Одно полупроводниковое выпрямление электрического тока

Содержание
  1. Типы выпрямителей переменного тока
  2. Какие бывают выпрямители?
  3. Однополупериодный выпрямитель.
  4. Двухполупериодные выпрямители.
  5. Выпрямитель с удвоением напряжения.
  6. Умножитель напряжения.
  7. Трёхфазные выпрямители.
  8. Выпрямитель тока
  9. Какие бывают выпрямители
  10. N-фазные выпрямители
  11. Принцип работы выпрямителей сигналов
  12. Классификация по назначению и устройству
  13. Однополупериодный выпрямитель (четвертьмост)
  14. Два четвертьмоста параллельно
  15. Два полных моста последовательно
  16. Двухполупериодный выпрямитель, мостовая схема
  17. Три полных моста параллельно (12 диодов)
  18. Три полных моста последовательно
  19. Трехфазная схема выпрямления
  20. Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)
  21. Модификации с гальванической развязкой
  22. Как происходит выпрямление переменного тока
  23. Среднее значение выпрямленного напряжения
  24. Для чего постоянный ток
  25. Основные соотношения для выпрямителя
  26. Средний ток диодов
  27. Мостовой удвоитель напряжения
  28. Видео
  29. БЛОГ ЭЛЕКТРОМЕХАНИКА
  30. 15.05.2013
  31. Что такое полупроводниковый выпрямитель? Какие бывают полупроводниковые выпрямители?
  32. Схемы выпрямителей

Типы выпрямителей переменного тока

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Типовая схема однополупериодного выпрямителя

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Однополупериодное выпрямление

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

Печатная плата простейшего зарядника сотового телефона

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Типовая схема двухполупериодного выпрямителя со средней точкой

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Двуполупериодное выпрямление

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Внешний вид сдвоенного диода

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Типовая схема мостового выпрямителя (схема Гретца)

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

Мостовой выпрямитель с фильтром на плате компьютерного блока питания

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Типовая схема выпрямителя с удвоением

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

Типовая схема умножителя напряжения

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Типовая схема простейшего трёхфазного выпрямителя

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

Схема трёхфазного выпрямителя

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».

Источник

Выпрямитель тока

Выпрямители электрического тока представляют собой различные преобразователи сигналов. Согласно характеру устройства, могут быть полупроводниками на базе диодов или транзисторов, механическими либо вакуумными. Функция агрегата – превращение переменного сигнала, идущего ко входу, в постоянный на выходе. Большая часть подобных устройств может создать пульсирующий электрический ток, оставляя на выходе пульсации. Поэтому требуется дополнительно доукомплектовывать цепь фильтрами, которые бы сглаживали колебания. Устройство, которое преобразует постоянный ток в переменный, называется инвертором и применяется в источниках бесперебойного питания и аккумуляторах.

Выпрямитель тока, схема с одним мостом

Какие бывают выпрямители

Построение устройств, выпрямляющих переменный ток, базируется на функции итогового агрегата. При необходимости только выравнивать колебания сборка на печатных платах производится за счет неуправляемых полупроводниковых элементов – диодов. Таким образом строятся простейшие выравнивающие элементы.

Читайте также:  Правила техники безопасности при поражении электрическим током

При необходимости изменений уровня мощности, которая передается на принимающее оборудование, устройство собирают с использованием контролируемых вентилей (тиристоров). Такие выпрямители тока требуются для работы некоторых двигателей, работающих за счет электричества. За счет регулировки подаваемого напряжения изменяется скорость вращения ротора.

N-фазные выпрямители

В подобных устройствах насчитывают более 3 фаз для выпрямления тока. Другие конструктивные особенности различаются. Многофазный выпрямитель может состоять как из полноценного моста, так и из четверти и половины. По количеству входов и распараллеливанию их делят на раздельные, объединенные звездами или кольцами. Кроме того, существуют последовательные виды.

Принцип работы выпрямителей сигналов

Что такое выпрямитель? Устройство работает за счет свойств полупроводниковых радиоэлементов по пропусканию тока исключительно от анода к катоду. Поэтому при прохождении через устройство синусоиды переменного тока происходит обрезка отрицательной части волны. Таким образом на выходе радиоэлемента остается только положительная полуволна. Электрический ток подобного типа называется однополупериодным с пульсациями. От анода к катоду проходит сигнал только ½ всего времени. Колебания происходят от нуля до максимального значения.

Строение двухполупериодных устройств базируется на мосту из четырех вентилей, которые приводят к попаданию всех полуволн. При этом отрицательная полуволна инвертируется. Фактически строение двухполупериодных выпрямителей аналогично двум или более однополупериодным с катодами, направленными один на другой.

Классификация по назначению и устройству

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Однополупериодный выпрямитель (четвертьмост)

Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.

Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.

Устройство отличается следующими достоинствами:

  • Высокая частота пульсация;
  • Повышенная нагрузка на выпрямляющее устройство;
  • Ухудшение работы трансформатора вследствие намагничивания;
  • Невысокий показатель соотношения габаритов к мощности.

Однополупериодный выпрямитель

Два четвертьмоста параллельно

Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.

Два полных моста последовательно

Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.

Двухполупериодный выпрямитель, мостовая схема

В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.

Три полных моста параллельно (12 диодов)

Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.

Три полных моста последовательно

Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.

Трехфазная схема выпрямления

Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.

Трехфазные выпрямители

Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)

Такая схема нередко называется шестифазной. По свойствам похожа на выпрямитель, состоящий из трех полных диодных блоков, соединенных последовательно. Однако в данной схеме значительно повышается уровень эквивалентного сопротивления. Последовательная схема состоит из 6 диодов и резистора, поэтому относительный ток через каждый из проводящих элементов вдвое выше.

Модификации с гальванической развязкой

Накопительные элементы могут быть добавлены в схему для улучшения выходных характеристик. Применение конденсаторов и батарей позволит однопериодному выпрямителю во время отрицательной полуволны продолжать подавать на выход напряжение, которое накопилось во время положительной. Кроме того, накопление мощности на конденсаторе приводит к снижению максимального напряжения полуволны на выходе. Подобные схемы часто используются в усилителях.

Как происходит выпрямление переменного тока

Действие над полуволнами осуществляется за счет использования свойств полупроводниковых либо механических вентилей. За счет PN перехода диод пропускает ток только в том случае, если на аноде напряжение выше, чем на катоде. Поэтому при прохождении через полупроводниковый элемент остается только положительная полуволна. При использовании диодных мостов каждый элемент работает попарно, выдавая на выход положительное и отрицательное напряжение раздельно.

Среднее значение выпрямленного напряжения

Усредненный показатель сглаженного напряжения для выпрямителя рассчитывается по формуле:

Формула

В однополупериодных простейших схемах, которые построены на одном диоде (четверть моста), значение приблизительно равно 0.45 от входящего напряжения в вольтах.

Для чего постоянный ток

Переменный ток не подходит для некоторых задач. Аккумуляторные батареи возможно заряжать только постоянным током. То же самое касается электролизных установок. Также это требуется для работы осветительных приборов и большинства компактных устройств: компьютеров и телефонов.

Основные соотношения для выпрямителя

Главные параметры для выпрямителя выбираются в момент времени. Расчет величин происходит по образной формуле:

Соотношения для выпрямителя

Где:

  • Um – параметр, соответствующий колебаниям синусоиды переменного тока;
  • U – текущее значение напряжения на синусоиде;
  • U2 – текущая величина мощности в обмотке трансформатора;
  • Ud – усредненный показатель выпрямленной мощности;
  • Udo – константа, которая отвечает за постоянное сглаженное напряжение без подачи питания.

Средний ток диодов

Полупроводниковые радиоэлементы обладают выпрямляющими свойствами. Поэтому их важнейшей характеристикой считается средний ток. Данная величина представляет собой усредненную за время работы сглаженного постоянного тока через полупроводниковый период. В вентилях выпрямительного типа значение может достигать от сотых частей до 100 и выше Ампер.

Мостовой удвоитель напряжения

Схема сходна по структуре с мостом Гретца, однако дополнительно устанавливаются накопительные элементы. Это позволяет суммировать напряжение на выходе из мощности, накопленной конденсаторами за время прохождения тока. Удвоение представляет собой преобразование низкочастотного переменного напряжения в высокочастотное постоянное.

Удвоитель напряжения

Выпрямитель – это устройство, которое превращают переменный ток, полученный из сети, в нужный постоянный. При этом электрический ток на выходе может обладать сниженной амплитудой колебаний либо быть полностью сглаженным. Таким образом, устройства, требующие для работы постоянного напряжения, получают питание. Используется для зарядки большинства аккумуляторов, например, в зарядном устройстве Рассвет, сварочных аппаратах и электросиловых установках. Класс устройства определяется количеством диодов.

Видео

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

15.05.2013

Что такое полупроводниковый выпрямитель? Какие бывают полупроводниковые выпрямители?

В настоящее время подавляющее большинство судов оборудуется электрическими станциями переменного тока. Однако в некоторых случаях бывает необходим и постоянный ток.

Постоянный ток применяется для питания цепей возбуждения электрических машин, для зарядки аккумуляторов, для некоторых элементов автоматического управления (электромагнитное реле времени) и в некоторых других случаях.

Получение для указанных целей постоянного тока осуществляется, главным образом, с помощью выпрямителей, преобразующих переменный ток в постоянный.

Наибольшее значение в современных судовых электрических установках имеют сухие полупроводниковые выпрямители.

Полупроводниками называется особая группа веществ, обладающих электрической проводимостью, меньшей, чем у проводников электрического тока, но большей, чем у изоляторов.

К этой группе веществ относятся окислы, сернистые соединения и сплавы некоторых металлов, а также селен, германий, кремний и

некоторые другие химические элементы. Наиболее часто на судах применяются меднозакисные (купроксные), селеновые, германиевые и кремниевые выпрямители.

Читайте также:  Что происходит внутри источника тока в процессе работы

Характерной особенностью полупроводников является их свойство резко изменять величину электрической проводимости под влиянием ряда внешних факторов: температуры, давления, освещения, наличия посторонних примесей и т. д. На этом свойстве основано применение полупроводников в установках температурной сигнализации, в радиотехнике и для других разнообразных целей.

Для нас наиболее существенным является то обстоятельство, что контакт между проводником (металлом) и полупроводником может обладать односторонней проводимостью. Этот факт и позволяет осуществить полупроводниковые выпрямительные устройства.

Любой полупроводниковый выпрямительный элемент состоит из двух основных частей: металлического электрода и полупроводниковой пластинки. На поверхности соприкосновения металла с полупроводником на последнем в результате технологической обработки или вследствие свойств применяемых материалов образуется тонкий, так называемый запорный слой. Процесс получения этого слоя технологической обработкой носит название формовки выпрямителя.

Сопротивление запорного слоя прохождению тока одного направления значительно (в тысячи раз) меньше, чем току противоположного направления. Первое направление тока называется пропускным, а второе — запорным.

Зависимость между напряжением, приложенным к выпрямительному элементу и током, протекающим через него, характеризует свойства выпрямительного элемента и называется вольт-амперной характеристикой. Примерная вольт-амперная характеристика полупроводникового выпрямителя дана на рис. 1.

Для практических целей обычно достаточно знать две точки вольт-амперной характеристики, расположенные на ветвях кривых, соответствующих пропускному и запорному направлениям. Значения величин, определяющих эти точки, называются параметрами выпрямителя.

Для пропускного направления параметром является падение напряжения при номинальном токе выпрямительного элемента, или (что все равно) величина тока при данном напряжении.

Параметром запорного направления служит величина обратного тока при номинальном напряжении выпрямителя.

При длительном хранении, а также в процессе работы параметры пропускного направления у некоторых типов выпрямителей изменяются в худшую сторону. Это явление носит название старения выпрямителя.

В процессе эксплуатации при длительном бездействии или под воздействием влаги селеновые выпрямители расформовываются и сопротивление запорного слоя току обратного направления сильно уменьшается. Поэтому селеновые выпрямители должны периодически подвергаться повторной формовке.

Кроме того, параметры большинства полупроводниковых выпрямителей сильно зависят от температуры. Поэтому в процессе эксплуатации необходимо тщательно следить за тем, чтобы температура выпрямительных элементов не превышала допустимую для них рабочую температуру. В ряде случаев для выполнения этого условия применяют искусственную вентиляцию (охлаждение) выпрямителей.

Каждый выпрямительный элемент может работать только в определенных пределах, допустимых для него значений тока и напряжения. Под рабочим напряжением понимается максимальное допустимое эффективное значение переменного напряжения на единичный выпрямительный элемент при работе выпрямителя в однофазной однополупериодной схеме (о чем будет сказано далее) на омическую нагрузку.

Поэтому для получения нужных значений выпрямленных токов и напряжений отдельные выпрямительные элементы — вентили—соединяют в параллельно и последовательно включаемые группы.

Отношение максимального мгновенного значения выпрямленного напряжения к минимальному его значению называется коэффициентом пульсации выпрямителя.

В зависимости от допустимой степени пульсации, рода нагрузки и требуемой мощности, применяют различные схемы включения выпрямителей. Так как выпрямленное напряжение связано с подводимым переменным напряжением вполне определенным соотношением (зависящим от схемы включения выпрямителя), то для получения стандартных значений выпрямленного напряжения переменное напряжение подводят через трансформатор.

На рис. 2 даны наиболее употребительные схемы выпрямления, а в табл. 1 — наименования этих схем и соотношения между электрическими параметрами для случая активной нагрузки и идеальных выпрямителей. Для конкретных, выпускаемых промышленностью, типов выпрямителей необходимо учесть падение напряжения в них.

Обозначения:

U — действующее значение переменного напряжения (при мостовых схемах линейное);
Udх — среднее значение выпрямленного напряжения при холостом ходе;
U — амплитуда обратного напряжения;
Id — среднее значение выпрямленного тока;
Idmax — максимальное значение тока в цепи нагрузки;
I1d —среднее значение выпрямленного тока в плече.

В однополупериодной схеме выпрямитель выпрямляет только одну полуволну синусоиды, для другой (обратного направления) он заперт. В двухполупериодных схемах происходит выпрямление как прямой, так и обратной полуволны.

Первыми, по времени освоения, появились меднозакисные (купроксные) выпрямители, устройство которых схематически изображено на рис. 3.

Выпрямитель состоит из медного основания 1 (плюсовый электрод), покрытого слоем закиси меди 3, на которую нанесен второй (минусовый) электрод 4.

Минусовый электрод у выпрямителей малой мощности выполняется из серебра, а у более мощных состоит из двух слоев: меди и никеля, наносимых электрохимическим путем.

Между основанием 1 и слоем закиси меди 3 в результате особой технологической обработки возникает запорный слой 2.

Отдельные вентили выпускаются в виде дисков, шайб и прямоугольных пластин. Собранные выпрямители помещают в герметизированный корпус или покрывают водостойким лаком, так как на меднозакисные выпрямители влага оказывает вредное воздействие.

Допустимая плотность тока для купроксных выпрямителей составляет 50—60 ма/см 2 . Рабочее эффективное напряжение составляет 8— 10 в, пробивное напряжение 40— 70 в и к. п. д. порядка 55—65%.

Характерными особенностями купроксных выпрямителей является отсутствие необходимости в формовке, отсутствие явления расформовки, старение этих выпрямителей происходит независимо от того, работают ли они или бездействуют (при этом наиболее интенсивное старение происходит за первый год после изготовления выпрямителя и в дальнейшем почти не наблюдается). В связи с последним обстоятельством купроксные выпрямители, за исключением наиболее мощных, при их изготовлении подвергаются искусственному старению, после которого их параметры практически остаются стабильными.

Меднозакисные выпрямители могут работать при температуре окружающей среды от —25 до +55-60° С.

При электрическом пробое они не восстанавливаются и подлежат замене.

На судах этот тип выпрямителей используется в основном в электроизмерительных приборах.

Селеновые выпрямительные элементы выпускаются трех типов, конструкция которых схематически дана на рис. 4.

Элемент типа ВС (рис. 4, а) состоит из стального основания 1 с никелевым покрытием 2 (отрицательный электрод), слоя кристаллического селена 3 и положительного электрода 5, состоящего из сплава олова с кадмием. На поверхности селена, примыкающей к положительному электроду, в результате процесса формовки образуется запорный слой 4.

Выпрямители типа ABC отличаются от выпрямителей типа ВС тем, что отрицательным электродом у них служит алюминий, покрытый слоем висмута (рис. 4, б).

Выпрямители типа ТВС (рис. 48, в) собираются на алюминиевом основании 1 (положительный электрод), на которое наносится слой кристаллического селена 3, отрицательным электродом 5 у них служит алюминиевая фольга, покрытая слоем висмута 4. Запорный слой 2 в результате формовки выпрямителя возникает на поверхности селена, примыкающей к алюминиевому основанию 1. Как видим, полярность выпрямительных элементов типа ТВС противоположна полярности элементов типов ВС и ABC.

Селеновые выпрямительные элементы выпускаются в виде дисков, круглых шайб или квадратных пластин. Комплектные выпрямительные устройства, состоящие из дисковых элементов, собираются в пластмассовых трубках или металлических корпусах. Выпрямительные блоки из круглых шайб или квадратных пластин собираются на металлической изолированной шпильке, образуя так называемые выпрямительные столбы.

На рис. 5 дана схема сборки такого столба на шпильке 1, покрытой слоем изоляции 2. На шпильку надеваются выпрямительные элементы 3, имеющие для этой цели центральные отверстия. Между выпрямительными элементами расположены контактные шайбы 4, промежуточные шайбы 5 и радиаторные шайбы 6, служащие для отвода тепла. Вся сборка с концов изолируется шайбами 7 и стягивается гайками 8.

Отечественной промышленностью селеновые выпрямительные элементы выпускаются на рабочее напряжение от 12 до 36 в; пробивное напряжение для выпрямителей на стальной основе равно 50— 80 в, а на алюминиевой 80—100 в. Длительно допустимый ток при температуре окружающей среды 35° С и при естественном охлаждении составляет от 0,04 до 8 а на элемент в зависимости от размеров вентилей и схем их соединения. Плотность тока при этом находится в пределах 40—60 ма/см 2 .

При повышении температуры окружающей среды выше 35° С нагрузка должна быть снижена, но при искусственном охлаждении допустимую нагрузку можно увеличить. Так, принудительная вентиляция со скоростью воздушного потока 27—28 м/мин позволяет увеличить нагрузку на селеновый выпрямитель вдвое.

К. п. д. селеновых выпрямителей составляет 50—70% для однофазных схем и 60—80% для трехфазных.

Ценным свойством селеновых выпрямителей является их способность оставаться в работе после электрического пробоя, если при последнем не нарушен катодный слой.

При изготовлении германиевого выпрямителя пластинка чистого монокристаллического германия 1 (рис. 6) припаивается оловом к металлическому основанию выпрямителя 2. Затем на германиевую пластинку накладывается пластинка индия 3. В результате термической обработки индий диффундирует в германий, образуя запорный слой. К верхней поверхности пластинки индия припаивается гибкий токоотвод 4, соединяющийся с верхней контактной шпилькой 5, пропущенной через изолятор 6. Так как германий боится влаги, то выпрямитель заключается в металлический корпус 7, надетый на основание 1 и уплотненный прокладкой 8. В основание ввернута нижняя контактная шпилька 9.

Особенностью германиевых выпрямителей являются их малые размеры по сравнению с купроксными и селеновыми. Допускаемая плотность тока в германиевых выпрямителях в 1 500 раз больше, чем в селеновых, и в 4 000 раз больше, чем в купроксных. Однако малые размеры германиевых выпрямителей создают затруднения в отводе от них тепла. Наиболее эффективным методом отвода тепла является применение радиаторов с воздушным, водяным или масляным охлаждением.

Нормальный перегрев германиевого элемента при номинальной нагрузке не должен превышать 30° С при температуре окружающей среды 35° С. При повышении температуры окружающей среды до 50° С нагрузку следует снижать до 40% от номинальной.

К положительным свойствам германиевых выпрямителей относятся отсутствие необходимости в формовке, малое старение, длительная стабильность основных параметров и высокий к. п. д., составляющий 98—99%.

В настоящее время имеются германиевые выпрямительные элементы на ток до 200 а и обратное напряжение 200 в.

Комплектные германиевые выпрямители, собранные из отдельных элементов, выпускаются мощностью в несколько тысяч киловатт при токе до 100 000 а.

Наиболее перспективным типом полупроводниковых выпрямителей являются кремниевые выпрямители, конструкция которых аналогична конструкции германиевых.

Кремниевые выпрямители мало чувствительны к изменению температуры окружающей среды и могут работать в диапазоне температур от -65 до +250° С. Они допускают также более высокие плотности тока (до 200 а/см 2 при естественном охлаждении), имеют высокое допустимое обратное напряжение (до 200 в) и к. п. д., достигающий 99%.

Читайте также:  Что называется линиями магнитной индукции проводника с током

Источник

Схемы выпрямителей

Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.

Схема однополупериодного выпрямителя Схема однополупериодного выпрямителя

Однополупериодный выпрямитель не удовлетворяет требований большинства источников питания. Содержание гармоник в выходном сигнале выпрямителя слишком велико, и, следовательно, их трудно отфильтровать. Кроме того питающий источник переменного напряжения подает питание на нагрузку во время только одной половины каждого полного периода, а это означает, что половина его возможностей не используется. Тем не менее, однополупериодный выпрямитель является очень простым способом уменьшения мощности, подводимой к активной нагрузке. Переключатели некоторых двухпозиционных ламповых диммеров подают напрямую полное переменное напряжение на лампу накаливания для «полной» яркости или через однополупериодный выпрямитель для уменьшения яркости (рисунок ниже).

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммер Использование однополупериодного выпрямителя: двухпозиционный ламповый диммер

В положении переключателя «Тускло» лампа накаливания получает примерно половину мощности, которую она бы получала при работе с полным периодом переменного напряжения. Поскольку питание после однополупериодного выпрямителя пульсирует гораздо быстрее, чем нить накала успевает нагреться и охладиться, лампа не мигает. Вместо этого, нить накала просто работает на меньшей, чем обычно, температуре, обеспечивая менее яркий свет. Эта идея быстроты «пульсирования» питания по сравнению с медленно реагирующей нагрузкой широко используется в мире промышленной электроники для управления электроэнергией, подаваемой на нагрузку. Так как управляющее устройство (в данном случае, диод) в любой момент времени либо полностью проводит, либо полностью не проводит ток, то оно рассеивает мало тепловой энергии, контролируя при этом мощность нагрузки, что делает этот метод управления питанием очень энергоэффективным. Эта схема, возможно, является самым грубым способом подачи пульсирующего питания на нагрузку, но она достаточна в качестве применения, доказывающего правильность идеи.

Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем со средней точкой, использует трансформатор со средней точкой во вторичной обмотке и два диода, как показано на рисунке ниже.

Двухполупериодный выпрямитель, схема со средней точкой Двухполупериодный выпрямитель, схема со средней точкой

Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка «видит» первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора проводят ток, а часть схемы, проводившая ток во время предыдущего полупериода, находится в ожидании. Нагрузка по-прежнему «видит» половину синусоиды, той же полярности, что и раньше: положнительная сверху и отрицательная снизу (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.

Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.

Двуполярный двухполупериодный выпрямитель со средней точкой Двуполярный двухполупериодный выпрямитель со средней точкой

Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется двухполупериодным мостовым выпрямителем.

Двухполупериодный мостовой выпрямитель Двухполупериодный мостовой выпрямитель

Направления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.

Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодов Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодов Двухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов Двухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов

Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).

Альтернативное представление схемы двухполупериодного мостового выпрямителя Альтернативное представление схемы двухполупериодного мостового выпрямителя

Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).

Схема трехфазного мостового выпрямителя Схема трехфазного мостового выпрямителя

Линия каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному. Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).

Схема шестифазного мостового выпрямителя Схема шестифазного мостового выпрямителя

При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более «гладкое» (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

В любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является «чистое» постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.

Иногда метод выпрямления классифицируется путем подсчета количества «импульсов» постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться 2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.

Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph1W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph1W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph2W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph2W6P.

Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph2W12P) Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph2W12P)

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector