Меню

Ограничение по току в зарядниках аккумуляторов



Схемы простых мощных зарядных устройств для аккумуляторов.

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В) .
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.

Зарядное устройство на гасящих конденсаторах

Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Зарядное устройство на тиристоре

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.

Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI. VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.

Зарядное устройство на симисторе

Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.

Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Зарядное устройство на полевом транзисторе

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16. 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Читайте также:  Намагничивающие токи при включении трансформаторов 1

Зарядное устройство на полевом транзисторе

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Зарядное устройство и восстановление аккумулятора

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

Источник

Ограничение по току в зарядниках аккумуляторов

ДОБАВЛЕНО 21/12/2009 22:39

мощность тебе мешать не должна

antisleep

Тогда немного по другому вопрос, БП использается для заряда аккумуляторов, а там как раз и нужно ограничить ток

параметры акумулятора — в студию

ДОБАВЛЕНО 21/12/2009 22:57

есть режим зарядки напряжением, например как в автомобиля

antisleep

Автоаккумуляторы и хотелось бы заряжать, если приспичит, а те схемы переделки что в инете без регулировке выходного тока! При подключении напрямую ток зарядки до 10А, начинает кипеть аккумулятор, а вот если б его ограничить.

antisleep, эта тема есть в инэте , сейчас по быстрому не нашел, а завтра на работе в закладках погляжу и выложу (очень удобно к тому же все давно решено)

antisleep

Давай, спасибо, а то решений полно, но все без регулировке по току

поставь реостат \сопротивление резистор\

ДОБАВЛЕНО 22/12/2009 00:09

я формулу давал нагрузка+резистор вот тебе и ток. только не забывай про мощностьт сопра. самый простой вариант. если надо отправлю электронную схему

antisleep

реостат? 12В 10А 120Вт эт какой же реостат

В старых промышленных зарядниках ток устанавливали, меняя напряжение вторичной обмотки. Почему в этом случае нельзя сделать так(менять напряжение в пределах 13-14-15.. вольт?

IIK тебе прально пишет. извини я не пойму твою конфигурацию. напиши акумулятор по току, бп на выходе , и ток какой тебе нужен

ДОБАВЛЕНО 22/12/2009 01:25

я тебе подрасчитаю

ДОБАВЛЕНО 22/12/2009 01:38

антислип давай бегом у меня смена заканчивается

ДОБАВЛЕНО 22/12/2009 01:43

antisleep

ДОБАВЛЕНО 22/12/2009 01:25

я тебе подрасчитаю

ДОБАВЛЕНО 22/12/2009 01:38

антислип давай бегом у меня смена заканчивается

ДОБАВЛЕНО 22/12/2009 01:43

Аккумулятор 12В 55Ач. Мне нужно чтобы на выходе БП регулировать ток

0. 5А. Если без регулировки подключить напрямую БП к аккумулятору, то ток 10А протекает через него, аккумулятор кипит.

antisleep, уже обяснили заком Ома, что непонятного? Чтобы регулировать ток, надо регулировать выходное напряжение блока питания. У компьтерного БП есть цепь обратной связи для стабилизации выходных напряжений. Если изменять напряжение обратной связи на входе усилителя ошибки, то можно изменять выходные напряжения.

antisleep

Тогда напряжение на выходе тоже будет меняться? Мне нужно постоянное напряжение на выходе, а менять только мощность. На выходе я сделал 14,4В, нужно чтоб можно было регулировать ток. Для многих из вас я задаю может и глупые вопросы, просто мне интерестно, с импульсниками только начал работать. Мой БП на KA7500, по даташиту у него два усилителя ошибки(если я правильно говорю), по входу первого усилителя изменением сопротивления от +12(который сейчас +14.4) я могу регулировать выходное напряжение. Может второй для регулировки тока?

Объясню еще раз закон Ома. U = I x R. Реши свою же задачу по этой формуле.
R — сопротивление аккумулятора оно постоянно и изменяется медленно только в процессе зарядки. Принимаем начальное значение 3 (три) ома.
I — ток, должен регулироваться от 0 до 5 ампер.
Даже невооруженным глазом видно, что напряжение при заданном диапазоне изменения тока будет равно 0. 15 вольт.
Надеюсь закон Ома стал понятен?
В БП с ШИМ КА7500 обратная связь приходит на 1 вывод.

antisleep

А разве в ЗУ для аккумулятора напряжение на выходе не должно быть постоянным?

antisleep, на этих приборах когда-то делали зарядки ИМЕННО для авто-аккумуляторов:
http://www.google.com/search?q=%D0%B1%D0%B0%D1%80%D0%B5%D1%82%D1%82%D0%B5%D1%80&sourceid=ie7&rls=com.microsoft:en-US&ie=utf8&oe=utf8

antisleep

Только вот должен тебя несколько расстроить. 12-и вольтовый акк при зарядке стабильным током от 12 же вольтового ИП всегда будет несколько недозаряжен. Например, при указанных выше условиях, ток начнёт экспоненциально уменьшаться при зарядке акка до напряжения 11 В (и это без учёта напряжения на самом стабилизаторе тока — с его учётом ещё раньше). Так что для обеспечения полной «заливки» акка напряжение на выходе ИП должно быть несколько больше напряжения полного заряда акка, плюс падение напряжения на стабилизаторе тока учесть надо. Итого, вольт 17 на выходе БП в общем случае тебе должно хватить. Ес-сно, для исключения перезаряда акка надо предусмотреть цепь контроля напряжения на аккумуляторе, желательно — с автоотключением зарядки (или переводом в режим тренировки «заряд-разряд»).

antisleep

ё, в натуре философ )))) Целая лекция, В принципе напряжение на выходе у меня регулируется, переменник на первой ноге, я напряжение выстовил как бортовая сеть авто 14,4В, а вот ток в 15А чет жестковато для аккумулятора, вот имучаю форумчан как его регулировать. Неделю в инете ищу какой нибудь регулятор тока, но ниче хорошего нет, в большинстве предлагают схемы на теристоре, но для импульсника не катит, вот и не знаю че придумать.

antisleep, извиняюсь, плохо знаком со схемотехникой комповых БП — не в курсе, ОС по напряжению в них сделана с 5 или 12 В, но в крайнем случае можно перекинуть её на 12 В.

Зачем? А просто регулировка по току на импульсных БП делается очень просто: последовательно с нагрузкой включается токовый датчик (шунт), падение напряжение на котором управляет сигналом ошибки (подменяя в этом режиме цепь регулирования выходного напряжения). При этом цепь контроля выходного напряжения не отменяется — просто она в это время не срабатывает — как я уже писал — напряжение при стабилизации тока растёт само — вместе с увеличением напряжения на аккумуляторе. А начнёт срабатывать штатная обр. связь по напряжению при достижении МАКСИМАЛЬНОГО напряжения заряда акка, и источник питания из источника тока превратится в источник напряжения. Выходное напряжение ИП сравняется с напряжением на акке, и заряд прекратится (по сути, получится просто параллельное соединение двух ИП — импульсника и акка. То же произойдёт при обрыве цепи акка — ИП не пойдёт «вразнос», ограничив напряжение на своём выходе в соответствии с заданием ОС по напряжению.

Читайте также:  Как мультиметром проверить силу постоянного тока

Хотя, по уму, ОС по напряжению лучше было бы подать на триггерный отключатель — но тогда при случайных обрывах заряд будет прекращаться намертво, а без акка на выходе такой ИП вообще не включишь. Врпочем, именно такой режим УМЫШЛЕННО реализован во некоторых вполне даже линейных (не импульсных) промышленных ЗУ: они не включаются как в отсутствие акка, так и при подключении «убитого» (переразряженного) акка, у которого остаточное напряжение меньше паспортного минимума.

Насчёт принципа регулирования тока в ИБП, копни Гугль на предмет поиска проектов Engineering Design на МС серии TOP2xx — попадался как-то проект такого зарядного устройства. В принципе, первичная цепь оттуда тебе не нужна, а вот вторичная, с ОС по току и напряжению — можно выдрать вчистую. Впрочем, буду посвободнее — могу сам копнуть. Кстати. описанное решение не только упрощает зарядное устройство, делая ненужным отдельный регулятор тока, но и повышает его КПД — уж больно эти аналоговые регуляторы тока любят воздух погреть (кстати, правильно они называются «источники тока» или «стабилизаторы тока», с чем может быть связан твой крах в поисках схемы).

ДОБАВЛЕНО 23/12/2009 21:38 PM

antisleep писал:
ё, в натуре философ )))) Целая лекция

А я лентяй.

Мне легче написать подробно одному, и потом всех остальных непросвещённых к этому посту отправлять, чем каждому по 10-20 постов отрывками лепить. Лень, как известно — двигатель прогресса, только лениться надо с умом.

antisleep

Я так и сделал, перекинул ее с 5 вольт на 12 и поставил переменник, теперь я могу регулировать выходное напряжение (установил на 14,4), пришлось отключить защиту, тупа перерезал проводник на плате, без этого при подключении нагрузки блок питания вырубался. Я в инете пытался найта какой нибудь регулятор тока, но ниче путного я так и не нашел, так как регуляторы тока либо маломощные, либа для трансформаторных блоков. В общем завис пока, не знаю как решить проблему с регулировкой по тока, сам только начал работать с импульсниками.

antisleep, извиняюсь — затупил я малость. Искать надо было не «Engineering Design», а «Design Idea». Вовремя вспомнил бы — быстрее бы нашёл.

Высоковольтная часть схемы тебе не нужна, она у тебя ужо е. А вот вторичная — хоть и нуждается в переработке под твои нужды (оригинальная схемка всего 16 Вт — т.е обеспечит зарядный ток для 12 В акка всего 1 А), тем не менее весьма удачно решена.

А ручной регулятор напряжения выкинь нафиг — напряжение, как я уже писал (если ты читал опус на предыдущей странице), будет изменяться по мере зарядки автоматически.

antisleep, есть вариант ограничить зарядный ток в пределах 5-10А. Потребуется небольшая доработка БП. Некоторые выводы микросхемы отрезаются от дальнейшей схемы, меняются элементы на другие, добавляется 1 транзистор типа кт361, несколько резисторов и датчик тока — 0,2-0,005 Ом. Пока полностью (на 100%) не проверена схема, но ток ограничивает реально. Вопрос возникает при глубоко разряженных аккумуляторах: сможет ли БП поддерживать заданны ток или просто уйдет в защиту. Когда смогу отсканировать схему — предоставлю.

amatti73

Сам долго мучался с регулировкой тока.
Вот тебе схема- пользуйся, а всем остальным — не хе. р флудить, Вас же чел конкретной помощи просит.

agent007

можно еще так

amatti73

И эта схемка вроде ниче. и как я понимаю за счет компараторов выбирается больший по уровню регулятор либо тока либо напруги. НУ, вроде процесс пошел, сиди да паяй.
Я себе еще поставил цифровые вольтметр и амперметр, защиту от переполюсовки по проводу PG, поменял мост и кондеры по цепи +12В ( а то у меня регулируется напруга от 6 до 15.6Вольт а ток от 0 до 10Ампер).

amatti73, можно один вопрос? Как я понимаю, нижняя часть схемы (на LM2577) добавляется к БП и от нее можно отказаться. Эта схема прошла реальную обкатку? А как ведет он себя с аккумуляторами, получившими глубокую разрядку?

amatti73

Да от нижней схемы можно смело отказаться , т.к. она нужна фактически для тихой и пропорциональной нагрузке работе вентилятора — это так сказать наворот далеко не всегда нужный. Для подключения к глубоко разряженной батарее и применяется схема на проводе PG
Вот ссылка
http://www.samodelkin.komi.ru/electron/zarbp.html

agent007

ДОБАВЛЕНО 11/01/2010 07:05

извиняюсь сразу не увидел термушки

Спасибо за ссылку, amatti73. Надо реализовать. Вопрос agent007: предложенная схема реализовывалась практически?

amatti73

Добрый вечер, господа! Как и обещал, предлагаю еще один вариант доработки БП. О своих экспериментах по этой схеме отпишусь позже. Какое мнение о ней?

Yurik L, а где вариант-то?

Извиняюсь, не получилось вечером присоединить файл. Пробую сейчас

Привет, коллеги! Какие мысли по поводу предложеной доработки?
Кратко опишу, что у меня получилось. БП на 200 Вт, по 12В — 8А. По указанной методике, подключая внешний источник и т.д., ток у меня получился 7,5А, такой нашел шунт. Подобрал нагрузку на ток 8,5 А (лампочки и резистор). Когда подключил, реальный ток был 6А, напряжение тоже понизилось. Не было под руками второго тестера, полагаю вольт 11-12, а настроен был на 14,2В. БП в защиту не уходит, ток ограничивает, при большом токе несколько понижается напряжение.
Думаю, аккумуляторы можно заряжать. Ваше мнение?

amatti73

Не совсем понятно КАКОЙ доработки. По какой схеме делал — по своей, которую тут выкладывал или по нашим? От этого многое зависит.

ДОБАВЛЕНО 15/01/2010 23:22

Если по той что ты выложил — будет садить питание. 100% Ты же не можешь упрапвлять-стабилизировать и ток и напряжение только на выв2. У тебя же 15 нога вообще не задействована.

Источник

Аккумуляторы: каким напряжением заряжать и как это делать

Главная страница » Аккумуляторы: каким напряжением заряжать и как это делать

Аккумуляторы: каким напряжением заряжать и как это делать

Автономные источники питания – аккумуляторные батареи, видятся в современных технологиях неотъемлемым элементом практически любых проектов. Для автомобильной техники аккумуляторы тоже конструктивная часть, без которой немыслима полноценная эксплуатация транспорта. Всеобщая полезность аккумуляторов очевидна. Но технологически эти приборы всё-таки до конца не совершенны. Например, явное несовершенство отмечается частым зарядом аккумуляторов. Конечно же, здесь актуален вопрос, каким напряжением заряжать аккумулятор, чтобы сократить частоту подзарядки и сохранить все рабочие свойства на длительный срок эксплуатации?

Обслуживание свинцово-кислотных аккумуляторов

Досконально вникнуть в тонкости процессов заряда / разряда свинцово-кислотных аккумуляторных батарей (автомобильных и других) помогут определения базовых параметров аккумуляторов:

  • ёмкость,
  • концентрация электролита,
  • сила тока разряда,
  • температура электролита,
  • эффект саморазряда.

Под ёмкостью батареи аккумуляторов принимается электричество, отдаваемое каждой отдельной аккумуляторной банкой в процессе её разряда. Как правило, значение ёмкости выражается ампер-часами (А/ч).

Параметры аккумулятора на корпусе батареи

На корпусе аккумуляторной батареи для автомобиля указывается не только номинальная ёмкость, но также стартерный ток при пуске автомобиля на холодную. Пример маркировки — аккумулятор производства Тюменского завода

Ёмкость разряда аккумулятора, обозначенная на технической бирке производителем, считается номинальным параметром. Помимо этой цифры, значимым для эксплуатации является также параметр ёмкости заряда. Необходимое значение заряда вычисляется формулой:

Сз = Iз * Тз

где: Iз – зарядный ток; Тз – время заряда.

Цифра, указывающая разрядную ёмкость батареи аккумуляторов, напрямую связана с другими технологическими и конструктивными параметрами и зависима от условий эксплуатации. Из конструктивно-технологичных свойств аккумулятора влияние на ёмкость разряда оказывают:

  • активная масса,
  • применяемый электролит,
  • толщина электродов,
  • геометрические размеры электродов.

Среди технологических параметров значимой для ёмкости батареи аккумуляторов также является степень пористости активных материалов и рецептура их приготовления.

Свинцово-кислая АКБ структура

Внутренняя структура свинцово-кислого автомобильного аккумулятора, куда входят так называемые активные материалы — пластины минусового и плюсового полей, а также иные компоненты

Не остаются в стороне и эксплуатационные факторы. Как показывает практика, сила разрядного тока в паре с температурой электролита также способны оказывать влияние на параметр ёмкости аккумулятора.

Влияние концентрации электролита

Завышенный уровень концентрации электролита способствует сокращению срока службы аккумулятора. Условия работы батареи с высокой концентрацией электролита приводят к активизации реакции, результатом которой становится образование коррозии на плюсовом электроде аккумуляторной батареи.

Поэтому важно оптимизировать значение концентрации электролита, учитывая те условия, в которых эксплуатируется аккумулятор и требования, предъявляемые производителем по отношению к таким условиям.

Концентрация электролита АКБ

Оптимизация концентрации электролита аккумуляторной батареи видится одним из важных моментов эксплуатации прибора. Контроль уровня концентрации необходим обязательно

К примеру, для условий с умеренным климатом, рекомендованный уровень концентрации электролита для большей части автомобильных аккумуляторов доводят под плотность 1,25 – 1,28 г/см 2 . Когда же актуальной становится эксплуатация приборов в условиях жаркого климата, концентрация электролита должна соответствовать плотности 1,22 – 1,24 г/см 2 .

Аккумуляторы — сила тока разряда

Процесс разряда АКБ логично разделить условно на два режима:

  1. Длительный.
  2. Короткий.
Читайте также:  Чему равен кпд электродвигателя мощностью 360 вт если он работает при силе тока 4 а

Для первого события характерным видится разряд при малых токах на протяжении относительно длительного временного периода (от 5 до 24 часов).

Для второго события (короткий разряд, стартерный разряд), напротив, характерными являются большие токи в коротком промежутке времени (секунды, минуты). Увеличение разрядного тока провоцирует снижение ёмкости батареи аккумуляторов.

Зарядное устройство АКБ

Зарядное устройство Телетрон, которое успешно применяется для работы с кислотно-свинцовыми автомобильными батареями. Несложная электронная схема, но высокая эффективность действия

Пример:

Есть АКБ с ёмкостью 55 А/ч с рабочим током на клеммах 2,75А. При нормальных условиях окружающей среды (плюс 25-26ºС) ёмкость АКБ находится в пределах 55-60 А/ч. Если разрядить батарею кратковременным током величиной 255 А, что эквивалентно увеличению номинальной ёмкости в 4,6 раза, номинальная ёмкость снизится до 22 А/ч. То есть, практически вдвое.

Электрический воздушный компрессор, 220В/110В 30 мпаЭлектрический воздушный компрессор высокого давленияЭлектрический воздушный насос высокого давления

Температура электролита и саморазряд аккумулятора

Разрядная ёмкость аккумуляторных батарей естественным образом снижается, если падает температура электролита. Падение температуры электролита влечёт за собой увеличение степени вязкости жидкой составляющей. Как следствие, увеличивается электрическое сопротивление активного вещества.

Отключенная от потребителя, полностью бездействующая аккумуляторная батарея, имеет свойства терять ёмкость. Объясняется такое явление химическими реакциями внутри прибора, проходящими даже в условиях полного отключения от нагрузки.

Под влияние окислительно-восстановительных реакций попадают оба электрода – минусовой и плюсовой. Но в большей степени процессом саморазряда охвачен электрод отрицательной полярности.

Реакция сопровождается образованием водорода в газообразном виде. При увеличении концентрации в растворе электролита серной кислоты, отмечается увеличение плотности электролита от значения 1,27 г/см 3 до 1,32 г/см 3 .

Это соразмерно с 40%-ым увеличением скорости эффекта саморазряда на минусовом электроде. Прирост скорости саморазряда дают также и примеси металлов, входящие в структуру электрода отрицательной полярности.

Саморазряд аккумулятора автомобиля

Саморазряд автомобильного аккумулятора после продолжительного хранения. При полном бездействии, при отсутствии нагрузки батарея утратила значительную часть ёмкости

Нужно отметить: любые металлы, присутствующие в составе электролита и других компонентов аккумуляторов, способствуют усилению эффекта саморазряда. Соприкасаясь с поверхностью отрицательного электрода, эти металлы вызывают реакцию, в результате которой начинается выделение водорода.

Некоторая часть существующих примесей исполняет роль переносчика зарядов от плюсового электрода к минусовому. При этом имеют место реакции восстановления и окисления ионов металлов (то есть опять же процесс саморазряда).

Саморазряд аккумуляторной батареи от загрязнений

Бывают и такие случаи, когда АКБ утрачивает заряд от загрязнений на корпусе. За счёт загрязнений создаётся проводящий слой, замыкающий плюсовой и минусовой электроды

Помимо внутреннего саморазряда, не исключается внешний саморазряд аккумулятора автомобиля. Причиной такого явления может стать высокая степень загрязнённости поверхности корпуса АКБ.

Например, пролитый на корпус электролит, вода или иные технические жидкости. Но в этом случае эффект саморазряда легко устраняется. Достаточно лишь очистить корпус батареи и содержать его всегда в чистоте.

Заряд автомобильных аккумуляторов

Начнём от ситуации бездействия прибора (в отключенном состоянии). Каким напряжением или током заряжать аккумулятор автомобиля, когда прибор находится на хранении? В условиях хранения АКБ основная цель зарядки направлена на компенсацию саморазряда. В этом случае зарядка обычно выполняется малыми токами.

Диапазон значений заряда, как правило, от 25 до 100 мА. При этом напряжение заряда необходимо поддерживать в границах 2,18 – 2,25 вольт по отношению к единичной аккумуляторной банке.

Выбор условий заряда аккумулятора

Зарядный ток аккумулятора обычно настраивается на определённую величину в зависимости от заданного времени подзаряда.

Условия заряда аккумулятора

Подготовка автомобильной батареи аккумуляторов для подзарядки в режиме, который требуется определить с учётом технологических свойств и технических параметров при эксплуатации АКБ

Так, если предполагается заряжать аккумулятор в течение 20 часов, оптимальным параметром тока заряда считается величина, равная 0,05С (то есть 5% от номинальной ёмкости аккумулятора). Соответственно, значения будут пропорционально увеличиваться, если менять один из параметров. К примеру, при 10-и часовой зарядке, сила тока уже составит 0,1С.

Заряд двухступенчатым циклом

При таком режиме изначально (первая ступень) осуществляется заряд током 1,5С до состояния, когда напряжение на отдельной банке достигнет значения 2,4 вольта.

После этого переводят зарядное устройство на режим по току заряда величиной 0,1С и продолжают заряжать до полного набора ёмкости 2 – 2,5 часа (вторая ступень). Напряжение заряда в режиме второй ступени варьируется в пределах 2,5 – 2,7 вольта для одной банки.

PAGANI - мужские механические наручные часыЖенские механические часы JSDUNPAGANI дизайнерские брендовые мужские часы

Форсированный режим заряда

Принцип форсированного заряда предполагает установку значения зарядного тока на уровне 95% от номинальной ёмкости батареи – 0,95С.

Способ достаточно агрессивный, но позволяет всего за 2,5-3 часа зарядить аккумулятор практически полностью (на практике 90%). До 100% ёмкости зарядка форсированным режимом отнимет 4 – 5 часов времени.

Контрольно-тренировочный цикл

Контрольно-тренировочный цикл АКБ

Практика эксплуатации автомобильных АКБ отмечает положительный результат, когда контрольно-тренировочный цикл применяется к новым аккумуляторным батареям, ещё не побывавшим в работе

Для этого варианта оптимальным является зарядка с параметрами, вычисленными простой формулой:

I = 0.1 * С20;

Заряжают до момента, когда напряжение на отдельно взятой банке составит 2,4 вольта, после чего уменьшают величину зарядного тока до значения:

I = 0.05 * C20;

При таких параметрах продолжают процесс до полного заряда.

Контрольно-тренировочный цикл охватывает также практику разряда, когда АКБ разряжается небольшим током 0,1С до уровня общего напряжения 10,4 вольта. При этом степень плотности электролита поддерживается на уровне 1,24 г/см 3 . После разряда прибор заряжают по стандартной методике.

Общие принципы зарядки свинцово-кислотных АКБ

Специалистами рекомендуется применять такие условия заряда для аккумулятора, при которых явно выражено резкое уменьшение тока под завершение процесса. На практике применяют несколько способов, каждый из которых имеет свои сложности и сопровождается разным объёмом финансовых издержек.

Аккумуляторы и способы зарядки

Определиться, каким способом заряжать аккумуляторную батарею, несложно. Другой вопрос — какой результат будет получен от применения того или иного способа

Самым доступным и простым методом считается заряд постоянным током при напряжении 2,4 – 2,45 вольт/банка. Процесс заряда продолжается до тех пор, когда величина тока будет оставаться постоянной в течение 2,5-3 часов. При таких условиях аккумулятор считается полностью заряженным.

Между тем большее признание среди автомобилистов получила методика комбинированного заряда. В этом варианте действует принцип ограничения начального тока (0,1С) до момента достижения заданного напряжения.

Затем процесс продолжается при постоянном напряжении (2,4В). Для этой схемы допустимо повышение первоначального тока заряда до 0,3С, но не более того. Аккумуляторы, работающие в буферном режиме, рекомендуется заряжать при низких напряжениях. Оптимальные значения заряда: 2,23 – 2,27 вольта.

Глубокий разряд — устранение последствий

Прежде всего, следует подчеркнуть: восстановление АКБ до номинальной ёмкости возможно, но при условии, когда имели место не более 2-3 глубоких разрядов. Заряд в таких случаях выполняется постоянным напряжением величиной равной 2,45 вольта на банку. Также допускается заряжать током (постоянным) величиной 0,05С.

Контроль уровня заряда АКБ

Процесс восстановления АКБ может потребовать двух-трёх отдельных циклов заряда. Чаще всего для достижения полной ёмкости зарядку проводят именно в 2-3 цикла

Если заряд проводится напряжением 2,25 – 2,27 вольта, рекомендуется выполнить процесс дважды или трижды. Так как при малых напряжениях достичь номинала ёмкости в большинстве случаев не удаётся.

Конечно же, следует учитывать влияние окружающей температуры в процессе выполнения восстановления. Если температура окружающей среды находится в границах 5 – 35ºС, напряжения заряда изменять не требуется. В иных условиях потребуется корректировка заряда.

Видео по контрольно-тренировочному циклу АКБ

Видеоролик представляет полезное «кино» для автомобилистов, не владеющих полной информацией по контрольно-тренировочному циклу , в частности, относительно определения остаточной ёмкости АКБ. Этот материал поможет ознакомиться с основами тестирования, чтобы применять на практике:

Программируемое реле и программируемый логический контроллер – что выбрать?

Программируемое реле или логический контроллер?

Как прошить телефон «Андроид» через TeamWin Recovery?

Прошить телефон на Андроид через TWRP

Бесконтактный термометр: как сделать инфракрасный градусник своими руками?

Бесконтактный термометр: как сделать инфракрасный градусник своими руками?

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Источник

Регулятор тока зарядного устройства

В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.

Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.

Регулятор тока зарядного устройства схема

Вариант реализации такого блока до безобразия прост и собран на одном элементе ОУ.
Зарядное устройство должно отдавать напряжение 13,5-14,5 Вольт при токе до 10 Ампер.
Полевой транзистор – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод.

Регулятор тока зарядного устройства своими руками

Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер. Для наших целей отлично подойдут мощные N- канальные полевые транзисторы типа IRF3205, IRFZ44/46/48 iили аналогичные.

Регулятор тока зарядного устройства фото

Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до 10-14Ампер.

Регулятор тока зу делаем самикак сделать Регулятор тока зарядного устройства

Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТ819ГМ или КТ8101 из наших , тоже устанавливают на теплоотвод.

Регулятор тока для зу фото

ОУ в моем варианте задействован сдвоенный , типа ЛМ358, но можно использовать и одиночные операционные усилители, к примеру – TL071/081

Источник