Меню

Обратный ток диода протекает по



Большая Энциклопедия Нефти и Газа

Обратный ток — диод

Обратный ток диода / 0, если утечки малы, почти не зависит от напряжения на р — / г-переходе, но в сильной степени зависит от температуры. При достижении напряжения пробоя обратный ток резко возрастает за счет лавинного, или Зенеровского, пробоя. Если прибор не рассчитан специально для работы в области пробоя ( как, например, стабилитрон и обращенный диод), то вслед за лавинным наступает и тепловой пробой, и диод гибнет. Заметим, что иногда тепловой пробой развивается раньше всех остальных. [2]

Обратный ток диода растет с увеличением обратного напряжения. Главными причинами различия обратных ветвей характеристики реального и идеального диодов являются ток т е р м о — генерации в объеме и на поверхности перехода и ток утечки по поверхности перехода. В германиевых диодах при комнатной температуре ток термогенерации мал и обратный ток близок к току насыщения. В кремниевых диодах при комнатной температуре ток термогенерации является основной составляющей обратного тока. [3]

Обратный ток диода зависит от температуры корпуса еще сильнее и имеет положительный коэффициент. Так, при увеличении температуры на каждые 10 С обратный ток германиевых диодов увеличивается в 2 раза, а кремниевых — 2 5 раза. [4]

Обратный ток диода возрастает при освещении p — n — перехода. Этот эффект может использоваться для фотометрических измерений. С этой целью в корпусе фотодиода делается прозрачное окно. На рис. 10.5 показано схемное обозначение фотодиода, на рис. 10.6 приведена его схема замещения, а на рис. 10.7 представлено семейство характеристик. Для фотодиодов характерно наличие тока короткого замыкания, который пропорционален его освещенности, поэтому в отличие от фоторезисторов фотодиод может использоваться без дополнительного источника питания. Чувствительность фотодиодов обычно составляет около 0 1 мкА / лк. При подаче на фотодиод запирающего напряжения фототок практически не изменяется. Такой режим работы фотодиода предпочтителен, когда требуется получить большое быстродействие, так как с ростом запирающего напряжения уменьшается собственная емкость р-п-пе-рехода. [6]

Обратный ток диода изме-ряется микроамперметром ИТ. Выходное сопротивление генератора постоянного напряжения должно быть достаточно малым, так как выходное напряжение ГН не должно меняться более чем на 1 % при изменении величины / обр от нуля до максимального ( для испытываемого диода) значения. Вольтметр включают до измерителя тока и его блока защиты БЗ. Поэтому падение напряжения на измерителе тока и токонесущих элементах схемы защиты не должно превышать 2 % от устанавливаемой величины обратного напряжения. Если генератор напряжения питается от сети, то пульсации на его выходе не должны превышать 1 % от выходного напряжения. [7]

Обратный ток диода измеряют при фиксированной величине обратного напряжения. Подводимое напряжение может быть как постоянным, так и переменным. [9]

Обратный ток диода — ток, протекающий через диод, к которому приложено постоянное напряжение, равное наибольшему обратному напряжению. При этом отрицательный полюс источника напряжения присоединен к положительному выводу диода. [10]

Обратный ток диода измеряется с помощью осциллографа. Сигнал, пропорциональный току диода, снимается с небольшого сопротивления R и подается на вход вертикального усилителя осциллографа. Замыкание и размыкание ключа / Ci позволяет исследовать процессы в диоде соответственно при малом и большом внешнем сопротивлении в цепи диода. [12]

Обратный ток диода 1обр при температуре 50 не превышает 0 3 ма. [13]

Обратным током диода называется амплитудное значение тока, проходящего через диод в обратном направлении при приложении к диоду переменного напряжения, замеряемого пиковым прибором или осциллографом. [14]

Рассчитать обратный ток диода при 350 К, если при 300 К он равен 10 мкА, а Вд7500 К. [15]

Источник

Обратный ток.

Диодом называют полупроводниковый прибор с одним p-n переходом, который имеет два выхода (катод и анод), он предназначен для стабилизации, выпрямления, модуляции, детектирования, преобразования и ограничения электрических сигналов обратного тока.

В своем функциональном назначении диоды разделяют на импульсные, выпрямительные, универсальные, стабилитроны, СВЧ-диоды, туннельные, варикапы, переключающие диоды и т.п.

Обратный ток

В теории нам известно, что диод пропускает ток лишь в одну торону. Однако, не многим известно и понятно каким именно образом он это делает. Схематически диод можно себе представить в виде кристалла состоящего из 2-х областей (полупроводников). Одна из этих областей кристалла обладает проводимостью n-типа, а другая — проводимостью p-типа.

Обратный ток

На рисунке находятся дырки, преобладающие в области n-типа, которые изображено синими кругами, а электроны, преобладающие в области p-типа — красными. Две эти области являются электродами диода катодом и анодом:

Катод – это отрицательный электрод диода, основными носителями заряда которого являются электроны.

Анод – это положительный электрод диода, основными носителями заряда которого являются дырки.

На внешних поверхностях областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Прибор такого рода может находиться исключительно в одном из двух состояний:

1. Закрытое – это когда он плохо проводит ток;

2. Открытое – это когда он хорошо проводит ток.

Обратное включение диода. Обратный ток.

Диод окажется в закрытом состоянии, если применить полярность источника постоянного напряжения.

Обратное включение диода. Обратный ток.

В таком случае электроны из области n-типа начнут перемещение к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, тоже будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В конце концов граница областей расширится, отчего образуется зона объедененная электронами и дырками, которая будет оказывать огромное сопротивление току.

Однако, в каждой из областей диода присутствуют неосновные носители заряда, и небольшой обмен электронами и дырками между областями все же будет происходить. Поэтому через диод будет протекать во много раз меньший ток, чем прямой, и этот ток называют обратным током диода. На практике, как правило, обратным током p-n перехода пренебрегают, и отсюда получается, что p-n переход обладает лишь односторонней проводимостью.

Источник

Устройство и принцип работы диода при прямом и обратном включении

Диоды

Диоды – самые простые полупроводники с двумя электродами, проводящие ток в одном направлении.

Они способны стабилизировать, выпрямлять, модулировать, ограничивать, преобразовать ток, поэтому установлены почти во всех бытовых электроприборах.

Основные характеристики диода: постоянный прямой и обратный электроток, прямое и обратное напряжение, прямое и обратное сопротивление, их максимально допустимые значения.

При монтаже в любом устройстве учитываются максимально допустимые значения параметров.

Устройство

В корпус, изготовленный в виде вакуумного баллона из керамики, стекла или металла, устанавливается:

  • кристалл;
  • анод;
  • катод;
  • подогреватель.

Кристаллы производятся из кремния или германия. Анод (плюс) и катод (минус) цилиндрической формы, помещаются внутри баллона. Подогреватель – нить внутри катода, которая раскаляется при подаче электротока, нагревая его. После достижения определенного уровня температуры активный слой на катоде генерирует нужные для работы электроны.

Сферы применения и назначение

По выполняемой работе диоды разделяются на универсальные, СВЧ, импульсные, выпрямительные, переключающие, стабилитроны, варикапы.

Они устанавливаются в электрооборудование:

  • преобразователи частоты, детекторы, логарифматоры;
  • выпрямители тока;
  • стабилизаторы;
  • ограничители колебаний вольтажа;
  • переключатели;
  • цепи, проводящие ток в единственном направлении;
  • лампочки индикации;
  • приборы, требующие отображения информации на дисплеях;
  • LED телевизоры.

Справка! Светодиоды монтируется в осветительные матрицы (ленты, лампы).

Работа диода и его вольт амперная характеристика

Диоды

По конструкции диод является кристаллом с двумя областями, обладающими различной проводимостью (p и n). Область с p-проводимостью анод (+), с n-проводимостью – катод (-). В аноде заряд в дырках, в катоде – в электронах. Кристалл покрыт металлом с выводами.

Строение определяет 2 положения:

  • открытое;
  • закрытое.

В открытом положении проводимость электротока хорошая, в закрытом – очень плохая.

Вольт-амперной характеристикой называется график. На вертикальной оси отражается основной и противоположный ток, на горизонтальной – основной и противоположный вольтаж.

Прямой электроток повышается быстро параллельно увеличению вольтажа. Противоположный ток увеличивается медленнее.

При слишком большом прямом электротоке молекулы кристалла нагреваются. Если нет системы охлаждения, существует вероятность разрушения кристаллической решетки. В схемах прямой поток ограничивается резистором, подключенным последовательно.

Справка! От электротока прямое напряжение не зависит. Для кремневых полупроводников оно не превышает 1,5 В, для изделий из германия – 1 В.

Прямое включение диода

Диод открывается после подключения напряжения, параметры основного тока зависят от характеристик кристалла и вольтажа. Из n-области в p-область устремляются электроны, из p-области в n-область – дырки. Частицы встречаются на границе (p-n переходе), запускается процесс поглощения (рекомбинации), сопротивление и вольтаж снижаются.

Подключение

Вокруг p-n образуется поле, которое направляется в противоположную сторону. Электроны перемещаются и возвращаются, появляется дрейфующий ток с неизменными параметрами, зависящими только от количества заряженных частиц. Одновременно растет обратное напряжение, переходя в стадию насыщения.

Читайте также:  Презентация по физике 10 класс электрический ток сила тока

Основной ток увеличивается стремительнее при повышении температуры во время работы прибора.

Обратное включение диода

Если плюс блока питания присоединяется к минусу полупроводника, а минус – к плюсу, работа диода прекращается (он закрывается). Заряженные частицы начинают отдаляться от области p-n, она расширяется, повышается сопротивление

При увеличении обратного напряжения до 100 В растет электроток в противоположном направлении. Рост резко увеличивается, если вольтаж превышает максимально допустимый для границы p-n. Обратный ток нагревает кристалл в диоде, переход пробивается, нормальная работа прибора прекращается. После выключения напряжения рядом с полюсами образуется диффузия.

Внимание! Во время нормальной работы противоположный электроток небольшой, поэтому им пренебрегают, считая полупроводниковый диод элементом с односторонней проводимостью.

Прямое и обратное напряжение

Во время работы (в открытом состоянии) в диоде основное напряжение, от его величины зависит сопротивление и величина электротока. В процессе закрывания через полупроводник проходит ток в противоположном направлении, создается напряжение, способствующее росту сопротивления до нескольких тысяч кОм.

Если работа полупроводника проходит на переменном напряжении, он открывается на плюсовой полуволне и закрывается на минусовой. Это свойство позволяет использовать полупроводники в выпрямителях.

Основные неисправности диодов

Внимание! Если диодные полупроводники перестали работать, сначала необходимо выяснить, не закончился ли срок их эксплуатации.

Если это не так, неисправность вызвала другая причина:

  • нарушение герметичности;
  • разрыв перехода, превративший прибор в изолятор:
  • тепловой пробой;
  • электрический пробой:
  • туннельный;
  • лавинный.

При нарушении герметичности возникает протечка, мешающая нормальному функционированию.

Пробой p-n перехода

Пробоем называют увеличение электротока в противоположном направлении после достижении во время работы показателя обратного напряжения, являющегося максимально допустимым для прибора. Если он превышается, противоположный поток электротока резко увеличивается при незначительном изменении вольтажа. После обрыва перехода направление потока всего одно, полупроводник превращается в проводник.

Определить эту неисправность можно при помощи мультиметра, определяющего сопротивление и подающего сигнал при прохождении электротока.

Мультиметр

Электрический пробой

Электрический туннельный или лавинный пробой можно устранить, если вовремя принять необходимые меры.

Причина электрического пробоя – сильный электроток в переходе или перегрев при отсутствии отвода тепла.

Туннельный пробой образуется, если во время работы на диод подается слишком высокое напряжение. Растет значение противоположного электротока, вольтаж снижается, электроны проходят через барьер, если его высота меньше их энергии.

Эту неисправность может вызвать:

  • слишком маленькая толщина области p-n (меньше длины пробега электрона);
  • обратный ток насыщения более 108 В/м;
  • наличие свободных мест в области дырок, в которую переходят электроны.

Лавинный пробой – увеличение во время работы противоположного электротока при небольшом увеличении вольтажа. Причина образования – повышение ионизации в p-n области, вызывающее увеличение количества частиц, носящих заряд. Электроны теряют свои обычные характеристики.

Важно! Пробои туннельного и лавинного типа обратимы, так как не повреждают полупроводник (при своевременном уменьшении вольтажа свойства сохраняются).

Тепловой пробой

Эту неисправность чаще всего вызывает недостаточный отвод тепла, способствующего перегреву перехода во время работы.

  • в кристалле растет амплитуда колебаний атомов;
  • электроны взаимодействуют с проводимой областью;
  • быстро повышается температура;
  • запускается процесс изменения структуры кристалла.

Полупроводник разрушается, причем процесс необратимый.

Основные выводы

Полупроводниковые диоды – радиоэлементы с единственным p-n переходом, присутствующие практически во всех бытовых электроприборах. Чтобы работа полупроводников длилась дольше, необходимо обладать знаниями о принципе работы диодов, причинах неисправностей и способах их предотвращения.

Чаще всего работа полупроводников нарушается при изменениях температуры в окружающей среде или переходе. Если температура слишком высокая, увеличивается количество энергоносителей в переходе, снижается сопротивление, растет объем противоположного тока. После достижения максимально допустимого уровня запускается процесс разрушения кристалла.

Чтобы предотвратить сокращение сроков работы, необходимо следить за температурой среды и чистотой приборов. При необходимости следует организовать дополнительную систему отвода тепла. Повышение температуры в переходе предотвращается соблюдением требований к уровню вольтажа и тока, определенному для конкретного прибора. Даже при малейшем превышении существует вероятность разрушения кристалла.

Источник

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

05 Июн 2013г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Полупроводниковые диоды

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

Диод в виде кристалла полупроводника

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

Прямое включение диода

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

Обратное включение диода

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Читайте также:  Плоский воздушный конденсатор зарядили отключили от источников тока

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Вольт-амперная характеристика диода

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Пробои p-n переходов диода

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

Источник

Обратный ток диода протекает по

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

обратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:

диод 1N4007 диод

А некоторые выглядят чуточку по-другому:

д226б диод д214 диод

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

Читайте также:  При ударе током ток не вышел

диод Д226

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диод

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частоты

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

цифровой осциллограф OWON

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

вольтамперная характеристика диода

1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

Диод

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

светодиоды осветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диод

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

тиристор

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты – одна из разновидностей диодных сборок.

маломощный диодный мост

На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

Похожие статьи по теме “диод”

Источник