- Что такое самоиндукция?
- Определение
- Формулы
- Индуктивность
- Примеры использования на практике
- Видео в помощь
- Опишите явление самоиндукции при замыкании цепи постоянного тока с катушкой
- Кто знает. как проявляется явление самоиндукции при замыкании электрической цепи
- Самоиндукция. Индуктивность. Токи замыкания и размыкания.
- Токи замыкания и размыкания.
Что такое самоиндукция?
Явление электромагнитной индукции очень часто наблюдается в электротехнике. Взаимное влияние электрических и магнитных полей иногда приводит к интересным результатам. Самоиндукция – частный случай электромагнитной индукции.
Общеизвестно, что причиной порождения электрического тока является переменное магнитное поле. Именно этот принцип реализован в конструкциях современных генераторов. Природа самоиндукции также связана с электромагнетизмом, но это явление проявляется она по-другому.
Определение
Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.
Рис. 1. Магнитное поле катушки
Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.
Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.
Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.
Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.
Рис. 2. Явление самоиндукции
Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.
Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).
Рис. 3. Схема опыта с лампочками
Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.
На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.
График на рисунке 4 красноречиво объясняет эффект задержки.
Рис. 4. Иллюстрация задержки изменения тока в цепи индуктивности
Обратите внимание на нелинейность изменения силы тока по времени.
Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.
Рис. 5. Возникновение самоиндукции
Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.
В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.
Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.
Формулы
Собственный магнитный поток контура (Ф) связан прямо пропорциональной зависимостью с индуктивностью (L) этого контура и величиной тока в нём (i). Данная зависимость выражается формулой: Ф = L×i. Коэффициент пропорциональности L принято называть коэффициентом самоиндукции или же просто индуктивностью контура.
При этом индуктивность контура пребывает в зависимости от его геометрии, площади плоскости ограниченной витком и магнитной проницаемости окружающей среды. Но этот коэффициент не зависит от силы тока в контуре. Если же форма, линейные размеры и магнитная проницаемость не изменяются, то для определения величины индуктивной ЭДС применяется формула:
где Eсамоинд. – ЭДС самоиндукции, Δi – изменение силы тока за время Δt.
Индуктивность
Выше мы отметили, что индуктивность контура зависит от его геометрии и размеров, а также от магнитной проницаемости среды. Если речь идёт о катушке, то эти утверждения справедливы и для неё. На индуктивность катушки влияет её диаметр и количество витков. Индуктивность существенно повышается, если в катушку добавить ферромагнитный сердечник.
Магнитные поля отдельных витков катушки складываются. Если витков достаточно много, то ток, протекающий через катушку, образует вокруг неё сильное магнитное поле, реагирующее на изменения электрического поля. Индуктивность является той величиной, которая характеризует то, насколько сильно проводник, из которого состоят витки, противодействует электрическому току.
Чем больше индуктивность катушки и чем выше скорость прерывания её цепи, тем больший всплеск ЭДС произойдёт в цепи. При этом полярность вихревых токов на выводах катушки противоположна направлению тока источника питания.
Индуктивность (то есть коэффициент пропорциональности) является важной характеристикой катушек, дросселей и других контурных элементов. Этот параметр можно сравнить с ёмкостью конденсаторов. Тем более что действие катушки индуктивности и конденсатора в электрических цепях очень похожи. RL и RC цепочки часто используют для сглаживания всплесков напряжений в различных фильтрах.
Единицей измерения индуктивности в международной системе СИ является генри. Величина размеров в 1 Гн – это такая индуктивность, при которой ЭДС составляет 1 В, при скорости изменения тока на 1 А за секунду.
Индуктивность определяет количество энергии, выделяющейся в результате действия собственного магнитного поля при самоиндукции. Эту энергию легко рассчитать по формуле: Wм = LI 2 /2.
Собственная энергия катушки численно равна работе, которую необходимо выполнить источником питания при преодолении ЭДС самоиндукции.
Важно знать, что в результате резкого разрыва цепи с большой индуктивностью, энергия высвобождается в виде искры или даже с образованием дугового разряда.
Примеры использования на практике
Явление самоиндукции нашло широкое практическое применение. Автолюбители прекрасно знают, что такое катушка зажигания. Без неё карбюраторный двигатель не запустится.
Работает этот важный узел следующим образом:
- На катушку с большой индуктивностью подаётся бортовое напряжение 12 В.
- Электрическая цепь резко обрывается специальным прерывателем.
- Накопленная энергия самоиндукции поступает по высоковольтным проводам на свечу и образует на её электродах мощную искру.
- Искровой разряд зажигает топливную смесь, приводя в движение поршень.
В современных автомобилях разрыв цепи выполняет электроника, но суть от этого не меняется – для образования искры по-прежнему используется энергия самоиндукции.
Мы уже упоминали о сетевых фильтрах, в которых используется явление самоиндукции. RL цепочка реагирует на любое изменение параметров. При его возрастании она задерживает во времени пиковые скачки и заполняет собственными вихревыми токами провалы. Таким образом, происходит сглаживание напряжения в электрически цепях.
В блоках питания электронной аппаратуры таким же способом убирают:
- шумы:
- пульсации;
- нежелательные частоты.
Самоиндукция дросселей используется в люминесцентных лампах для розжига электродов. После срабатывания стартера происходит разрыв контактов, в результате чего в дросселе наводится ЭДС самоиндукции. Энергия дросселя разжигает дугу на электродах, и люминесцентная лампа начинает светиться.
Перечисленные примеры демонстрируют полезное применение самоиндукции. Однако, как это всегда бывает, индуктивная ЭДС может наносить вред. При разъединении контактов выключателей, нагрузкой которых являются цепи с большой индуктивностью, возможны дуговые разряды. Они разрушают контакты, замедляют время защиты и т.п. С целью снижения риска от негативных влияний самоиндукции автоматические выключатели оборудуют дугогасительными камерами.
В таких случаях приходится принимать меры для нейтрализации энергии ЭДС самоиндукции. Ещё большая потребность в рассеянии энергии самоиндукции возникает в полупроводниковых ключах, чувствительных к пробоям.
В промышленности и энергетике самоиндукция является серьёзной проблемой. При отключении нагруженных линий ЭДС самоиндукции может достигать опасных для жизни величин. Это требует дополнительных затрат на принятие мер предосторожности. В частности, необходимо устанавливать на линиях устройства, препятствующие молниеносному размыканию цепи.
Видео в помощь
Источник
Опишите явление самоиндукции при замыкании цепи постоянного тока с катушкой
Физика
Электродинамика
Магнитное поле
Механические колебания
Электромагнитные колебания
Механические волны
Электромагнитные волны
Оптика
Геометрическая оптика
Задачи на сферическое зеркало
Линза
Волновая оптика
Основы теории относительности
Основы квантовой физики
Излучения и спектры
Световые кванты
Атомная физика
Ядерная физика
Физика элементарных частиц
Открытие позитрона. Античастицы
Современная физическая картина мира
Современная физическая картина мира
Строение Вселенной
Строение Вселенной
Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд
Наша галактика и другие галактики
Пространственные масштабы наблюдаемой Вселенной
Применимость законов физики для объяснения природы космических объектов
«Красное смещение» в спектрах галактик
Современные взгляды на строение и эволюцию Вселенной
Наблюдение солнечных пятен, звёздных скоплений, туманностей и галактик
Источник
Кто знает. как проявляется явление самоиндукции при замыкании электрической цепи
Каждый проводник, по которому протекает эл. ток, находится в собственном магнитном поле.
При изменении силы тока в проводнике меняется м. поле, т. е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл. поля и в цепи появляется ЭДС индукции.
Это явление называется самоиндукцией.
Самоиндукция — явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции
Проявление явления самоиндукции
При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т. е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи ( вихревое поле тормозит электроны) .
В результате Л1 загорается позже, чем Л2.
При размыкании эл. цепи ток убывает, возникает уменьшение м. потока в катушке, возникает вихревое эл. поле, направленное как ток ( стремящееся сохранить прежнюю силу тока) , т. е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.
в электротехнике явление самоиндукции проявляется при замыкании цепи (эл. ток нарастает постепенно) и при размыкании цепи (эл. ток пропадает не сразу) .
От чего зависит ЭДС самоиндукции?
Эл. ток создает собственное магнитное поле . Магнитный поток через контур пропорционален индукции магнитного поля (Ф
B), индукция пропорциональна силе тока в проводнике
(B
I), следовательно магнитный поток пропорционален силе тока (Ф
I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл. цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.
Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:
где Ф — магнитный поток через контур, I — сила тока в контуре.
Единицы измерения индуктивности в системе СИ:
Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
( возможен сердечник) .
ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.
ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА
Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.
Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.
Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется ( при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)
Источник
Самоиндукция. Индуктивность. Токи замыкания и размыкания.
Индуктивность, либо коэффициент самоиндукции (от лат. indactio — наведение, возбуждение) — является параметром электрической цепи, определяющий ЭДС самоиндукции, которая наводитсяв цепи при изменении протекающего по ней тока либо (и) ее деформации.
Термином «индуктивность» обозначают еще и катушку самоиндукции, определяющую индуктивные свойства цепи.
Самоиндукция — образование ЭДС индукции в проводящем контуре при изменении в нем силы тока. Самоиндукция была открыта в 1832 году американским ученым Дж. Генри. Независимо от него в 1835 году это явление открыл М. Фарадей.
ЭДС индукции образуется при изменении магнитного потока. Если это изменение вызывается собственным током, то говорят об ЭДС самоиндукции:
.
где L — индуктивность контура, либо его коэффициент самоиндукции.
Индуктивность — является физической величиной, численно равной ЭДС самоиндукции, которая возникает в контуре с изменением силы тока на 1 А за 1 секунду.
Индуктивность, как и электроемкость, зависима от геометрии проводника — его размеров и формы, но не зависима от силы тока в проводнике. Таким образом, индуктивность прямого провода намного меньше индуктивности того же провода, свернутого в спираль.
Расчеты показывают, что индуктивность описанного выше соленоида в воздухе вычисляют по формуле:
.
где μ— магнитная постоянная, N — количество витков соленоида, l — длина соленоида, S — площадь поперечного сечения.
Также, индуктивность зависит от магнитных свойств среды, в которой находится проводник, а именно от его магнитной проницаемости, определяющаяся при помощи формулы:
.
где L — индуктивность контура в вакууме, L — индуктивность контура в однородном веществе, которое заполняет магнитное поле.
Единица индуктивности в СИ — генри (Гн): 1 Гн = 1 В · с/А.
Токи замыкания и размыкания.
При каждом включении и выключении тока в цепи наблюдаются так называемые экстратоки самоиндукции (экстратоки замыкания и размыкания), которые возникают в цепи из-за явления самоиндукции и которые препятствуют, согласно правилу Ленца, нарастанию или убыванию тока в цепи.
На рисунке выше показана схема соединения 2х одинаковых ламп. Одна из них подключена к источнику через резистор R, а другая — последовательно соединена с катушкой L с железным сердечником. При замыкании цепи первая лампа вспыхивает почти мгновенно, а вторая — с существенным опозданием. Это вызвано тем, что ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения.
При размыкании ключа в катушке L образуется ЭДС самоиндукции, которая поддерживает первоначальный ток.
В итоге в момент размыкания через гальванометр течет ток (светлая стрелка), который направлен против начального тока до размыкания (черная стрелка). При этом ЭДС самоиндукции может быть намного больше ЭДС батареи элементов, что будет проявляться в том, что экстраток размыкания будет сильно превышать стационарный ток при замкнутом ключе.
Индуктивность характеризует инерционность цепи по отношению к изменению в ней тока, и ее можно рассматривать как электродинамический аналог массы тела в механике, являющейся мерой инертности тела. При этом ток I играет роль скорости тела.
Источник