Меню

От чего зависит мощность тока в лампочке



Мощность электрического тока

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это разные понятия.

Что такое мощность электрического тока

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с). Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Читайте также:  Измерение сопротивления тока заземляющих устройств методы измерения

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Формула электрической мощности

В чем измеряется мощность электрического тока

Источник

Лампа накаливания. Характеристики ламп накаливания.

Лампа накаливания — это электрический источник света, который излучает световой поток в результате накала проводника из тугоплавкого металла (вольфрама). Вольфрам имеет самую высокую температуру плавления среди всех чистых металлов (3693 К). Нить накала находится в стеклянной колбе, заполненной инертным газом (аргоном, криптоном, азотом). Инертный газ предохраняет нити накаливания, от окисления. Для ламп накаливания небольшой мощности (25 Вт) изготавливают вакуумные колбы, которые не заполняются инертным газом. Стеклянная колба препятствует негативному воздействию атмосферного воздуха на вольфрамовую нить.

Для расчёта освещенности помещения вы можете воспользоваться калькулятором расчета освещенности помещения.

Лампа накаливания. Характеристики ламп накаливания.

Разновидности ламп накаливания.

Лампы накаливания делятся на:

  • Вакуумные;
  • Аргоновые (азот-аргоновые);
  • Криптоновые (+10 % яркости от аргоновых);
  • Ксеноновые (в 2 раза ярче аргоновых);
  • Галогенные (состав I или Br, в 2,5 раза ярче аргоновых, высокий срок службы);
  • Галогенные с двумя колбами (улучшенный галогенный цикл за счёт лучшего нагрева внутренней колбы);
  • Ксенон-галогенные (состав Xe + I или Br, до 3х раз ярче аргоновых);
  • Ксенон-галогенные с отражателем ИК-излучения;
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. (новинка)
Читайте также:  Реостат из железной проволоки включен в цепь постоянного тока сопротивление реостата при 0 равно 120

Достоинства и недостатки ламп накаливания.

  • невысокая стоимость;
  • мгновенное зажигание при включении;
  • небольшие габаритные размеры;
  • широкий диапазон мощностей.
  • большая яркость (негативно воздействует на зрение);
  • небольшой срок службы — до 1000 часов;
  • низкий КПД. (только десятая часть потребляемой лампой электрической энергии преобразуется в видимый световой поток) остальная энергия преобразуется в тепловую.

Характеристики ламп накаливания.

Световой поток – это физическая величина, характеризующая количество «световой» мощности в соответствующем потоке излучения.

Световая отдача – это отношение излучаемого источником светового потока к потребляемой им мощности измеряется в люменах на ватт (лм/Вт). Является показателем эффективности и экономичности источников света.

Люмен – это единица измерения светового потока, световая величина.

Источник

от чего зависит мощность тока в лампе

Сопротивление лампы не зависит от приложенного напряжения!
. ну если пренебречь мизерным изменением сопротивления от нагрева спирали

при нагреве спирали её сопротивление сильно увеличивается! очень зависит от металла! т. е. — сопротивление лампы накаливания нелинейно- при маленьком напр- маленькое. а при увеличении- увеличивается из-за нагрева. .

Есть такая величина — температурный коэффициент сопротивления (ТКС) . Для большинства металлов (в том числе для вольфрама, из которого изготовлена нить накаливания лампы) температурный коэффициент сопротивления положителен: их сопротивление растет с ростом температуры. Конкретно для вольфрама — при удельном сопротивлении 5,5·10^-6 Ом·см, ТКС=51·10^4. Таким образом, у холодной нити накаливания сопротивление минимально, а при нагревании — увеличивается линейно пропорционально увеличению температуры.. . Но не увеличеню напряжения на нити! Почему? Далее:

Ес-сно, чем выше приложенное к лампе напряжение, тем выше проходящий через неё ток, и тем выше сопротивление нити. Увеличивающееся сопротивление нити, в свою очередь, ведёт к уменьшению тока.. . и в результате зависимость тока через лампу (а соответственно — и температуры нити, и её сопротивления) получается нелинейной (логарифмической).. .

Ну, и добавить остаётся только то, что номинальная мощность лампы (а соответственно — ток через нить накала и расчётное её сопротивление) указываются только для номинального напряжения лампы (указано на баллоне) . Сопротивление холодной нити (напряжение равно 0) — в десятки раз меньше.

Для интереса — попробуйте измерить омметром сопротивление холодной лампы (Rх) , и по известной формуле (без учёта вышенаписанного) расчитать её предположительную мощность при напряжении 220 В. А теперь сравните результат расчёта и заявленную мощность лампы (а также расчётное из этой мощности сопротивление в нагретом состоянии (Rн)) . Не правда ли, офигитительная разница?

Если нет омметра — вот результат расчёта на примере лампы 40Вт 220В:
Rх=109 Ом.. . Таким образом, при U=220В мощность лампы должна составить
P=(U^2)/R=48400/109=444,03Вт (. )
А в реале имеем в нагретом состоянии
Rн=(U^2)/P=48400/40=1210Ом, или 1,21кОм (!),
т. е сопротивление холодной и горячей (при номинальном напряжении) нити отличается более чем в 10 раз.

Ну, а если хотите убедиться в логарифмичности зависимости — ЛАТР и амперметр Вам в руки, Бог в помощь (и барабан на шею.. . ;-))

Источник

Лампа накаливания – светоотдача люминесцентных лампочек в ватта

Самое привычное для нас световое устройство это обычная лампочка накаливания. Она представляет собой источник освещения, состоящий из стеклянной колбы, тела накаливания, электродов, цоколя и изолятора.

В наше время стали популярны галогенные лампы накаливания. Они просты, надежны, и приобрести их можно по очень невысокой цене. Несмотря на популярность ламп накаливания, они обладают рядом недостатков. КПД такого прибора около 2%, низкая светоотдача в пределах 20 Лм/Вт и короткий, около 1000 часов, срок службы.

Принцип работы

При подключении к электрической сети лампа накаливания преобразует электрическую энергию в световую, посредством нагревания проводника (нити) накала. Изготовленная из тугоплавкого вольфрама или его сплавов, нить находится в стеклянной колбе, заполненной инертным газом или вакуумом (для маломощных ламп до 25 Вт).

Читайте также:  Вода в душевой бьет током

Принцип работы лампы накаливания

Колба служит для защиты от воздействия внешних факторов, а инертный газ (криптон, азот, ксенон, аргон и их смеси) не позволяет вольфрамовому проводнику окислиться и уменьшает теплопотери. Нить раскаляется под действием проходящего через нее тока до температуры порядка 3000ºС (такая высокая температура со временем приводит к истончению и перегоранию проводника).

В результате нагрева происходит электромагнитное излучение, небольшая доля которого находится в видимом спектре, основная часть представляет собой инфракрасное излучение. Световой поток возникает, когда очень высокая температура нити накала преобразует электромагнитное излучение в видимый свет лампы.

Потребляемая лампой энергия частично преобразуется в видимое глазом излучение. Основная часть под действием конвекции внутри колбы рассеивается в процессе теплопроводности.

Возникающий в лампах накаливания свет находится в части желтого и красного спектра лучей, поэтому близок к дневному свету.

Световой поток

Прямое назначение любого светового прибора – освещение. В лампе накаливания оно создается путем преобразования тепловой энергии в световой поток.

Люксметр и пульсметр

Определение и правила измерения

Световой поток — величина, которая характеризует световую мощность (световая энергия, которая переносится через некоторую поверхность за единицу времени излучением) видимого излучения в потоке этого излучения, то есть по производимому на глаз человека световому ощущению.

Чувствительность этого ощущения можно определить по кривой спектральной эффективности, которая утверждена МКО. Единицей измерения светового потока в Международной системе единиц является люмен (лм или lm), который рассчитывается по формуле:

1 лм = 1 кд*ср (1 лк × м2), где:

  • кд – кандела;
  • телесный угол, 1 стерадиан.

Энергия в пучке света имеет временное и пространственное распределение. Источники, излучающие световой поток, различают по распределению цветов спектра:

  • линейчатый спектр (отдельные линии);
  • полосатый спектр (рядом расположенные разграниченные линии);
  • сплошной спектр.

Спектральная плотность светового пучка характеризуется распределением лучистого потока по спектру. Измеряется в Вт/нм.

Соотношение с мощностью элемента

Возрастание светового потока напрямую зависит от мощности лампы. На графике (см. рисунок ниже) прослеживается четкая зависимость возрастания яркости пропорционально возрастанию мощности.

Зависимость светового потока от мощности потребления

Таблица – Зависимость уровня светового потока и мощности лампочки накаливания

Лампа накаливания, Вт Световой поток (лм) Напряжение на лампе, В
40 610 12
40 570 36
40 340 230
40 400 240
60 955 36
60 735 225
60 645 230
60 711 235
60 670 240
75 940 220
75 960 225
100 1581 36
100 1381 225
100 1201 230
100 1361 235
150 2151 230
150 2181 240
200 2951 225
200 3051 230
300 3361 225
300 4801 230
300 4851 235
500 8401 220
750 13100 220
1000 18700 220

Лампы накаливания одинаковой мощности могут излучать разный световой поток. Чем выше напряжение, тем выше значение светового потока.

Сравнение с другими типами ламп

Сравнительный анализ светового потока ламп накаливания с более совершенными люминесцентными и светодиодными лампочками позволяет оценить его эффективность.

Таблица – Сравнение лампочки накаливания со светодиодной и люминесцентной (энергосберегающей лампочкой)

Лампа накаливания,
мощность, Вт
Светодиодная лампа,
мощность, Вт
Люминесцентная лампа,
мощность, Вт
Световой поток, Лм (приблизительное значение)
20 2-3 4-7 251
40 3-5 10-14 399
60 7-11 14-16 701
75 11-13 19-21 899
100 13-16 25-35 1205
150 16-21 41-55 1805
200 21-30 59-80 2505

Уровень светоотдачи для лампочек разного типа

Видео

Данное видео расскажет Вам о том, что такое световой поток.

Несмотря на преимущества лампочек накаливания, таких, как моментальное включение, низкая стоимость, большой выбор форм и мощности, отсутствие мерцания, эффективность светового потока по отношению к потребляемой мощности очень низкая, по сравнению с изделиями нового поколения. За рубежом доля вольфрамовых элементов в общем потоке составляет порядка 10 %.

Источник