- Источники ЭДС и тока: основные характеристики и отличия
- Источники ЭДС и источники тока, их свойства и характеристики.
- Источник тока — классификация и назначение
- Особенности источников тока
- Что такое источники тока
- Виды источников
- Механические источники
- Тепловые источники
- Световые источники
- Химические источники
- Обозначение источников тока
- Принцип действия
- Конструкция
- Условия работы источников тока
Источники ЭДС и тока: основные характеристики и отличия
Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.
Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:
механической энергии вращения роторов генераторов;
протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;
теплоты в терморегуляторах;
магнитных полей в магнитогидродинамических генераторах;
световой энергии в фотоэлементах.
Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:
Электрический ток в металлическом проводнике
Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.
Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.
На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).
Схемы обозначения и вольт-амперные характеристики источников ЭДС
Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.
На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.
В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:
постоянного и переменного напряжения;
управляемые напряжением или током.
Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.
Схемы обозначения и вольт-амперная характеристика источника тока
Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.
Реальный источник тока отличается от идеального значением внутреннего сопротивления.
Примерами источника тока могут служить:
Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.
Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.
Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.
В различной литературе источники тока и напряжения могут обозначаться неодинаково.
Виды обозначений источников тока и напряжения на схемах
Источник
Источники ЭДС и источники тока, их свойства и характеристики.
2015-07-04
6060
В теории электрических цепей пользуются идеализированными источниками электрической энергии: источником ЭДС и источником тока. Им приписываются следующие свойства.
Источник ЭДС (или идеальный источник напряжения) представляет собой активный элемент с двумя зажимами, напряжение на которых не зависит от тока, проходящего через источник.
Предполагается, что внутри такого идеального источника пассивные элементы (R — сопротивление <[(R=p∙l ÷ S, где p – удельное сопротивление проводника, l – длина проводника, s – площадь его сечения)]>, L – индуктивность <[(L = F : I, где — магнитный поток,
— ток в контуре)]>, С – емкость
<[( , где
— заряд,
— потенциал проводника)]> отсутствуют, и поэтому прохождение через него тока не вызывает в нем падения напряжения.
Упорядоченное перемещение положительных зарядов в источнике от меньшего потенциала к большему возможно за счет присущих источнику сторонних сил. Величина работы, затрачиваемой сторонними силами на перемещение единицы положительного заряда от зажима «-» к зажиму «+», называется электродвижущей силой (ЭДС) источника и обозначается е(t).
В соответствии со сказанным выше напряжение на зажимах рассматриваемого источника равно его ЭДС, т. е. u(t) = е(t).
Условные обозначения идеального источника напряжения приведены на рисунке 1.12, а и б. Здесь стрелкой или знаками «+» и «-» указано положительное направление ЭДС, или полярность источника, т.е. направление возрастания потенциала в источнике для тех моментов времени, в которые функция е(t) положительна.
Источник тока(в теории электрических цепей) — двухполюсник, создающий в нагрузке электрический ток, причем сила тока не зависит от сопротивления нагрузки. Используются также термины генератор тока и идеальный источник тока. Источник тока — модель реального источника электроэнергии или часть такой модели.
В источнике тока, ток не зависит от напряжения на нагрузке. Ток источника определяется как
где, u- напряжение, gвн — внутренняя проводимость источника тока.
Напряжение на клеммах источника тока (не путать с реальным источником!) зависит только от сопротивления нагрузки:
Мощность, отдаваемая источником тока в нагрузку,
Поскольку для источника тока , то напряжение на его клеммах и мощность, передаваемая им в нагрузку, с ростом сопротивления нагрузки возрастают, достигая в пределе бесконечных значений.
Величина тока в пассивной электрической цепи, подключенной к источнику напряжения, зависит от параметров этой цепи и ЭДС е(t). Если зажимы идеального источника напряжения замкнуть накоротко, то ток теоретически должен быть бесконечно велик. Поэтому такой источник рассматривают как источник бесконечной мощности (теоретическое понятие). В действительности при замыкании зажимов реального источника электрической энергии — гальванического элемента, аккумулятора, генератора и т.д. — ток может иметь только конечное значение, так как ЭДС источника уравновешивается падением напряжения от тока внутри источника (например, в сопротивлении R, индуктивности L).
Источник напряжения конечной мощности изображается в виде источника ЭДС с подключенным к нему последовательно пассивным элементом, который характеризует внутренние параметры источника и ограничивает мощность, отдаваемую во внешнюю электрическую цепь.
Графическое изображение источника постоянного тока показано на (рис. 10 а), а изображение источника переменного тока показано на (рис. 10 б). Вольтамперная характеристика (ВАХ) идеального источника тока показана на (рис. 10 в.)
Такая вольтамперная характеристика возможна только в том случае, если сопротивление внутренней структуры источника равно бесконечности.
На практике идеальных источников не существует
Источник
Источник тока — классификация и назначение
Источник тока — это устройство, которое преобразовывает разнообразные виды энергии в электричество. Условно можно разделить такие источники на физические и химические.
Источник тока и его история
Первые химические гальванические элементы и аккумуляторы появились в девятнадцатом веке (элементы Лекланше и батареи Вольта). Однако примерно до сороковых годов двадцатого века преимущества, который давал источник тока, фактически не использовались. Существовало всего несколько гальванических пар. Но уже буквально с середины сороковых годов, благодаря стремительному развитию радиоэлектроники, появились почти три десятка новых типов пар гальванических элементов. Теоретически же источник тока – это реализация свободной энергии практически любой химической реакции восстановителя и окислителя. Поэтому есть возможность реализовать более тысячи гальванических пар. Источник тока физический получил распространение в промышленности в начале шестидесятых годов прошлого века. Это обусловлено специфическими требованиями техники в производстве. К концу шестидесятых большинство технически развитых стран имели термогенераторы, термоэмиссионные генераторы и атомные батареи.
Источник тока и его основные характеристики
Технический прогресс стимулировал разработку источников электропитания, особенно автономных. Источник тока сегодня можно встретить в переносных осветительных приборах, радиоприемниках, магнитофонах, телевизорах, в медицинской аппаратуре, в автомобилях, самолетах, тракторах, в космических кораблях и во многих других вещах. Основными характеристиками и параметрами источников электроэнергии можно назвать: энергоемкость, удельную энергоемкость, мощность номинальную и удельную, КПД (коэффициент полезного действия), срок службы, надежность, частоту, способность к перегрузкам, напряжение, номинальный ток, стоимость.
Виды источников тока
В соответствии со способностью аккумулировать энергию химические источники делятся на первичные, резервные, вторичные и электрохимические генераторы. Существует также источник тока на полевом транзисторе. Следует рассмотреть каждый вид подробнее.
Источник тока первичный
Такие источники допускают только однократное использование химической энергии реагентов. Катод (положительный электрод) и анод (отрицательный электрод) разделены в жидком или же пастообразном состоянии электролитом. И катод, и анод имеют между собой гальваническую связь.
Источник тока вторичный
В подобных аккумуляторах или аккумуляторных батареях допускается многократное использование химической энергии, от сотен раз до десятков тысяч циклов. Электролит и электроды постоянно находятся в состоянии электрического контакта друг с другом. На сегодняшний день разработаны специфические условия хранения подобных батарей.
Источник тока резервный
Хотя резервные источники допускают только один цикл, электролит и электроды у них не связаны гальванически. Они сохраняются либо в жидком состоянии (в металлических или стеклянных ампулах), либо в жестком твердом.
Источник
Особенности источников тока
Время на чтение:
Существует несколько видов источников тока, различающиеся по природе происхождения энергии. Каждый из этих видов имеет свои индивидуальные особенности, в частности, принципы выработки электрической энергии, а также ее преобразование. Определить, какой тип элемента применяется, можно с помощью графического обозначения.
Что такое источники тока
Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.
Прибор для выработки тока
Различают идеальные и реальные устройства для выработки тока:
- Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
- Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.
Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный.
Виды источников
Существует несколько видов устройств для выработки тока, каждый из которых имеет свои основные показатели, характеристики и особенности, приведённые в следующей таблице:
Вид источника | Характеристики источника тока |
Механический | Специальное устройство (генератор) обеспечивает трансформацию механической энергии в электрическую. В настоящее время большое количество тока производится именно с помощью механических источников. |
Тепловой | В основу работы агрегатов заложен принцип переработки тепловой энергии в электрическую. Такое преобразование происходит благодаря разности температур контактирующих между собой полупроводников. В настоящее время разработаны источники тока, тепловая энергия в которых вырабатывается благодаря распаду радиоактивных элементов. |
Химический | Химические варианты можно условно разделить на 3 группы – гальванические, аккумуляторы и тепловые. |
· Гальванический элемент работает посредством взаимодействия 2-х разных металлов, помещенных в электролит.
· Аккумуляторы – устройства, которые можно несколько раз заряжать и разряжать. Существует несколько видов аккумуляторов с различными типами элементов, входящих в их состав.
Важно! Каждый вид имеет свои преимущества и недостатки, которые определяются принципом использования, а также исходными показателями вырабатываемой энергии.
Механические источники
Механические агрегаты являются самыми простыми по принципу их использования и обустройства. Характеристика таких генераторов очень проста для понимания. В специальных устройствах вырабатывается энергия, которая впоследствии преобразуется в электричество. Такие приборы используются на тепловых электростанциях и гидроэлектростанциях.
Механический
Тепловые источники
Тепловые варианты источников обеспечивают уникальный принцип работы. Энергия вырабатывается благодаря образованию термопары, которая. Это означает, что на концах проводников обеспечивается расчётная разность температур, элементы взаимодействуют между собой, создавая электрическое поле.
Тепловой
Обратите внимание! Радиоактивные термопары используют в космической промышленности. Эффективность такого использования возможна благодаря долгому сроку службы и эффективным показателям вырабатываемой мощности.
В результате подобного движения заряженных частиц от горячей части проводника к холодной возникает электроток. При этом, чем больше разница температур, тем выше показатель результативной энергии. На практике термопары нередко входят в состав измерительных приборов.
Световые источники
Световые устройства ля выработки электроэнергии считаются самыми экологичными, эффективными и относительно дешевыми. Специальная панель из полупроводников поглощает световые частицы, которые при таком взаимодействии выдают определенное напряжение.
Световой
При этом, световые панели имеют небольшой показатель КПД – 15 %. Панели такого типа нашли широкое применение – от бытовых приборов до инновационных разработок в космической отрасли.
Важно! Световые источники начали использоваться вместо литиевых батарей из-за высокой стоимости последних. Несмотря на то, что многие объекты промышленности требуют значительного переоснащения для перехода на световые источники, конечная экономия возникает уже на первичных этапах эксплуатации.
Химические источники
В данную группу входит 3 основных устройства, отличающиеся строением и принципом работы:
- Гальванический элемент – это вариант для выработки электроэнергии, который может быть использован один раз. То есть, после полной разрядки, повторное накопление заряда на внутреннем веществе невозможно. В состав таких приборов входят солевые, литиевые или щелочные батарейки.
- Аккумуляторы – подразделяются на несколько типов: свинцово-кислотные, литий-ионные, никель-кадмиевые.
- Тепловые элементы – используются в космической и инновационной промышленности для производства кратковременного тока с высокими показателями. Практическое применение агрегатов основано на потребностях в резервных источниках питания.
Важно! Химико-тепловые устройства требуют первоначального нагрева до 500–600 °С, чтобы активизировать твердый электролит.
В каждой сфере промышленности используется собственный вариант с конкретными параметрами. В бытовых условиях применяются, в основном, батарейки; в производственной – аккумуляторы.
Обозначение источников тока
Чтобы при выборе не возникало вопроса относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике существуют точные графические изображения, которые позволяют идентифицировать тип применяемого источника:
Обозначения
На каждой схеме условных обозначений можно увидеть следующие параметры:
- Общее обозначение источника тока и движущей силы ЭДС;
- Графическое изображение без ЭДС;
- Химический тип;
- Батарея;
- Постоянное напряжение;
- Переменное напряжение;
- Генератор.
Благодаря графическим идентификаторам на схеме электрической цепи всегда можно определить, какой именно тип используется в конкретной ситуации, и как правильно его обозначать. Существуют также международные обозначения, которые встречаются немного реже, обычно при реализации интернациональных проектов.
Принцип действия
Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:
- Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
- Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
- Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
- Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.
Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства.
Конструкция
Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:
- Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.
Аккумулятор
- Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.
Батарейка
- Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.
Механический принцип устройства
- Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.
Тепловое устройство
Важно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала.
Условия работы источников тока
Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.
В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.
Идеальный и реальный
Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.
Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.
Источники
Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.
Источник