Меню

Опыт эрстеда взаимодействие проводников с токами



Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Читайте также:  Сварочный ток для электрода 2мм

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Источник

3.3.2 Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током

Видеоурок: Магнитное поле, его свойства

Читайте также:  Аккумулятор отдает во внешнюю цепь мощность 10 вт при токе 4 а

Лекция: Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током

Опыт Эрстеда

Магнитные свойства некоторых веществ известны людям достаточно давно. Однако не столь давним открытием стало то, что магнитные и электрические природы веществ связанны между собой. Эту связь показал Эрстед, проводивший опыты с электрическим током. Совершенно случайно рядом с проводником, по которому бежал ток, находится магнит. Он достаточно резко менял свое направление в то время, когда ток бежал по проводам, и становился в исходное положение, когда ключ схемы был разомкнут.

С данного опыта был сделан вывод, что вокруг проводника, по которому бежит ток, образуется магнитное поле. То есть можно сделать вывод: электрическое поле вызывается всеми зарядами, а магнитное — только вокруг зарядов, которые имеют направленное движение.

Магнитное поле проводника

Если рассматривать поперечное сечение проводника с током, то его магнитные линии будут иметь окружности различного диаметра вокруг проводника.

Чтобы определить направление тока или линий магнитного поля вокруг проводника, следует воспользоваться правилом правого винта:

Если правой рукой обхватить проводник и направить большой палец вдоль него по направлению тока, то согнутые пальцы покажут направление линий магнитного поля.

Силовой характеристикой магнитного поля является магнитная индукция. Иногда линии магнитного поля называют линиями индукции.

Индукция обозначается и измеряется следующим образом: [В] = 1 Тл.

Как Вы можете вспомнить, для силовой характеристики электрического поля был справедлив принцип суперпозиций, то же самое можно сказать и для магнитного поля. То есть результирующая индукция поля равна сумме векторов индукции в каждой точке.

Виток с током

Как известно, проводники могут иметь различную форму, в том числе состоять из нескольких витков. Вокруг такого проводника также образуется магнитное поле. Для его определения следует воспользоваться правилом Буравчика:

Если рукой обхватить витки так, чтобы 4 согнутых пальца их обхватывали, то большой палец покажет направление магнитного поля.

Источник

Опыт эрстеда взаимодействие проводников с токами

Тема конспекта: Опыт Эрстеда. Магнитное поле прямого проводника с током. Линии магнитной индукции. Электромагнит.

Опыты Эрстеда

Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока. При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Линии магнитной индукции

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией . Обозначается магнитная индукция буквой В. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика . Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

правило буравчика

Электромагнит

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока. В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Опыты Эрстеда. Магнитное поле

Конспект урока «Опыты Эрстеда. Магнитное поле. Электромагнит».

Источник

В опыте эрстеда наблюдают взаимодействие проводников с током

Опыт Эрстеда. Описание и суть опыта

Опыт Эрстеда устанавливает связь между электрическими и магнитными явлениями. О существовании такой связи догадывались еще первые исследователи, которых поражала аналогия электрических и магнитных явлений. Например, притягивание и отталкивание. В электростатике разноименных и одноименных зарядов. В магнетизме разноименных и одноименных полюсов.

Основным затруднение для проведения опытов связывающих эти два явления было отсутствие источника, который мог бы продолжительное время обеспечивать электрический ток. Но, тем не менее, уже даже с лейденской банкой проводились опыты, например по намагничиванию иглы.

Кардинально же все изменилось после опытов Вольта. С появлением батареи Вольта появилась возможность проводить подобные опыты. Но, тем не менее, потребовалось достаточно длительное время с момента появления батарее до открытия связи между электрическими и магнитными явлениями. Причиной тому был классический Ньютоновский взгляд на происходящие процессы.

Первым же кто провел успешный опыт, это был Эрстед. В его опыте использовалась металлическая проволока, натянутая между двух стоек. Под проволокой располагалась магнитная стрелка таким образом, что она выравнивалась по магнитному полю земли. То есть она смотрела с севера на юг. К проволоке через ключ был подключен источник тока. Изначально ток в цепи отсутствовал. А проволока располагалась параллельно стрелке.

Читайте также:  Максимальный выходной ток ардуино

Опыт заключался в том, что при включении тока в цепи магнитная стрелка поворачивалась на угол 90 градусов, то есть перпендикулярно проволоке. При этом она совершала несколько колебаний и успокаивалась в таком положении. При отключении тока магнитная стрелка вновь возвращалась в исходное положение. То есть, выравниваясь вдоль поля земли.

После того как Эрстед опубликовал статью с результатами своего опыта все известные ученые того времени начали заниматься данной проблемой. После этого, появилось много открытий. Например, Фарадей выдвинул теорию о силовых линиях магнитного поля. Или был получен известный закон Био Савара Лапласа. Названный в честь трех учёных участвовавших в его открытии.
Опыт Эрстеда также можно организовать, не используя лабораторное оборудование. Для него можно использовать высокий стакан с водой широкую чашку с раствором соли в воде. Берем иглу, намагничиваем ее с помощью постоянного магнита, смазываем жиром и опускаем на поверхность воды в стакане, не нарушая при этом поверхностного слоя. Таки образом получаем магнитную стрелку.

Теперь необходимо обеспечить проводник с током. Его роль будет выполнять чайная ложка, которую нужно положить на стакан с водой. Далее необходимо соорудить источник тока. Для этого возьмем немного угля завернем в тряпку и присоединим все это к ручке вилки. Которую опустим концом, на котором уголь, в чашку с соленой водой. А другим концом положим на чайную ложку.

В качестве второго электрода будет выступать цинковая пластина, опущенная в чашу с соленой водой одним концом, а вторым концом она должна ложиться на чайную ложку.

В результате всех этих манипуляций будем наблюдать поворачивание иглы то в направлении поля земли то под действием поля “чайной ложки”. Если будем размыкать и замыкать импровизированную цепь.

В опыте эрстеда наблюдают взаимодействие проводников с током

Тема конспекта: Опыт Эрстеда. Магнитное поле прямого проводника с током. Линии магнитной индукции. Электромагнит.

Опыты Эрстеда

Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока. При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Линии магнитной индукции

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией . Обозначается магнитная индукция буквой В. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика . Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

правило буравчика

Электромагнит

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока. В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Опыты Эрстеда. Магнитное поле

Конспект урока «Опыты Эрстеда. Магнитное поле. Электромагнит».

Опыт Эрстеда

Опыт Эрстеда — классический опыт, проведённый в 1820 году Эрстедом и являющийся первым экспериментальным доказательством воздействия электрических токов на магниты [1] .

Содержание

Суть опыта

Ганс Христиан Эрстед помещал над магнитной стрелкой прямолинейный металлический проводник, направленный параллельно стрелке. При пропускании через проводник электрического тока стрелка поворачивалась почти перпендикулярно проводнику. При изменении направления тока стрелка разворачивалась на 180°. Аналогичный разворот наблюдался, если провод переносился на другую сторону, располагаясь не над, а под стрелкой.

Принято считать, что это открытие было совершенно случайно: профессор Эрстед демонстрировал студентам опыт по тепловому воздействию электрического тока, при этом на экспериментальном столе находилась также и магнитная стрелка. Один из студентов обратил внимание профессора на то, что в момент замыкания электрической цепи стрелка немного отклонялась. Позднее Эрстед повторил опыт с более мощными батареями, усилив тем самым эффект. При этом сам он в своих поздних работах опровергал случайный характер открытия: «Все присутствующие в аудитории — свидетели того, что я заранее объявил о результате эксперимента. Открытие, таким образом, не было случайностью…» [2] .

Объяснение опыта

Согласно современным представлениям, при протекании через прямолинейный проводник электрического тока в пространстве вокруг него возникает магнитное поле, силовые линии которого представляют собой окружности с центром на оси проводника. При этом величина магнитного поля пропорциональна силе тока, текущего в проводнике, и обратно пропорциональна расстоянию до проводника [3] :

Источник