Меню

Обратный тепловой ток перехода



Прямое и обратное смещение p-n-перехода

Рассмотрим явления, происходящие в диоде, к которому приложена разность потенциалов от внешнего источника напряжения.

Смещение, при котором плюс источника подсоединен к n-области, а минус — к p-области называется обратным (см. рис. 3).

Рис. 3. Обратное смещение на p-n-переходе.

Внешнее поле Евнвызывает дрейф основных носителей заряда в направлениях, указанных стрелками на рис. 3. Таким образом, вся масса электронов n-области и дырок p-области отходит от p-n-перехода, обнажая при этом новые слои ионизированных доноров и акцепторов, т. е. расширяя область объемного заряда до размера d+Δd.

Принято считать приложенное напряжение V при обратном смещении отрицательным, а вольт-амперную характеристику p-n-перехода называют обратной ветвью ВАХ.

При прямомсмещении (плюс источника напряжение подсоединяется к p-области, а минус — к n-области) возникающее в объеме n- иp-областей электрическое поле вызывает приток основных носителей к области объемного заряда p-n-перехода. Контактная разность потенциалов при этом уменьшается до значения Vk–V. При этом заряды, созданные внешним источником напряжения на омических контактах, оказываются перенесенными на границы области объемного заряда и она сужается до размеров d–Δd(см. рис. 4).

Рис. 4. Прямое смещение на p-n-переходе.

Прямой и обратный токи p-n-перехода

При обратном смещении на p-n-переходе ток основных носителей заряда, сдерживаемый возросшим потенциальным барьером, уменьшается. Увеличение обратного смещения приведет к дальнейшему росту потенциального барьера и, в конце концов, ток основных носителей заряда через p-n-переход станет равным нулю.

В этом случае на вольт-амперной характеристике будет наблюдаться лишь обратный ток неосновных носителей, попавших в область объемного заряда за счет дрейфа.

Прямое смещение понижает потенциальный барьер для основных носителей заряда, что приводит к росту прямого диффузионного тока. Основные носители заряда, гонимые градиентом концентрации, устремляются через понизившийся потенциальный барьер и прямой диффузионный ток через p-n-переход, в этом случае, значительно превысит обратный ток дрейфа неосновных носителей заряда.

Таким образом, подача внешнего смещения на p-n-переход выводит его из состояния динамического равновесия.

Простроим вольт-амперную характеристику p-n-перехода (см. рис. 5).

Рис. 5. Вольт-амперная характеристика p-n-перехода.

Как видно из рис. 5., при достаточно больших обратных смещениях возникает резкое увеличение обратного тока. Это связано с явлением пробоя p-n-перехода.

Пробой p-n-перехода

В зависимости от характеристик физических процессов, обуславливающих резкое возрастание обратного тока, различают четыре основных типа пробоя: туннельный, лавинный, тепловой и поверхностный.

Тепловой пробой.

При протекании обратного тока в p-n-переходе выделяется теплота и его температура повышается. Увеличение температуры определяется качеством теплоотвода. Увеличение температуры вызывает увеличение обратного тока, что, в свою очередь, приводит к новому росту температуры и обратного тока и т. д. Ток начинает нарастать лавинообразно и наступает тепловой пробой p-n-перехода.

Лавинный пробой.

В достаточно широких p-n-переходах при высоких обратных смещениях неосновные носители могут приобретать в поле перехода настолько большую кинетическую энергию, что оказываются способными вызвать ударную ионизацию полупроводника. В результате ударной ионизации могут образовываться дополнительные носители заряда (электрон-дырочные пары), растаскиваемые полем объемного заряда в направлении тока дрейфа (обратного тока). Дополнительные носители также могут вызвать ударную ионизацию, что приведет к образованию лавинного пробоя и резкому увеличению обратного тока.

Диоды, предназначенные для работы в таком режиме, называют стабилитронами. Их изготавливают из кремния, так как кремниевые диоды имеют весьма крутую ветвь ВАХ в области пробоя и в широком диапазоне рабочих токов у них не возникает теплового пробоя.

Туннельный пробой.

При приложении к p-n-переходу достаточно высокого обратного смещения возможен прямой туннельный переход электронов из валентной зоны p-области в зону проводимости n-области. С увеличением обратного смещения толщина барьера уменьшается (речь идет именно о потенциальном барьере на пути электронов из валентной зоны p-области в зону проводимости n-области, а не о ширине области объемного заряда). Если p-n-переход достаточно тонок, то при невысоких значениях обратного смещения можно наблюдать туннелирование электронов через p-n-переход и его пробой.

Поверхностный пробой.

Заряд, локализующийся на поверхности полупроводника в месте выхода p-n-перехода, может вызвать сильное изменение напряженности поля в переходе и его ширины. В этом случае более вероятным может отказаться пробой поверхностной области p-n-перехода.

Источник

Обратная ветвь ВАХ реального p-n перехода

Под обратной ветвью вольтамперной характеристики реального p-n перехода понимается зависимость обратного тока от значения обратного напряжения: Iобр = f(Uобр).

Данная зависимость приведена на рис.19.

Отличие реальной обратной ветви ВАХ p-n перехода от идеальной состоит в следующем: обратный ток растет при увеличении обратного напряжения p-n перехода и имеет значение большее Iо. Это объясняется тем, что в реальном p-n переходе обратный ток содержит несколько составляющих:

где Iо — ток насыщения или тепловой ток; Iт/г — ток термогенерации;

— ток утечки.

Следует отметить, что обратный ток кремниевых p-n переходов много меньше обратного тока германиевых p-n переходов. Это связано с различием ширины запрещенной зоны: DGe=0,72 эВ; DWз Si=1,12 эВ. Обратный ток определяется в основном неосновными носителями заряда, имеющими место в примесном полупроводнике. Так, например, в полупроводнике n-типа это дырки – pn, которые определяются в соответствии с законом действующих масс: pn=ni 2 /nn»ni 2 /NД. Известно, что ni Ge»10 13 см -3 , а niSi»10 10 см -3 , и при равной концентрации примеси получаем, что концентрация неосновных носителей заряда в кремниевом полупроводнике на шесть порядков меньше, чем в германиевом примесном полупроводнике, а это приводит к значительной разнице значений обратного тока.

Поясним сущность основных составляющих обратного тока реального p-n перехода.

Тепловой ток или ток насыщения Iо обусловлен тепловой генерацией электронно-дырочных пар атомами собственных полупроводников в областях, примыкающих к p-n переходу на расстоянии, равном длине диффузии.

Механизм образования теплового тока иллюстрируется рис.20, на котором обозначено: lобр — ширина обратносмещенного p-n перехода;
S×Ln — объем диффузии в полупроводнике p-типа неосновных носителей заряда — электронов; S×Lp — объем диффузии в полупроводнике n-типа неосновных носителей заряда — дырок.

Ток Iо не зависит от величины обратного напряжения, а зависит от материала полупроводника, температуры окружающей среды, степени легирования полупроводников.

Влияние материала полупроводника определяется различной концентрацией неосновных носителей заряда в примесном полупроводнике. Как уже отмечалось выше, на концентрацию неосновных носителей заряда влияют ширина запрещенной зоны исходного полупроводникового материала, собственная концентрация носителей заряда полупроводника и концентрация примесей. Поэтому при большей ширине запрещенной зоны и меньшей собственной концентрации носителей заряда у кремния по сравнению с этими параметрами для германия нетрудно сделать вывод, что ток насыщения p-n перехода на основе кремния много меньше тока p-n перехода, выполненного на основе германия: IоSi

Влияние температуры на тепловой ток можно пояснить, используя выражение

.

Из этого выражения следует, что при увеличении температуры тепловой ток возрастает экспоненциально, то есть увеличивается в два раза при изменении температуры на каждые десять градусов Цельсия.

Например, при T1=+20°С ток Iо1=10 мкА, а при T2=+50°C он определится из соотношения

,

то есть при изменении температуры на DT = +30°C тепловой ток возрастает в восемь раз.

Влияние концентрации примеси в примесных полупроводниках, образующих p-n переход, прослеживается при рассмотрении закона действующих масс применительно к определению концентрации неосновных носителей заряда. С ростом концентрации примеси Nа, NД в p- и n-областях уменьшается концентрация неосновных носителей, что ведет к уменьшению теплового тока.

Читайте также:  Не судом ток силой

Ток термогенерации появляется из-за конечной ширины p-n перехода, не учитываемой теорией идеального p-n перехода, и обусловлен генерацией электронно-дырочных пар в объеме p-n перехода.

Ток термогенерации зависит от Uобр, так как с увеличением обратного напряжения на p-n переходе происходит его расширение в соответствии с выражением

.

Отсюда можно сделать вывод, что ток термогенерации пропорционален корню квадратному из значения обратного напряжения на p-n переходе. Кроме этого, Iт/г зависит от материала полупроводника, температуры окружающей среды, концентрации примеси в p- и n-областях p-n перехода.

Как и для теплового тока, влияние материала полупроводника на ток термогенерации связано с различной шириной запрещенной зоны, а это определяет отличие в значении контактной разности потенциалов и соответственно в величине ширины p-n перехода lo. Поэтому имеем: для кремниевого полупроводника — DWз=1,12 эВ, Iт/г»10 3 ×Iо;

для германиевого полупроводника — DWз=0,72 эВ, Iт/г»0,1×Iо.

Из приведенных значений соотношения между током термогенерации и тепловым током можно отметить, что для германиевых p-n переходов ток термогенерации не учитывается, а для кремниевых p-n переходов пренебрегают током насыщения.

При увеличении температуры окружающей среды ток термогенерации возрастает экспоненциально, то есть удваивается при изменении температуры на каждые 10 градусов. Механизм влияния температуры аналогичен тому, что был рассмотрен при характеристике теплового тока.

От степени легирования областей p-n перехода ток термогенерации зависит следующим образом. С ростом Nа, NД происходит увеличение контактной разности потенциалов, уменьшение lo и lобр, а следовательно, и уменьшение Iт/г.

Ток утечки обусловлен проводимостью поверхностных молекулярных и ионных пленок, шунтирующих p-n преход. Ток утечки слабо зависит от температуры окружающей среды и линейно возрастает при изменении обратного напряжения. Характерной особенностью тока утечки является его временная нестабильность.

На основании рассмотрения составляющих обратного тока p-n перехода можно принять следующее решение. Обратный ток германиевого p-n перехода включает составляющие: IобрGe »Iо+Iу ,

а обратный ток кремниевого p-n перехода — IобрSi »Iт/г+Iу .

На рис.21 приведены примерные зависимости составляющих обратного тока германиевого p-n перехода и обратные ветви ВАХ для двух температур окружающей среды.

Для германиевых p-n переходов обратный ток в основном определяется током насыщения и имеет величину десятки микроампер. Ток термогенерации у них мал и им обычно пренебрегают. Незначительный наклон обратной ветви ВАХ германиевых p-n переходов обусловлен током утечки.

На рис.22 приведены примерные зависимости составляющих обратного тока кремниевого p-n перехода и обратные ветви ВАХ для двух температур окружающей среды.

Обратный ток кремниевого p-n перехода примерно на три, четыре порядка меньше обратного тока германиевого перехода. Объясняется это тем, что ширина запрещенной зоны у кремния больше, чем у германия, а концентрация неосновных носителей заряда оказывается на шесть порядков ниже. Поэтому ток Iо в кремниевом p-n переходе пренебрежимо мал, а ток термогенерации невелик из-за малого объема p-n перехода, ток утечки при современной технологии изготовления p-n перехода имеет незначительную величину. Отсюда в целом обратный ток кремниевого p-n перехода имеет небольшое значение.

Источник

Токи р-n перехода

Выше было рассмотрено диффузионное перемещение через р–п переход дырок и электронов. Этот поток носителей представляет собой диффузионный ток:

I диф = Ipp + Inn, (3)

где Ipp– ток, образованный дырками области р–типа;

I nn – ток, образованный электронами области n типа.

Поле р–п перехода, являясь тормозящим для основных носителей, а для неосновных носителей ускоряющее. Под воздействием его не основные носители перемещаются в смежную область. Их поток представляет собой дрейфовый ток:

I др =I pn + Inp, (4)

где I рn, –ток, образованный дырками области n–типа;

I np–ток, образованный электронами области р–типа.

В отсутствии внешнего электрического поля:

Для случая равновесия обозначим I диф =I од, а I др =I o и тогда

I oд = I о (6)

Следует заметить, что диффузионный и дрейфовый токи направлены в противоположные стороны, поэтому результирующий ток через р–п переход равен 0.В условиях динамического равновесия через р–п переход переходят только те свободные носители, энергия которых выше высоты потенциального барьера.

Влияние внешнего напряжения на р–п переход.

Прямое включение – источник напряжения подключен знаком «плюс» к области р–типа и «минусом» к области n–типа. Обратное включение противоположно прямому. При прямом включении электрическое поле источника напряженностью Enp направленo навстречу контактному полю Е и результирующая напряженность будет равна Е1= Е – Enp.Уменьшение напряженности поля вызовет уменьшение высоты потенциального барьера на величину прямого напряжения источника U пр= +U (см.рис.5 и 6):

Dj1 = Dj – Uпр (7)

Уменьшение высоты потенциального барьера приводит к увеличению числа основных носителей через р-n переход, т.е. к увеличению диффузионного тока:

I диф = I од . (8)

Так как I од = Iо , то можно записать

I диф = Io (9)

На величину дрейфового тока изменение высоты потенциального барьера не влияет, он остается таким же, как и в условиях равновесия. Поэтому результирующий ток через р–п переход, называемый прямым, c учетом (.9) будет равен:

Iпр= Iдиф –Iо = Io ( ) (10)

Рис.6 Прямое и обратное включение p-n-перехода.

При прямом включении уменьшается ширина р-n перехода, а при обратном включение р-n перехода, ширина перехода увеличивается (см. рис.6 б)) Рассуждая аналогично можно заключить, что в этом случае результирующий ток, называемый обратным, будет равен:

I об = I o ( )… (11)

При некотором значении обратного напряжения диффузионный ток станет равен нулю, через р–п переход будет протекать только дрейфовый ток. Его величина незначительна, т.к. концентрация не основных носителей мала. Поскольку ток, образованный движением не основных носителей зависит от тепловой генерации пар носителей, его называют также тепловым. Тепловой ток называют также током насыщения, так как это предельное значение обратного тока при возрастании обратного напряжения.При обратном включении ширина рп перехода увеличивается.

Электроёмкость р–п перехода.

По обе стороны границы p-n перехода расположены атомы донорной и акцепторной примесей и образуют отрицательные и положительные пространственные заряды. Если к p-n переходу приложить напряжение, то в зависимости от его величины будет изменяться его ширина, а , следовательно, и пространственный заряд. В этой связи p-n переход можно рассматривать как две пластины конденсатора с равными по величине, но противоположными по знаку заряду, т.е. p-n переход обладает электроемкостью. Различают барьерную и диффузионную электроемкость. Барьерная электроемкость определяется:

, , (12)

где Qоб – объёмные заряды, образованные ионизированными атомами акцепторной примеси; Uоб – обратное напряжение.

Значении p-n перехода в прямом направлении из каждой области в смежную инжектируются неосновные для нее носители заряда. Это связано с диффузией зарядов при понижении потенциального барьера. Если слои тонкие, то около границы p-n перехода возникает избыточная концентрация неосновных носителей. Чтобы нейтрализовать этот заряд из прилегающих слоев отсасываются основные носители. Следовательно, в каждой области у границы p-n перехода возникают равные по значению, но противоположные по знаку заряды Qдиф. Электроемкость, которая связана с изменением инжектированных носителей при изменении напряжения, называют диффузионной. Эта электроемкость увеличивается с увеличением прямого тока, а барьерная электроемкость увеличивается при увеличении обратного тока. При расчетах p-n перехода при прямом включении учитывают Сдиф, а при обратном Сδ.

Вольтамперная характеристика р–п перехода.

Читайте также:  Определить индуктивность соленоида в котором при силе тока 10 а

Это зависимость тока проходящего через рп переход от приложенного к нему напряжению:

I = ¦(U) ( рис.7.)

Рис. 7. Вольтампермерная характеристика диода

Вольтамперная характеристика (ВАХ) — это зависимость электрического тока, протекающего через диод от напряжения, приложенного к диоду. Прямой ток резко растет при небольших положительных напряжениях (UnpB). Но этот ток не должен превышать максимального значения, т.к. в противном случае произойдет перегрев диода и он выйдет из строя. Максимальное обратное напряжение определяется конструкцией диода и находится в интервале 10В ÷ 10кВ.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Что такое p-n переход

Атомы и ковалентная связь

Для начала давайте разберемся на уровне атомов что и как работает. Это будет небольшое предисловие.

Вся материя состоит из молекул, а молекулы в свою очередь из атомов. И у каждого атома есть протоны, нейтроны и электроны.

Протоны образуют с нейтронами ядро, в котором их равное количество.

Исключение — это водород у которого есть только один протон в ядре, без нейтрона.


Вокруг ядра находятся орбиты электронов (кстати, сейчас принято считать, что это облако электронов). Между ними действуют сильные и слабые силы, которые являются основой атомов. Далее на изображениях не будем указывать протоны и нейтроны для простоты восприятия.

Конечно, можно погрузиться и дальше, что есть мезоны, кварки и другие фундаментальные частицы. А еще, что на электронных оболочках атомов электроны распределены в виде «газа» и их не получится точно обнаружить, только с определенной долей вероятности. Однако, это не обязательно знать для понимания принципов работы общей цифровой электроники.

Достаточно просто принять тот факт, что есть атомы, у которых присутствуют ядра с положительным зарядом, а вокруг этого ядра находятся орбиты с электронами.

Электроны и протоны имеют противоположные знаки.

В электрически нейтральном атоме количество электронов и протонов одинаково. Все электроны распределены по разным уровням. Кто ближе к ядру – по два электрона, следующий уровень по 4 электрона и так далее. Но если по какой-либо причине атом теряет электрон, то такой атом становится положительным ионом.

Ему не хватает электрона на своей внешней электронной орбите, которая называется валентным уровнем. С валентного уровня у атома проще «забрать» электрон. А такие электроны, которые находятся на валентном уровне, называются валентными электронами.

Положительный ион (атом, у которого не хватает электронов) будет со знаком +, так как у него дефицит электронов, и он будет притягивать или притягиваться к свободному электрону (зависит от среды).

Все атомы в молекулах соединены друг с другом на валентном уровне, то есть при помощи ковалентной связи.

На валентном уровне связь ядра с электронами намного меньше, чем на других, поэтому атомы могут образовывать материю, соединяясь с другими атомами. Так и получаются химические реакции и соединения атомов друг с другом.

Полупроводники и кристаллическая решетка

Теперь плавно переходим к полупроводникам. У полупроводников, таких как кремний (Si) и германий (Ge) на ковалентном уровне есть по 4 электрона.

Не путайте кремень и кремний. Кремень – это минерал, а кремний – это химический элемент, который был открыт в 1810 году.

Особенность полупроводников заключается в том, что их атомы друг с другом образуют парные связи.

Допустим, есть атом кремния. У него 4 электрона на валентном уровне. Если к нему присоединить еще 4 атома кремния, то получится кристаллическая решетка. 4 атома связаны друг с другом 4 своими электронами.

На картинке показана связь атомов в плоскости. В реальности она естественно, находится не в одной плоскости, а в пространстве.

То есть, каждый атом может образовывать устойчивую связь друг с другом, по 4 штуки с каждой стороны и плоскости.

Особенность полупроводников заключается в том, что эта кристаллическая решётка очень устойчива.

Кстати, проводимость полупроводников сильно зависит от внешних условий (давление, температура, радиация, свет). Намного сильнее, чем у других материалов. Это все связано с особенностью кристаллической решетки, которая позволят делать солнечные батареи, датчики, камеры и много чего еще.

Итак, атомы полупроводников без примесей электрически нейтральны.

И что самое главное, они все равно будут связаны друг с другом. Общая ковалентная связь позволят им обмениваться друг с другом электронами.

Проводимость полупроводников в нормальных условиях практически такая же, как у диэлектриков, то есть очень низкая.

Проводимость кристаллической решетки с примесями

Свободных электронов в чистом полупроводнике мало, и это объясняет низкую проводимость материала.

Однако, при повышении температуры электроны на валентном уровне получают большую энергию, и могут быстрее покидать свои орбиты. Поэтому материал становится более проводимым при повышении температуры.

И из-за этого полупроводники получили свое название. Это и проводник, и диэлектрик в одном флаконе, который меняет свою проводимость из-за внешних условий.

Донорская примесь и n-тип

Если добавить в кристаллическую решетку кремния атом, у которого 5 валентных электронов, то из-за него в кристалле появятся свободные электроны.

Например, есть атом мышьяка (As) и атомы кремния (Si).

4 валентных электрона мышьяка образуют валентную связь с другими атомами кремния. А вот один электрон будет находится в зоне проводимости. То есть, он станет свободным электроном.

А вот атом мышьяка, который непреднамеренно отдал свой электрон, станет положительным ионом. И несмотря на это, кристаллическая решетка остается стабильной.

Полупроводник с примесью, в котором находятся свободные электроны, называется полупроводником n-типа. Основные носители заряда – свободные электроны. Неосновные – дырки.

Примеси добавляют при помощи легирования. Оно может быть, как металлургическим (повышением температуры, изготовление сплавов), так химическим (ионное и диффузное).

Если подать ток по такому материалу, то свободные электроны из примеси притягиваются положительным потенциалом. А с отрицательного потенциала приходят «новые» электроны, взамен старым, которые ушли к положительному потенциалу.

Акцепторная примесь и p-тип

А что будет, если в полупроводник добавить атом с тремя валентными электронам, например бор (B)?

Тогда три валентных электрона атома бора создадут связь с другими атомами кремния. Однако теперь в кристалле с такой примесью будет не хватать одного электрона.

Это отсутствие электрона называется дыркой. По сути, это положительный потенциал, но для простоты понимания его принято называть дыркой.

Это не ион и не элементарная частица. Это дефицит электрона у атомов. И тот атом, у которого будет не хватать электрона на своей орбите, будет притягивать к себе и свободные электроны, которые оказались в кристалле, и электроны от соседних атомов.

Такая примесь в кристалле также повышает его проводимость. И эта примесь называется акцепторной. То есть, примесные атомы создают дефицит электронов в кристаллической решетке.

Поэтому, такой полупроводник с акцепторной примесью называются p-типом. Его основные носители заряда – дырки. А неосновные – электроны.

Если пустить ток по такому материалу, то к отрицательному потенциалу будет притягиваться дырка к новому поступающему электрону из источника тока. А вот к положительному потенциалу будут уходить электроны, которые находились в кристалле.

Кстати, примесный атом бора получается отрицательно заряженным ионом, поскольку при прохождении тока на его орбите будет не 3 электрона, а 4, что является для него избытком.

Ток неосновных зарядов

Как уже было сказано выше, у p-типа основные носители заряда — это дырки, а у n-типа — это электроны. Неосновные носители соответственно, наоборот. И неосновные носители зарядов тоже участвуют при прохождении тока.

Читайте также:  Как замерить мультиметром напряжение постоянного тока

Конечно, неосновных носителей зарядов намного меньше, чем основных, но не стоит их полностью игнорировать, особенно когда речь идет о p-n переходе.

Создание p-n перехода

Что будет, если соединить два кусочка кремния c примесями p-типа и n-типа вместе? Получится p-n переход. Или как его еще называют — электронно-дырочный переход.

Этот переход является разграничительной зоной между p-областью и n-областью.

И особенностью этого перехода является то, что этот переход состоит из ионизированных примесных атомов, которые не позволяют свободным зарядам из двух разных областей соединяться друг с другом. Он образовался от такого явления, как диффузионный ток.

Этот ток возникает при нагреве (изготовлении перехода). Носители зарядов рекомбинируют друг с другом и уравновешивают баланс. Диффузионный ток под воздействием тепла хаотичный, и не имеет упорядоченного направления, если на него не действует вешнее напряжение.

Например, электроны из n-области начинают накапливаться возле положительных ионов примеси, но так как с другой стороны находятся отрицательные ионы n-области, они не могут перейти этот барьер. С дырками ситуация аналогична.

Свободные электроны из n-области не могут перейти в p-область из-за барьера, который создан ионизированными донорскими примесями. Здесь создается электрическое поле, которое действует как барьер для дырок и электронов. И из-за этого в p-n переходе отсутствуют свободные носителя зарядов. Переход их попросту отталкивает от себя с двух сторон.

Кстати, еще одно название барьера – обедненная область.

А в целом, кристалл остается электрически нейтральным. Если бы не было этого барьера, свободные носители заряды уравновесили бы друг друга.

Преодоление потенциального барьера

Чтобы свободные электроны и дырки могли пройти через этот барьер, нужно приложить внешнее напряжение, которое будет превышать напряжение, требуемое для перехода барьера.

Подключим к n-области минус источника тока, а к p-области плюс источника тока. Такое включение называется прямым. Еще n-область в приборах называют катодом, а p-область — анодом.

Напряжение источника должно быть выше, чем то, которое требуется для открытия p-n перехода.

Допустим, потенциальный барьер равен 0,125 Вольт. Чтобы преодолеть его, подключим источник с напряжением 5 В.

Чтобы не перегружать восприятие, на схеме не показаны неосновные носители зарядов.

И благодаря воздействию электрического поля внешнего источника, свободным носителям хватает энергии для того, чтобы перейти этот потенциальный барьер и преодолеть его электрическое поле. Переход подключен с прямым смещением.

Свежий электрон идет с источника, переходит в n-область, далее преодолевает барьер и переходит дырке, где происходит рекомбинация. И далее этот электрон идет на встречу к дырке, которая идет с положительного потенциала, подключенного к p-области. То есть, по p-n переходу проходит электрический ток. Этот ток называют еще диффузионным током или током прямого включения – когда основные носители зарядов упорядочено движутся к внешнему источнику тока.

Аналогична ситуация с дырками. Положительный потенциал внешнего источника, который подключён к p-области, будет забирать электрон, а на его месте появится дырка. Дырка в свою очередь будет двигаться к барьеру и далее к отрицательному потенциалу источника.

Ток, который создается дырками называется дырочным. Соответственно, ток, который создается электронами – электронным.

А на этой схеме переход показан без барьера, но с обратным током.

Неосновные носители зарядов в свою очередь действуют наоборот, от чего и возникает дополнительное сопротивление в p-n переходе.

Обратный ток может быть равен всего нескольким микроамперам.

Обратное включение

Поменяем полярность внешнего источника на противоположную. Минус к p-области, а плюс к n-области. Что же будет происходить с барьером и током зарядов?

Барьер увеличится за счет того, что основные носители зарядов будут притягиваться к внешнему источнику. Увеличится сопротивление потенциального барьера и напряжение его открытия.

Однако, не смотря на все это, через p-n переход будет протекать обратный ток.

Этот обратный ток очень мал, поскольку создается неосновными носителями заряда. Он еще называется дрейфовым током.

Применение p-n перехода

Вот так и работает простой диод, который состоит из p-n перехода. По-простому, p-n переход – это и есть классический диод. И он может работать как при прямом включении, так и при обратном. А вообще, вся современная цифровая техника состоит из p-n переходов.


Транзисторы, тиристоры, микросхемы, логические элементы, процессоры и многое другое основано именно на этом.

Контролируемый лавинообразный пробой

А что будет, если превысить напряжение потенциального барьера? Например, оно равно 7 В. А на схеме источник 5 В. Если подключим источник на 8 В, то наступит лавинообразный ток.

Неосновные носители зарядов будут забирать с собой основные. От части этот процесс контролируем, если не превышать напряжение источника выше, чем может выдержать p-n переход.

Электрический пробой

Если еще больше повысим напряжение, то будет электрический пробой. Эти явления широко используются на практике, например, в качестве стабилизаторов.

Ток не пойдет по цепи пока не будет то напряжение, которое требуется для открытие обратного смещенного p-n перехода.


И электрический пробой контролируется. Стабилитроны (так называются диоды, которые работают в таком режиме) делаются специально с широкими p-n переходами, которые долго работают под постоянными нагрузками.

Тепловой пробой

Но если радиодеталь изначально не рассчитана электрический пробой, то она быстро нагреется и произойдет тепловой пробой. Дырки и электроны получат тепловую энергию, из-за которой барьер полностью разрушится. Переход нагревается и трескается под действием температуры. Это необратимый процесс.

Вообще, когда техника «перегорает» — это и есть явление теплового пробоя, то есть превышение допустимой температуры.


И во время пайки тоже может случиться тепловой пробой. Достаточно немного перегреть деталь и p-n переход будет разрушен.

Соответственно, если пустить по диоду ток, который превышает его пропускную способность, то тоже случится тепловой пробой. Тоже самое касается и рассеиваемой мощности.

Как избавиться от обратного тока

А можно ли избавиться от обратного тока? Для этого в переход добавляют металлические примеси, которые убирают неосновные носители зарядов при обратном включении.

Но и обратный ток можно использовать на практике.

Например, с его помощью реализуются обратная связь, некоторые функции и измерения.

Как еще применяется обратное включение

А еще, обратное включение очень похоже на конденсатор. Взгляните на схему. Это же две обкладки конденсатора, посередине которого есть «диэлектрик». И электронно-дырочный переход обладает емкостью. И это тоже используется на практике. Так называется полупроводниковый конденсатор.

В радиоприёмниках используют вместо подстрочных конденсаторов варикапы. Варикапы легко настроить. Нужно всего лишь подать напряжение обратным смещением определенного значения, для повышения или понижения емкости.

Конечно, это не основное применение p-n перехода. Переход используется во всей цифровой технике по-разному.


Выпрямители, усилители, генераторы, процессоры, солнечные батареи и много другое. И то, что было описано выше про принцип работы p-n перехода – это принцип работы обычного диода.

Это наиболее простое описание принципа работы p-n перехода. Он бывает разных типов, и в полупроводниках есть физические явления, которые возникают при различных условиях.

Да и изготовление полупроводниковых радиодеталей бывает разным. Полупроводники разделяются на целые классы со своими особенностями. А микропроцессорное производство – это отдельный вид искусства.

Источник