- Операционный усилитель
- Что такое операционный усилитель
- Обозначение на схеме операционного усилителя
- Питание операционных усилителей
- Идеальная и реальная модель операционного усилителя
- Принцип работы операционного усилителя
- Что будет на выходе ОУ, если на обоих входах будет ноль вольт?
- Скорость нарастания выходного напряжения
- Как контролировать ток с помощью операционного усилителя, биполярного транзистора и трех резисторов
- Зачем?
- Схема
- Что именно делает PNP транзистор?
- Эффективность
- Заключение
- 1.6. Параметры операционных усилителей
- Схемы стабилизаторов напряжения и тока
Операционный усилитель
Что такое операционный усилитель
Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.
Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!
Обозначение на схеме операционного усилителя
На схемах операционный усилитель обозначается вот так:
Чаще всего ОУ на схемах обозначаются без выводов питания
Итак, далее по классике, слева два входа, а справа – выход.
Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.
Питание операционных усилителей
Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?
Давайте представим себе батарейку
Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”. В этом случае “минус” батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.
А давайте возьмем еще одну такую батарейку и соединим их последовательно:
Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.
А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?
Вот здесь мы как раз и получили двухполярное питание.
Идеальная и реальная модель операционного усилителя
Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.
1) Входное сопротивление идеального ОУ бесконечно большое.
В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения – несколько МОм.
2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то входной ток будет равняться нулю.
На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.
3) Выходное сопротивление идеального ОУ равняется нулю.
Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.
4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.
5) Так как коэффициент усиления бесконечно большой, следовательно, разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.
6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).
Схема простейшего ОУ на транзисторах выглядит примерно вот так:
Принцип работы операционного усилителя
Давайте рассмотрим, как работает ОУ
Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).
Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы
Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению
Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.
Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.
Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:
Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.
Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:
На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.
Что будет на выходе ОУ, если на обоих входах будет ноль вольт?
Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.
А что покажет Falstad? Ноль Вольт.
Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.
Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.
Смотрим, что имеем на виртуальном осциллографе:
Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит.
Скорость нарастания выходного напряжения
Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых .
Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.
При участии Jeer
Также смотрите видео “Что такое операционный усилитель (ОУ) и как он работает”
Источник
Как контролировать ток с помощью операционного усилителя, биполярного транзистора и трех резисторов
Данная статья объясняет работу умной схемы, которая точно измеряет ток источника питания.
Прежде всего, я должен признать, что заголовок немного вводит в заблуждение. Схема, представленная в данной статье, действительно требует только операционного усилителя, транзистора и трех резисторов. Однако она не является самостоятельным контроллером тока в том смысле, что она не измеряет ток и не инициирует действия, основанные на этих измерениях. Поэтому, возможно, «измеритель тока» будет более точным названием, чем «контроллер тока», но даже «измеритель тока» – не совсем корректное название, так как схема не записывает значения тока или не преобразует их в визуальную индикацию.
В конечном счете, я полагаю, что данная схема представляет собой нечто большее, чем «преобразователь ток-напряжение», но имейте в виду, что она преобразует ток в напряжение таким образом, который совместим с приложениями мониторинга потребляемого тока. Поэтому, может быть, мы должны назвать ее «преобразователь тока в напряжение для приложений мониторинга подачи тока от источника питания» («current-to-voltage converter for power-supply-current-delivery-monitoring applications», или аббревиатура CTVCFPSCDMA). Идеально.
Зачем?
Существуют различные ситуации, в которых вы, возможно, захотите измерить ток, потребляемый вашим проектом. Возможно, вы хотите динамически настроить работу одной подсистемы на основе потребления тока другой подсистемы. Возможно, вы пытаетесь оценить срок службы аккумулятора или подобрать минимально возможную микросхему регулятора, которая может обеспечить достаточный выходной ток. Вы даже можете использовать записанные измерения потребления тока как способ с минимальным вмешательством для отслеживания переходов микроконтроллера между состояниями низкого и высокого потребления электроэнергии.
Как обсуждалось выше, данная схема преобразует ток в напряжение. Это может удовлетворить ваши требования к мониторингу тока, если всё, что вам нужно сделать, – это вручную наблюдать за потреблением тока с помощью мультиметра или осциллографа. Я полагаю, вы могли бы даже записывать и анализировать свои измерения потребления тока с помощью устройства сбора данных и некоторого соответствующего программного обеспечения.
Если вам нужна более автономная схема в смысле возможности записывать и/или реагировать на потребление тока, вы, вероятно, захотите оцифровать измерения с помощью микроконтроллера. Если требуется только базовый функционал, и у вас нет других потребностей в процессоре, вы можете использовать компаратор или аналоговый детектор диапазона пороговых напряжений.
Схема
CTVC. представленный в данной статье, основан на схеме, найденной в руководстве к применению под названием «Op Amp Circuit Collection», опубликованном (в далеком 2002 году) компанией National Semiconductor. Моя версия выглядит так:
Преобразователь тока в напряжение. Схема электрическая принципиальная
И моя реализация схемы в LTspice:
Преобразователь тока в напряжение. Схема в LTspice
На первый взгляд схема может показаться немного запутанной, но ее работа довольно проста:
- Ток протекает от источника питания к нагрузке через резистор R1. R1 работает как типовой резистор датчика тока (токовый шунт), и, как и другие токовые шунты, он имеет очень низкое сопротивление, чтобы уменьшить рассеивание мощности и минимизировать его влияние на измерения и схему нагрузки.
- Напряжение, подаваемое на неинвертирующий вход операционного усилителя, равно напряжению источника питания минус (ток источника питания × R1).
- Не позволяйте PNP транзистору отвлекать вас от того факта, что операционный усилитель на самом деле охвачен петлей отрицательной обратной связи. Наличие отрицательной обратной связи означает, что мы можем применить принцип виртуального замыкания, т.е. можно предположить, что напряжение на инвертирующем входе равно напряжению источника питания минус (ток источника питания × R1).
- Поскольку верхние выводы R1 и R2 подключены к источнику питания, предположение виртуального замыкания говорит нам о том, что на обоих этих резисторах появляется одинаковое напряжение, и, следовательно, ток через R2 равен току через R1. В схеме LTspice, показанной выше, R2 в 1000 раз больше, чем R1, а это означает, что ток через R2 будет в 1000 раз меньше тока через R1.
- Ток базы биполярного транзистора очень мал, поэтому можно сказать, что ток через R3 более или менее равен току через R2. Таким образом, мы используем R3 для получения напряжения, которое прямо пропорционально току через R2, который, в свою очередь, прямо пропорционален току через R1.
Схема, приведенная ниже, должна помочь понять это объяснение:
Преобразователь тока в напряжение. Принцип действия
Как вы можете видеть, окончательная формула Vвых представляет собой:
Что именно делает PNP транзистор?
Вы можете думать о транзисторе либо как о регулируемом клапане, который позволяет операционному усилителю увеличивать или уменьшать ток, протекающий через R2 и R3, либо как об устройстве с переменным падением напряжения, которое операционный усилитель может использовать для установки правильного напряжения в точке Vвых. В обоих случаях конечный результат один и тот же: транзистор является средством, с помощью которого операционный усилитель может заставить напряжение на инвертирующем входе равняться напряжению на неинвертирующем входе.
Транзистор действительно является самой интересной частью данной схемы. Мы часто используем биполярные транзисторы в приложениях «включить или выключить», и важно понимать, что ситуация в данной схеме совершенно иная. Операционный усилитель (конечно с помощью отрицательной обратной связи) на самом деле делает небольшие точные подстройки напряжения эмиттер-база (VЭБ) биполярного транзистора. На следующем графике показано напряжение VЭБ для диапазона токов нагрузки (соответствующих сопротивлениям нагрузки от 50 до 300 Ом).
Зависимость напряжения эмиттер-база транзистора от сопротивления нагрузки
Обратите внимание, что все эти напряжения близки к типовому порогу открытия (
0,6 В) для кремниевого PN перехода. Это говорит о том, что операционный усилитель очень тщательно согласовывает пороговую область биполярного транзистора, чтобы обеспечить требуемые (и относительно большие) изменения падения напряжения эмиттер-коллектор. Весь диапазон значений VЭБ составляет всего
50 мВ, зависимость изменения напряжения эмиттер-коллектор, равного
4 В, от изменения напряжения эмиттер-база, равного
50 мВ, приведена ниже:
Зависимость напряжения эмиттер-коллектор от напряжения эмиттер-база
Эффективность
Реальные реализации данной схемы конечно будут иметь источники ошибок, которые приведут к тому, что связь между током нагрузки и выходным напряжением отклонится от приведенной выше идеальной формулы. Даже схема LTspice не совсем идеальна из-за реалистичного поведения, реализованного в модели биполярного транзистора (и, возможно, в модели операционного усилителя). Однако, если у вас есть резисторы высокой точности и хороший операционный усилитель, я думаю, эта схема может быть довольно точной. Следующий график показывает смоделированную ошибку в том же диапазоне сопротивлений нагрузки (помните, что «V_collector» совпадает с Vвых).
Зависимость выходного напряжения схемы от сопротивления нагрузки при моделировании ошибки
Два графика почти идеально совпадают, что указывает на хорошую точность. Обратите внимание, как оранжевый график заметно ниже, чем синий, при наименьшем значении сопротивления нагрузки; это обусловлено тем, что сопротивление нагрузки 50 Ом соответствует выходному напряжению 5 В, но Vвых не может быть ровно 5 В, потому что по меньшей мере небольшое напряжение должно падать на R2 и на соединении эмиттер-коллектор.
Заключение
Мы рассмотрели интересную и эффективную схему, которая точно преобразует ток источника питания в напряжение, которое можно измерить, оцифровать или использовать в качестве входного сигнала компаратора. Если вы хотите продолжить изучение этой удобной схемы, то не стесняйтесь сэкономить немного времени, загрузив мою схему LTspice по ссылке ниже.
Источник
1.6. Параметры операционных усилителей
Возможности применения ОУ зависят от его электрических характеристик. Для полной характеристики ОУ необходимо учитывать более 30 параметров. Знание параметров ОУ, понимание степени их влияния на работу схемы позволяет не только выбрать наиболее подходящий тип ОУ для конкретной цели, но зачастую обходиться без дополнительных испытаний.
Коэффициент усиления ОУ (К) равен отношению приращения выходного напряжения (тока) к вызвавшему это приращение входному сигналу (току) при отсутствии ОС (рис. 1.11, ,). Коэффициент усиления ОУ является функцией частоты и с ее увеличением падает. Частотная и фазовая характеристики ОУ складываются из характеристик отдельных внутренних каскадов, каждый из которых имеет свою собственную постоянную времени и может быть представлен в виде RC-цепочки.
Суммарная частотная характеристика ОУ аппроксимируется диаграммой Боде (рис. 1.11, а). Каждый каскад вносит фазовый сдвиг 90°, поэтому общий фазовый сдвиг зависит от количества каскадов и имеет вид (рис.1.11, а, кривая 2) . Поскольку на выходе ОУ уже имеется сдвиг фазы 180° относительно инвертирующего входа, на который подается отрицательная ОС, то на некоторой частоте суммарный сдвиг фазы достигает 360°. Если на этой частоте
где β – коэффициент ОС, то отрицательная ОС превращается в положительную, что приводит к самовозбуждению схемы.
Входное сопротивление (RВХ) определяется как отношение ∆UВХ/∆IВХ при заданной частоте сигнала. Фактически это сопротивление между входами ОУ. Необходимо помнить, что входное сопротивление ОУ и входное сопротивление схемы – это два разных понятия,
значения их могут отличаться на несколько порядков. Типовые значения RВХ на низких частотах для биполярных входов – 10 4 – 10 8 Ом, для полевых – 10 7 – 10 12 Ом.
Выходное сопротивление (RВЫХ) – это внутреннее выходное сопротивление ОУ, которое можно определить как отношение напряжения холостого хода к току короткого замыкания (UХХ/IКЗ), и составляет для разных ОУ величину порядка десятков-сотенОм. Глубокая отрицательная обратная связь делает выходное сопротивление пренебрежимо малым (или очень большим в случае обратной связи по току). Типовые значения RВЫХ для ОУ широкого применения 100– 1000Ом.
Входной ток смещения (IВХ) ток, протекающий во входную цепь ОУ, необходимый для нормальной работы входных биполярных транзисторов (для полевых – ток утечки затвора). Под IВХ подразумевают среднее арифметическое двух токов IВХ+ и IВХ. Для ОУ разных типов входной ток смещения изменяется в широких пределах: для биполярных входных транзисторов – 10 -5 – 10 -8 А, для полевых – 10 -9 – 10 -12 А. В справочных данных обычно приводятся сильно завышенные значения IВХ.
Разность входных токов (ток сдвига) (ΔIВХ=|IВХ+– IВХ-|) определяется при заданном значении входного напряжения. Разность ΔIВХ вызывает на выходе ОУ некоторое смещение (приведенное ко входу оно составляет 1 – 5мВ и зависит от величины резисторов, подключаемых ко входам).
Напряжение смещения (UСМ) определяется как разность напряжений на входах, при котором UВЫХ=0 при оговоренных сопротивлениях резисторов, подключаемых к входам. Если значения этих резисторов стремятся к нулю, то напряжение смещения называют электродвижущая сила (ЭДС) смещения (EСМ). Для ОУ с биполярными транзисторами на входе UСМ зависит в основном от разброса напряжений (ΔUЭБ) эмиттерно-базовых переходов и составляет 1 – 10мВ. Для ОУ с полевыми транзисторами на входе UСМ обычно в несколько раз больше (до 30мВ), что объясняется их меньшей крутизной.
Если на оба входа ОУ, не охваченного отрицательной обратной связью, подать точно равные напряжения (наприм
ер, оба входа заземлить), на выходе, скорее всего, будет наблюдаться уровень, близкий к одному из питающих напряжений, то есть ОУ войдет в режим ограничения:
Для того чтобы при подаче равного напряжения на оба входа усилителя выходное напряжение было близко к нулю, ОУ необходимо сбалансировать. Балансировка ОУ обычно достигается подачей дополнительного тока в цепь коллекторов входного дифференциального усилителя (ДУ) с помощью переменного резистора, подключаемого к специальным выводам. Операционные усилители некоторых типов таких выводов не имеют и балансируются по входу.
Средний температурный дрейф напряжения смещения (∆UСМ/∆T) – максимальное изменение UСМ при изменении температуры на 1 °C в оговоренном диапазоне температур. Измеряется в микровольтах на градус Цельсия (мкВ/°C). Типовые значения для биполярных входов 5 – 20мкВ/°C, для входов с полевыми транзисторами 20 – 100мкВ/°C. Если UСМ можно скомпенсировать до нуля, то с температурным дрейфом бороться сложнее. Входной ток (IВХ) и разность входных токов (ΔIВХ) тоже изменяются с температурой.
Частота единичного усиления (f1) – это частота, на которой
Характерная зависимость коэффициента усиления от частоты приведена на рис.1.11, а и 1.12, где логарифмическая амплитудно-частотная характеристика (ЛАЧХ) пересекает уровень 0дБ в точках f1.
Граничная частота (fГР) определяется как частота, на которой коэффициент усиления уменьшается на 3децибела:
Область частот 0– fГР называют полосой пропускания. Введение ООС расширяет полосу пропускания (см. рис.1.12, кривая 2).
Скорость нарастания выходного напряжения определяется как dUВЫХ/dt при воздействии импульса большой амплитуды. Измеряется в вольтах на микросекунду (В/мкс). Для разных ОУ меняется в пределах от 0,1В/мкс (прецизионные ОУ) до 100В/мкс (быстродействующие ОУ). Этот параметр становится важным, если ОУ используется в качестве компаратора (различителя) уровней сигналов в быстродействующих схемах.
Диапазон выходного напряжения (ΔUВЫХ) – это диапазон значений выходного напряжения, при котором параметры ОУ лежат в гарантированных пределах. Зависит от напряжения питания. При несимметричном выходе верхняя и нижняя границы диапазона различны. Например, для операционного усилителя:
544УД2 ΔUВХ = 10 В при ЕП =±15 В (симметричный выход);
140УД5 ΔUВХ =+6 В/–4 В при ЕП =±12 В (несимметричный выход).
Диапазон синфазных входных напряжений (ΔUВХ.СФ) – это такой диапазон синфазных входных напряжений, в котором параметры ОУ лежат в гарантированных пределах. Зависит от напряжения питания. Примерно на 3 – 5В меньше ЕП.
Коэффициент ослабления синфазного сигнала равен отношению синфазного входного напряжения к дифференциальному, вызывающих одно и то же UВЫХ. Измеряется в децибелах. Для разных ОУ изменяется в пределах от 50дБ (140УД5А) до 120дБ (140УД24).
Максимальный выходной ток (IВЫХ.MAX). Для ОУ, имеющих внутреннюю защиту от короткого замыкания по выходу, это выходной ток короткого замыкания в режиме ограничения; для ОУ без защиты от КЗ – предельный выходной ток, который нельзя превышать. Для разных ОУ изменяется в диапазоне 1– 400мА.
Существуют также другие параметры, характеризующие ток потребления, шумовые, температурные, частотные, фазовые, временные и другие свойства ОУ. В конкретных применениях любой из этих параметров может стать самым важным и определяющим выбор типаОУ.
Источник
Схемы стабилизаторов напряжения и тока
Стабилизированные источники питания необходимы для обеспечения независимости параметров электронного устройства от изменений питающего напряжения. Практически в любой современной аппаратуре имеется стабилизатор напряжения, а то и несколько. В таких устройствах часто применяются операционные усилители ( ОУ ), с помощью которых решить эту задачу просто и эффективно с точностью регулировки и стабильности в диапазоне 0,01…0,5 %, причём ОУ легко встраивать в традиционные стабилизаторы напряжения и тока.
Простейший стабилизатор напряжения представляет собой усилитель постоянного тока, на вход которого подано постоянное напряжение стабилитрона или часть его. Нагрузочная способность такого стабилизатора определяется силой максимального выходного тока ОУ.
Следящие стабилизаторы, как правило, работают на принципе сравнения опорного и выходного напряжений, усиления их разности и управления электропроводностью регулирующего транзистора.
Стабилизатор по схеме Рис.1 выдаёт напряжение Uвых большее, чем опорное напряжение стабилитрона VD1, а стабилизатор Рис.2 – меньшее. Стабилизаторы питаются от одного источника. С помощью эмиттерного повторителя VT2 увеличивают ток нагрузки, в нашем примере – до 100 мА, но можно и более с составным повторителем на мощном транзисторе.
Транзистор VT1 защищает выходной транзистор VT2 от перегрузок по току, причём датчиком тока служит резистор R8 небольшого сопротивления, включённый в цепь эмиттера транзистора VT2. Когда падение напряжения на нём превысит Uб-э=0,6 В, откроется транзистор VT1 и зашунтирует эмиттерный переход транзистора VT2. При токах нагрузки до 10…15 мА резисторы R7, R8 и транзисторы VT1, VT2 можно не ставить. Отметим, что в стабилитронах по схемам на Рис.1, 2 входное напряжение не должно превышать максимально допустимой суммы напряжений питания.
На Рис.3а приведена схема подобного стабилизатора в котором ОУ включён таким образом, что он сам питается стабилизированным напряжением. Здесь дополнительно включены несколько элементов, улучшающих работу стабилизатора напряжения. Потенциал выхода ОУ DA1 смещён в сторону положительного напряжения с помощью стабилитрона VD3 и транзистора VT1. Выходной эмиттерный повторитель – составной ( VT2, VT3 ), а к базе защитного транзистора VT4 подключён делитель R4R5, что позволяет создать “падающую” характеристику ограничения тока перегрузки. Ток короткого замыкания не превышает 0,3 А.
Термокомпенсированный источник опорного напряжения выполнен на микросхеме К101КТ1А (DA2). Выходное напряжение стабилизатора, равное +15В, изменяется всего на 0,0002 % при изменении входного напряжения в пределах 19…30 В; при изменении тока нагрузки от нуля до номинального выходное напряжение падает лишь на 0,001%. В этом стабилизаторе подавление пульсаций входного напряжения частотой 100 Гц составляет 120 дБ. К достоинствам стабилизатора следует отнести также и то, что в отсутствии нагрузки потребляемый ток составляет около 10 мА. При скачкообразном изменении тока нагрузки выходное напряжение устанавливается с погрешностью 0,1% за время не более 5 мкс.
Практически нулевые пульсации напряжения на выходе может обеспечить стабилизатор по схеме Рис.4. Если движок переменного резистора R1 находится в верхнем (по схеме) положении, амплитуда пульсаций максимальна. По мере перемещения движка вниз амплитуда будет уменьшаться, так как напряжение пульсаций, поданное на инвертирующий вход ОУ через конденсатор С2, в противофазе складывается с выходным напряжением пульсаций. Примерно в среднем положении движка резистора R1 пульсации будут компенсированы.
В случае необходимости получения отрицательного выходного напряжения необходимо в качестве повторителя применить p-n-p транзистор, а также заземлить положительную шину питания ОУ. Но можно поступить по-другому, если в аппаратуре требуются стабилизированные напряжения разной полярности.
На Рис.5 приведены две упрощённые схемы соединения стабилизаторов для получения выходных напряжения разного знака. В первом случае входная и выходная цепи имеют общую шину. Пусть, например, имеются только положительные стабилизаторы. Тогда в стабилизаторе по второй схеме можно применить, если оба канала по входным цепям гальванически развязаны, чтобы можно было заземлять положительный полюс нижнего (по схеме) стабилизатора. Источником опорного напряжения для одного из каналов служит стабилитрон, а для второго – выходное напряжение первого стабилизатора. Для этого необходимо включить делитель из двух резисторов между выводами +Uст и -Uст стабилизаторов и подвести напряжение средней точки делителя к неинвертирующему входу ОУ второго стабилизатора, заземлив инвертирующий вход ОУ. Тогда выходные напряжения двух стабилизаторов ( несимметричные в общем случае ) связаны и регулирование напряжений осуществляется одним переменным резистором.
В случае если необходимо иметь два питающих напряжения с заземлённой средней точкой, то можно применить активный делитель на ОУ с повторителями для увеличения нагрузочной способности (Рис. 6). Если R1=R2, то равны и выходные напряжения относительно заземлённой средней точки. Через выходные транзисторы VT1 и VT2 протекают полные токи нагрузки, а падение напряжения на участках коллектор – эмиттер равны половине входного напряжения. Это надо иметь в виду при выборе радиаторов охлаждения.
Ключевые стабилизаторы напряжения зарекомендовали себя наилучшим образом с точки зрения экономичности, так как КПД таких устройств всегда высокий. Несмотря на их сложность по сравнению с линейными стабилизаторами, только за счёт уменьшения размеров теплоотводящего радиатора проходного транзистора ключевой стабилизатор позволяет уменьшить габариты регулируемого мощного источника питания в два – три раза. Недостаток ключевых стабилизаторов заключается в повышении уровня помех. Однако рациональное конструирование, и когда весь блок выполнен в виде экранированного модуля с расположенной непосредственно на теплоотводе мощного транзистора платой управления, позволяет свести помехи к минимуму. Устранить “пролезание” высокочастотных помех в нестабилизированный источник первичного питания и нагрузку можно путём включения последовательно радиочастотных дросселей, рассчитанный на постоянный ток 1…3 А. В ключевых стабилизаторах напряжения с успехом применяются интегральные компараторы.
На Рис. 7 приведена схема релейного стабилизатора на базе микросхемы К554СА2. Здесь компаратор DA1 работает от источников напряжения +12 и -6 В. Эта комбинация образована подключением вывода 11 положительного питания DA1 к эмиттеру транзистора VT1 (+18 В), вывода 2 – к стабилитрону VD6 (примерно +6 В), вывода 6 отрицательного питания – к нулевому потенциалу общей шины. Опорное напряжение стабилизатора формируется диодами VD3 – VD5, оно равно +4,5 В. Это напряжение подаётся на инвертирующий вход компаратора DA1, включённого по схеме детектора уровня с гистерезисной характеристикой из-за положительной обратной связи по цепи R5, R3. Цепь отрицательной обратной связи замыкается через усилительный транзистор VT2, ключевой элемент на транзисторах VT3, VT4 и фильтр L1C7. Глубину отрицательной обратной связи по выходному напряжению регулируют переменным резистором R4, в результате оно изменяется в пределах 4…20 В при минимальном входном нестабилизированном напряжении +23 В и максимальном – до +60 В с применением элементов, рассчитанных на такое напряжение. В то же время переменная составляющая выходного напряжения ( пульсации ) проходят без ослабления через конденсатор С4, поэтому регулирование выходного напряжения не приводит к пропорциональному изменению пульсаций.
Данный стабилизатор напряжения относится к числу автогенерирующих, когда в зависимости от входного напряжения и тока нагрузки, разряжающего накопительный конденсатор C7, автоматически меняется как период автоколебаний, так и время включённого состояния транзисторов VT3, VT4. Усилитель управления на компараторе DA1 и транзисторе VT2 открывает ключевой элемент в тот момент, когда потенциал инвертирующего входа станет меньше, чем потенциал неинвертирующего (опорного) входа. В этот момент напряжение на нагрузке падает несколько ниже заданного уровня стабилизации, т.е пульсирует. После включения транзисторов VT3, VT4 ток через дроссель L1 нарастает, его индуктивность и конденсатор С7 запасает энергию, так что потенциал инвертирующего входа повышается. Благодаря действию усилителя управления ключевой элемент закрывается. Затем фильтр L1C7 отдаёт некоторую часть запасённой энергии в нагрузку, причём полярность напряжения на дросселе L1 меняется и цепь питания замыкается через диод VD7. Как только напряжение на конденсаторе С7 станет ниже опорного на величину гистерезиса, вновь включаются транзисторы VT3, VT4. Далее циклы повторяются.
В качестве дросселя L1 можно применить дроссели фильтров промышленного изготовления, например из серий Д8, Д5 – плоские и др., среди которых выбирают типономинал с требуемой индуктивностью, рассчитанный на ток подмагничивания не менее ожидаемого тока нагрузки и пригодный к использованию на частотах до 50 кГц.
Диод VD7 должен быть обязательно быстродействующим с большим допустимым импульсным током, не менее удвоенного значения тока нагрузки. В стабилизаторе по схеме на Рис. 7, где ток нагрузки 2 А, возможна замена его на диоды КД212Б, КД217А и некоторые другие. Конденсатор С7 из ряда К53 или танталовый типов К52-7А, К52-9, К52-10, С9 – ёмкостью не менее 15,…2,2 мкФ.
Большая потребность в стабилизаторах для питания аппаратуры привела к необходимости разработки и производства специальных линейных микросхем – стабилизаторах напряжения. В интегральном исполнении преобладают последовательные регуляторы с непрерывным или импульсным режимом управления. Стабилизаторы строятся как для положительных так и для отрицательных напряжений питания. Выходное напряжение может быть регулируемым или фиксированным, например +5 В для питания блоков с цифровыми микросхемами или ±15 В для питания аналоговых микросхем. К данной группе из выпускаемых стабилизаторов относятся категория регулируемых стабилизаторов КР142ЕН1 и К142ЕН2.
На базе микросхем КР142ЕН1,2 можно создавать стабилизаторы отрицательных напряжений Рис. 8. При этом стабилитрон VD1 смещает уровень напряжения на выводе 8 относительно входного напряжения. Базовый ток транзистора VT1 не должен превышать максимально допустимого тока стабилизатора, иначе следует применить составной транзистор.
Широкие возможности микросхем КР142ЕН1,2 позволяют создавать на их основе релейные стабилизаторы напряжения (Рис. 9). В таком стабилизаторе опорное напряжение установлено делителем R4R5, а амплитуда пульсаций выходного напряжения на нагрузке задаётся делителем R2R3. Следует также иметь в виду, что ток нагрузки не может изменяться в широких пределах, обычно не более чем в два раза от номинального значения. Преимуществом релейных стабилизаторов является высокий КПД.
Также следует рассмотреть ещё один класс стабилизаторов – стабилизаторов тока, преобразующих напряжение в ток независимо от изменения напряжения нагрузки. Мощные источники тока предусматривают подключение к ОУ усилительных транзисторов.
На Рис.10 дана схема источника тока, а на Рис. 11 – схема приёмника тока. В обоих устройствах сила тока зависит от напряжения Uвх и номинала резистора R1, чем меньше входной ток ОУ и тем меньше ток управления первого (после ОУ) транзистора, который выбран поэтому полевым. Ток нагрузки может достигать 100 мА.
Схема простого мощного источника тока для зарядки устройства показана на Рис. 12. Здесь R4 – токоизмерительный проволочный резистор. Номинальное значение тока нагрузки Iн =ΔU/R4=5 A устанавливается примерно при среднем положении движка резистора R1. При зарядке автомобильной аккумуляторной батареи напряжение Uвх ≥ 18 В без учёта пульсаций выпрямленного переменного напряжения. В таком устройстве следует применять ОУ с диапазоном входного напряжения вплоть до напряжения положительного питания. Такими возможностями обладают ОУ К553УД2, К153УД2, К153УД6, а также КР140УД18.
Более подробно по данной тематике можно найти в источнике:
“В ПОМОЩЬ РАДИОЛЮБИТЕЛЮ” выпуск 91, МОСКВА издательство ДОСААФ СССР, 1985 стр. 39-53
Источник