Меню

Оптопара с минимальным током



Убедитесь в правильном выборе тока светодиода вашего оптоизолятора

Texas Instruments TL431 UCC2897A

Brian King, Texas Instruments

В изолированных источниках питания для передачи сигнала обратной связи через изолирующий барьер используются оптроны. Внутри оптрона размещаются светодиод и фотодетектор. Ток, идущий через светодиод, приводит к появлению пропорционального тока в фотодетекторе. Коэффициент передачи тока (current transfer ratio – CTR) определяется как отношение токов фотодетектора и светодиода и обычно имеет очень большой разброс. Конструируя цепь изолированной обратной связи, необходимо учитывать разброс параметров оптоизолятора и всех других компонентов, определяющих большой коэффициент усиления сигнала. Пренебрежение этой задачей может легко привести к возврату после запуска вашего продукта в массовое производство.

Наиболее распространенная схема изолированной цепи обратной связи показана на Рисунке 1. Микросхема TL431 содержит усилитель ошибки и источник опорного напряжения. Выходное напряжение устанавливается резистивным делителем R3, R5 и внутренним опорным источником микросхемы TL431. Изменяя напряжение на входе обратной связи контроллера ШИМ, цепь обратной связи управляет мощностью, поступающей на выход источника питания. При смещении VOUT вверх катод TL431 отдает оптоизолятору больше тока, и напряжение обратной связи VFB становится ниже. Когда VOUT смещается вниз, катодный ток TL431 уменьшается, и напряжение обратной связи увеличивается.

Рисунок 1. Такая схема формирования сигнала обратной связи чаще
всего используется в изолированных источниках питания.

Правильно сконструированная схема должна быть способна гарантированно управлять входом обратной связи контроллера во всем рабочем динамическом диапазоне при наихудшем сочетании возможных допусков и разбросов параметров всех главных компонентов.

Первым делом необходимо определить рабочий динамический диапазон напряжения на выводе обратной связи контроллера. Все контроллеры отличаются друг от друга, поэтому в каждом случае потребуется обращение к справочной документации. В качестве примера предположим, что для управления прямоходовым преобразователем с активным ограничением мы используем микросхему ШИМ-контроллера UCC2897A. Глядя в раздел «Подробное описание выводов» технического описания UCC2897A, мы видим, что при напряжении 2.5 В на входе обратной связи коэффициент заполнения ШИМ равен нулю, а при напряжении 4.5 В коэффициент заполнения максимален. UCC2897A содержит также источник опорного напряжения 5 В (вывод VREF), к которому можно подключить нагрузочный резистор R6 фототранзистора оптрона, изображенного на Рисунке 1. Минимальное значение опорного напряжения равно 4.75 В, а максимальное – 5.25 В. Рассчитать требуемый диапазон токов транзистора оптрона, в предположении, что сопротивление резистора R6 равно 1 кОм ±1%, можно с помощью формул (1) и (2):

(1)
(2)

Из этих расчетов следует, что схема должна быть способна пропускать через R6 ток от 0.25 мА до 2.78 мА. При выборе соответствующего сопротивления резистора R2 напряжение на катоде TL431 может достигать достаточно высокого уровня, при котором поступление тока в светодиод прекратится. Таким образом, минимальный ток R6 гарантируется конструкцией схемы, и остается побеспокоиться о том, как обеспечить максимальный ток R6.

Рисунок 2. Зависимость CTR оптоизолятора от температуры.

На втором шаге необходимо рассчитать CTR оптрона для наихудшего случая. Оптроны с цифрами «817» в обозначении типа предлагаются многими производителями. Все они совместимы друг с другом по выводам и отличаются только префиксами. В Таблице 1 в качестве примера приведены диапазоны CTR для различных групп оптронов 817, маркируемых однобуквенными суффиксами в конце обозначения. Приведенные в таблице данные справедливы при температуре 25 °C для прямого тока светодиода 5 мА. Показанные на Рисунках 2 и 3 графики зависимостей CTR от окружающей температуры и тока светодиода взяты из справочной документации.

Рисунок 3. Зависимость CTR оптоизолятора
от тока светодиода.

Предположим, что ваш источник питания должен работать в диапазоне температур от –40 °C до 85 °C. На основании Рисунка 2 определяем, что для температуры 85 °C минимальное значение CTR нужно умножить приблизительно на 0.7. Если вы выбрали оптрон 817 группы «A», минимальное значение CTR теперь будет равно всего 56%. Деление результата, полученного из формулы (1), на 0.56 показывает, что без учета зависимости CTR от тока, максимальный ток, который может потребоваться светодиоду, составляет, по крайней мере, 4.96 мА. Впрочем, как видно из Рисунка 3, пологий характер графика при 4.96 мА позволяет этой зависимостью пренебречь.

Читайте также:  Чем защититься от электрического тока

Третий, и последний шаг – выбор такого значения сопротивления R1, чтобы тока TL431 при любых условиях хватало для управления оптроном. Минимальное напряжение на катоде TL431 равно 2.5 В, а прямое падение напряжения на светодиоде оптрона может достигать 1 В. Используя эти параметры, рассчитаем максимальное значение R1 с помощью формулы (3):

При использовании резистора R1 с сопротивлением более 1.7 кОм выходного тока TL431 для поддержания режима стабилизации может оказаться недостаточно. Тогда выходное напряжение будет продолжать рост до тех пор, пока светодиод оптрона не получит необходимое количество тока. Это приведет к перенапряжению на выходе, и, скорее всего, произойдет при более высоких температурах.

Проблемы разброса параметров часто упускают из виду на этапе проектирования. Источники питания из опытной партии легко могут пройти выходной контроль, а неприятности возникнут позже, когда потребители начнут возвращать продукцию. Следуя описанной здесь простой процедуре расчета, вы можете сэкономить деньги своей компании и не огорчить ее клиентов.

Материалы по теме

  1. Datasheet Texas Instruments TL431
  2. Datasheet Texas Instruments UCC2897A
  3. Datasheet Sharp Microelectronics PC817
  4. Datasheet Everlight EL817

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Оптопара с минимальным током

Изображение
Вопрос 1: Как узнать при каком напряжении (или токе) на входе сработает выходной ключ?

Вопрос 2: Как добиться того, чтобы при входном напряжении от 0 до 24В граница переключения была около 10В? Желательно без компаратора.

оптрон это линейное (если быть точным не очень линейное) устройство — мало тока подал в светодиод -он немного откроется, побольше поддать — откроется полностью. так же это зависит от тока в транзисторе. так что читайте даташиты.

а так то — при 5 ма тока через диод и 10 кОм нагрузки в коллекторе транзистора — он должен полность открыться _получится лог 0. на выходе

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Цитата откуда-то из интернета:

Надо полагать, что нелинейность эта относительная, т.е. для аналогового сигнала не подходит, но для цифрового не должно доставлять неприятностей?

Читаю даташит на PC817 и в упор не вижу, зависимости выхода от входа.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Продуктовые линейки Connfly и KLS на складе Компэл включают в себя решения для батареек различных типоразмеров (от CR1220 до CR2477) для выводного или поверхностного монтажа. Независимо от способа установки, держатели батареек, среди прочего, имеют ряд особенностей.

Fig 4 Fig 5 если не ошибаюсь.

ploop, точно — целую минуту подбирал термин, и не нашел ничего лучшего )

Приглашаем 20 мая на вебинар, посвященный линейке поставок компании MEAN WELL и ее подходу к производству источников питания — как экосистемы продукции и услуг, которая позволяет подобрать оптимальный источник питания для любых задач электропитания. Рассмотрим весь спектр выпускаемой продукции MEAN WELL в области AC/DC-, DC/DC- и DC/AC-преобразователей с подробным разбором интересных и уникальных новинок, их применении и многое другое.

Фиг 5 — это зависимость напряжения от тока светодиода для разных температур.
Фиг 4 — это зависимость коэффициента усиления по току от тока светодиода.

Вот и поди знай что в данном случае есть коэффициент усиления по току.

koyodza, спасибо за разъяснения. Наверное такой разброс CTR обусловлен низкой ценой этого оптрона.

TL431:

. здесь было написано слишком очевидное.
Изображение

ПРИСТ расширяет ассортимент

Не совсем. Вообще-то это целая микросхема, которая ведёт себя как стабилитрон на 2,5В, если замкнуть вход управления с катодом.
Когда на управляющем входе напряжение относительно анода больше чем 2,5В, управляемый стабилитрон открыт и течет ток по цепи анод-катод, когда меньше — закрыт и ток не течет. Часто используется в линейном режиме, когда есть ООС прямо с катода или с выхода схемы, в которой он применяется, но Вам нужен именно пороговый режим.
Для этого нужно собрать примерно такую схему, номиналы указаны для порогового напряжения 10В, максимального входного напряжения 30В, CTRmin=50%, напряжения в цепи нагрузки 24В и сопротивления нагрузки 10кОм
Для других исходных значений нужно пересчитать номиналы.

Читайте также:  Метод электролечения с использованием различных импульсных токов для измерения в лечебных целях

Для «спасибов» тут есть кнопочки + и — под надписью «Рейтинг сообщения» в каждом сообщении, не ленитесь их нажимать

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 15

Источник

Разгоняем оптрон до сотни

Если поискать в интернете схемы подключения оптронов, то можно обнаружить, что в подавляющем большинстве случаев предлагается просто добавить резистор. Это самая простая схема, она же и самая медленная. Когда скорость реакции не устраивает, предлагается ставить более быстрый оптрон, но, во-первых, быстрые оптроны — это дорого, и во-вторых, почему бы не разогнать быстрый оптрон до ещё большей скорости?

Итак, в чём основная проблема передачи сигнала через оптопару? Обычно в оптопаре на выходе стоит биполярный транзистор, а все биполярные транзисторы страдают такой проблемой как ёмкость переходов. Основную проблему создаёт ёмкость между коллектором и базой, во время переходных процессов именно она мешает транзистору быстро открываться и закрываться. Это явление называется эффект Миллера. Ещё во времена ламповых приёмников придумали, как с ним бороться. Основная идея в том, чтобы напряжение между базой и коллектором не менялось, в таком случае не придётся тратить время на перезарядку паразитной ёмкости.

Для примера давайте сравним, как ведёт себя оптрон при обычном включении и при включении с постоянным напряжением. В первом случае ёмкость заряжается так медленно, что выходной сигнал болтается где-то возле середины.

А теперь модельное включение, которое должно показать предельно достижимое время реакции.

Такой сигнал (красный график) выглядит намного приятнее, фронты уменьшились до 0.1 мкс. В исходном они были где-то 2-3 мкс, то есть ускорение примерно в 20-30 раз. Теперь возникает вопрос, как этим воспользоваться на практике, снять сигнал с оптрона, не меняя напряжения. И первый способ — это каскодное включение (зелёный график).

Уже неплохо, со 100 кБит/с разогнались до 1 Мбит/с, но всё ещё не идеально. Если добавить ещё один резистор, то можно построить дифференциальный усилитель.

Немного Титце и Шенка, и пожалуйста, графики практически совпали, 3 мкс превратились в 100 нс.

Ура, всё работает, расходимся? Нет, нужно больше золота, так что переходим ко второй части. Сейчас мы боролись с выходной ёмкостью, но есть ещё входная ёмкость, и для неё так же существуют стандартные схемотехнические методы. Почему бы, например, не включить на вход конденсатор, чтобы он быстрее заряжал ёмкость светодиода.

Как видите, для нарастающего фронта это оказалось серебряной пулей. Теперь надо разогнать спадающий фронт, и здесь возникает проблема. У нас ведь однополярное питание, а для разряда светодиода нужно отрицательное напряжение. Поэтому следующим шагом будет схема со сдвигом уровня (не знаю, есть ли тут общепринятое название). Ставим на выходе компаратор, который сравнивает ток через оптрон. Его можно собрать из пары токовых зеркал, подобный входной каскад повсеместно ставится в ОУ и компараторах.

Пары транзисторов продаются в одном корпусе, так что должно получиться довольно компактно. Вторая серебряная пуля готова, однако можно заметить, что спадающий фронт немного отстаёт. И наконец мы пришли к золоту: вместо самодельного компаратора ставим промышленный. Вот они, фронты 10 нс.

Можно поднять входную частоту до 100 МГц и посмотреть, что там в итоге получилось.

В принципе неплохо, можно в продакшен, правда здесь возникает другая проблема — такие компараторы дорогие.

Источник

Оптопара принцип работы, оптроны принцип работы

Что такое оптопара – электронно-оптический аппарат (прибор), в котором присутствуют источник светового излучения и приемник того же излучения – фотоприемник, которые в свою очередь связаны конструктивно электрическими и оптическими связями.

В практическом применении наибольшего распространения нашли оптроны (в последнее время приобрели название оптопары), в которых нет электрических связей между приемником и излучателем, а есть только оптическая связь. По сложности составляющих структурных схем в оптронных изделиях различают 2 группы приборов:

  • Оптопара – полупроводниковый оптическо-электронный прибор, в котором оптическая связь обеспечивает изоляцию входа и выхода излучающего и принимающего элементов.
  • Электронно-оптическая микросхема, которая состоит из определенного количества оптопар и так называемых усилителей, которые имеют электрическое соединение с элементами оптронов.
Читайте также:  Трансформатор тока для человека

Общий вид оптопары в герметичном корпусе
Рисунок 1 – Общий вид оптопары в герметичном корпусе

Принцип работы оптопары

Основное предназначение оптопары заключается в развязке сигнальных цепей гальваническим методом.

Принцип действия оптопары для всех видов фотоприемников и излучательных элементов практически одинаковый и состоит в следующем: формируемый электрический сигнал на входе в излучатель, трансформируется в поток света, который далее принимается фотоэлементом и меняет проводимость последнего – меняя его сопротивление.

Другими словами принцип действия оптрона заключается в двойном трансформировании энергии.

Как работают оптронные устройства

Рассмотрим работу двух видов оптронных устройств: оптическо-электронное и оптическое.

Работа оптическо-электронного аппарата основывается на превращении энергии света в электрическую. Переход энергии происходит при помощи твердого тела и процессов электрических фотоэффектов и сияния («горения», «свечения») при воздействии электрического поля.

Эффект фотоэлектричества означает, что твердое тело может излучать электроны под действием фотонов.

Функционирование оптического устройства происходит при тесном взаимодействии электромагнитного испускания и твердого тела.

Схемы работы оптопар

Применение оптопар (оптронов) позволяет решать множество задач, в частности контроль значений параметров от различных датчиков – уровень, влажность, концентрация и т.д); использование в устройствах автоматики и релейных защит электрооборудования; в диагностических аппаратах. В тех или иных случаях схемы включения оптопар отличны друг от друга.

В качестве примера приведем несколько линейных схем:

Линейная развязка аналогового сигнала с помощью оптронов
Рисунок 2 – Линейная развязка аналогового сигнала с помощью оптронов: 01- оптопары; У1, У2 — усилители

Передача аналоговых сигналов осуществляется по развязанной гальванически цепи с использованием двух одинаковых оптронов, один из которых предназначен осуществляет обратную связь.

Развязка между блоков
Рисунок 3 – Развязка между блоков U1- оптопара; VT1 – транзистор; R2 – сопротивление

Часто применяется в радиотехнике. Выходной сигнал Блока 1 подается на Блок 2 посредством оптопары-диода. В случае использования в Блоке 2 микросхемы с небольшим током на входе, то усилитель не требуется и оптопара-диод работает в фотогенерирующем режиме.

Реле оптоэлектронное
Рисунок 4 – Реле оптоэлектронное

Сигналы от фотоприемника оптопары удобно и практично использовать на воздействие исполнительных механизмов опять же через гальваническую развязку (к примеру: включение света, электродвигателе и другого оборудования).

На рисунке 4 изображена схема полупроводникового разомкнутого реле. Коммутация тока происходит в реле. Транзистор оптопары принимает фотосигнал и открывает VT1, VT2 транзисторы, далее включается нагрузка.

Устройство оптронов

В качестве излучателя используется светодиод, который размещается сверху в металлическом корпусе. В нижней части расположен фотоприемник (кремниевый кристалл). Свободное пространство заполняется затвердевающей массой, которая полностью прозрачна. Последняя покрыта отражателем для направления лучей, чтобы не рассеивались лучи за пределы зоны приемника.

Как правило, вывода оптронов заливаются жидким стеклом. Верхняя и нижняя часть крышки корпуса соединяются при помощи сварки.

Оптрон-резистор практически не отличается от вышеописанной конструкции. В нем используется в качестве излучателя лампа накала, а приемник выполнен из кадмия селенистого.

Применение оптопар

На сегодняшнее время оптопары очень хорошо изучены и широко распространены в различных сферах деятельности. Особое место применения оптронов в схемах для логического согласования различных блоков, которые содержат элементы с исполнительными органами.

Как уже было сказано, ранее оптроны применяются для гальванической развязки в цепях с отличными блоками, преобразования и модуляции импульсов для управления аппаратами, контроля и управления, сигнализации и защиты электрического оборудования и процессов (счетчики, коммутаторы, реле, электрические измерительные устройства).

Достоинства и недостатки оптопар

К основным достоинствам оптронов относится следующее:

  • управление различного рода объектами осуществляется бесконтактно;
  • разнообразие и гибкость управления;
  • абсолютная невосприимчивость и независимость от посторонних электромагнитных волн, что не создает дополнительных помех в работе;
  • возможность использования, как импульса, так и постоянного сигнала;
  • возможность изменения выходного сигнала за счет воздействия на вещество оптоканала (из этого следует возможность использования датчиков различных типов);
  • конструктивная и физическая совместимость с иными электронными и полупроводниковыми аппаратами и приборами;
  • с точки зрения пропускания оптопары, то в низких частотах нет ограничений.

К недостаткам оптронов относятся:

  • достаточно на высоком уровне потребляемая мощность, вызванная двойной трансформацией энергии (электрический ток – световой поток – электрический ток;
  • сравнительно невысокий КПД переходных процессов;
  • снижение качества параметров в процессе длительного времени;
  • высокий уровень шумовых характеристик;
  • достаточно сложно реализовать обратную связь из-за разностью выходных и входных схем.

Источник