величинами оперировать проще.

Этот метод называют символическим. При составлении уравнений, векторы записывают в виде комплексных чисел, задаваясь условным положительным направлением для тока, напряжения и ЭДС.

В алгебраической форме комплексное число выглядит так A = a + jb, где:

  • А — действительная (вещественная) часть;
  • j — мнимая единица;
  • b — мнимая часть.

Букву, выражающую электрический параметр, в комплексной записи подчеркивают. Для проверки правильности расчета цепи составляют баланс активной и реактивной мощностей.

Видео по теме

О расчете электрической цепи переменного тока в видео:

Многие бытовые приборы, особенно электроника, чувствительны к качеству переменного тока, то есть к стабильности его параметров. Если источник стабильностью не обеспечивает, ситуацию спасает специальное устройство — стабилизатор. Обычные стабилизаторы корректируют только напряжение, а инверторные — даже частоту.

Источник

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Читайте также:  Расчет технико экономических показателей электрооборудования мостового крана переменного тока

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Читайте также:  Определить показание амперметра если в цепи резонанс токов

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Переменный ток. Основные характеристики переменного тока. Активное и реактивное сопротивление цепи переменного тока (импеданс).

Переменным называют любой ток, который изменяется с течением времени по величине и направлению. В технике переменным называют ток, который изменяется со временем по гармоническому закону:

Переменный ток представляет собой вынужденные электромагнитные колебания, которые возникают при подключении какого-либо прибора в сеть переменного напряжения:

Максимальное значение тока Imax и начальная фаза зависят от свойств элементов, входящих в электрическую схему прибора.

Основные характеристики:

  • Амплитуда

Максимальное значение тока, измеренное от нулевого уровня.

  • Период

Время, в течение которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения. Измеряется в секундах..

  • Частота

Величина, обратная периоду, равная количеству периодов за секунду. Принято считать равной 50 Гц.

  • Фаза

Характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.

1) Протекание переменного тока по резистору.

Резистором называется проводник, в котором при протекании переменного тока не возникает электродвижущая сила.

При протекании переменного тока через резистор выполняется закон Ома для цепи, поэтому отношение напряжения к силе тока остается постоянным и называется сопротивлением резистора:

Сопротивление резистора не зависит от частоты тока.
При протекании по резистору сила тока изменяется в одинаковой фазе с приложенным напряжением.

Работа переменного тока, протекающего через резистор, полностью превращается в его внутреннюю энергию, поэтому сопротивление резистора называют активным.

2) Конденсатор в цепи переменного тока, емкостное сопротивление.

Если включить в цепь переменного напряжения конденсатор емкостью С, то вместе с изменением напряжения будет меняться заряд конденсатора, а в подводящих проводах возникнет ток.

Ток в цепи с конденсатором опережает напряжение по фазе п/2.
Цепь с конденсатором характеризуется емкостным сопротивлением – сопротивление, равное отношению значения переменного напряжения на пластинах конденсатора к амплитудному значению силы тока в цепи

3) Протекание переменного тока по идеальной катушке индуктивности, индуктивное сопротивление.

Подключим к цепи катушку с индуктивностью L.Из-за явления самоиндукции в ней возникнет ЭДС, препятствующая изменению тока в цепи.

Сила тока в идеальной катушке индуктивности отстает по фазе от приложенного напряжения на п/2.

Цепь с катушкой характеризуется индуктивным сопротивлением – сопротивление, равное отношению амплитудного значения переменного напряжения на катушке индуктивности к амплитудному значению силы тока в ней

При протекании переменного тока по конденсатору и идеальной катушки индуктивности не происходит потерь энергии, поэтому такие сопротивления называют реактивным.

Импеданс равен отношению амплитудного значения переменного напряжения на концах цепи к амплитудному значению силы тока в ней.

Импеданс наблюдается в цепи, состоящей из последовательно соединённых резистора R, катушки индуктивности L и конденсатора C. В такой цепи присутствует активное и реактивное сопротивления. Поэтому ее сопротивление и называют импедансом.

17. Электрические свойства биологических тканей. Импеданс тканей организма.
18. Частотная зависимость импеданса биологических тканей. Альфа-, бета- и гамма- области дисперсии. Эквивалентная электрическая схема биологических тканей.

Ткани организма представляют собой по электрическим свойствам разнородную среду. Органические вещества (белки; гликогены; жиры; углеводы) являются диэлектриками. Самые лучшие диэлектрики: роговой слой кожи, связки, сухожилия, костная ткань.
Неорганические вещества (соли, входящие в состав лимфы, крови, СМ жидкости и т.д.) представляют собой электролиты (жидкие проводники), то есть тканевые жидкости являются хорошими проводниками. Самые лучшие: сыворотка крови, спинномозговая жидкость.

При наложении внешнего электрического поля в тканях возникает противоположно направленное внутреннее электрическое поле (за счет всех видов поляризации), которое значительно уменьшает внешнее поле и обуславливает высокое сопротивление тканей постоянному току.

Учитывая сложную структуру биологической ткани, можно говорить об особых видах поляризации тканей во внешних электрических полях:
1) Макроструктурная поляризация –возникает на границе слоев с различной электропроводимостью. Под действием внешнего поля свободные ионы, электроны перемещаются в пределах каждой ткани до границы проводящего слоя. В результате проводящие среды в совокупности с ограничивающими их диэлектриками становятся гигантским диполем. Время релаксации составляет Т= 10 в -8 – 10 в -3 секунд.

Например: живая клетка.

2) Поверхностная поляризация – происходит на поверхностях, имеющих двойной электронный слой. При наложении внешнего электрического поля, проводящие частицы смещаются в одну сторону, а молекулы диэлектриков – в другую. Возникают наведенные диполи. Время релаксации составляет Т= 10 в -3 – 1 секунды.

Источник