Меню

Обходной для тока путь



Правила (законы) Кирхгофа простыми словами

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Схема контура

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Абстрактный узел

Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Формула сумма токов

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Иллюстрация второго правила Кирхгофа

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

Формулы для второго правила киргхофа

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Магнитные контуры цепей

Рис. 4. Магнитные контуры цепей

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них – два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Пример для расчёта

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 + I2 – I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

Решаем систему уравнений:

Система уравнений

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Система уравнений

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Источник

Построение схемы канализации тягового тока.

На двухниточный план добавляется чертеж, поясняющий канализацию тягового тока (рис. 16). На этом чертеже показываются все секции станции. Если ДТ соседних секций соединены средними точками, то секции рисуются вплотную. Если тяговый ток из одной секции в другую не передается, то между секциями делается зазор. Секции, по которым тяговый ток не идет, показываются пунктиром. Все секции имеют номера, как именуются секции, будет показано позднее в подпункте «5.4. Наименование секций». Отсутствие у нас имен секций не влияет на построение схемы канализации тягового тока, поэтому имена секций подпишем позднее.

Рис. Схема канализации тягового тока

На рисунке 16 приведена законченная схема канализации. По схеме видно, что на главных путях все секции передают тяговый ток через изостыки. На границе входных светофоров средние точки ДТ главных путей объединены и двумя междупутными соединителями (в разных шпальных ящиках) соединены с отсасывающей линией тяговой подстанции (ТП). Тяговый ток с путей 4П, 6П и секции 23СП выходит через секцию 22СП на главные пути, а оттуда на ТП. Тяговый ток с путей 3П, 5П, 7П и прилегающих к ним секций соединяется с главными путями через междупутные соединители, установленные с секций 11СП и М6П.

На схеме канализации необходимо обеспечить отсутствие обходных цепей для рельсовых цепей, которые могут привести к невыполнению контрольного режима РЦ (при изломе рельса путевое реле может остаться под током). Чтобы исключить такие случаи, необходимо устранить короткие тяговые контуры. В тяговый контур должно входить не менее 10 фазочувствительных рельсовых цепей. Для тональных рельсовых цепей (ТРЦ) длина контура должна быть больше четырехкратной длины самой длинной РЦ в контуре. Для того чтобы устранить такие контуры, на путях 5П, 7П, 4П с одной из сторон приемоотправочных путей связь между секциями отсутствует.

На нашей станции существует тяговый контур, но в него входит 11 рельсовых цепей (рис. 17), что допустимо при фазочувствительных РЦ (при ТРЦ необходим дополнительный расчет длин секций). Если бы количество рельсовый цепей не удовлетворяло требованиям, можно было убрать один из междупутных соединителей (второй соединитель при этом необходимо продублировать), разорвав контур, или подключив один из междупутных соединителей иначе. Например, при подключении средней точки ДТ секции М6П к ДТ секции 2СП в контуре становится не 11 РЦ, а 16 (рис 18).

Читайте также:  Начертить схемы электрических цепей постоянного тока

На рисунке 19 приведен пример организации отсоса тягового тока через тупик, ведущий к тяговой подстанции. В этом случае один из стрелочных соединителей убран (ранее стоял у секции 11СП), секции 5 СП и М5П делаются электрифицированными, на них ставятся дроссель-трансформаторы.

По возможности необходимо пропускать тяговый ток по рельсам, а не по стрелочному соединителю. Поэтому на секциях боковых путей, где каждое ответвление контролируется путевым реле, лучше поставить изостыки на стрелке так, чтобы тяговый ток не протекал по стрелочному соединителю.

Рис. 17. Тяговый контур

Рис. 18. Увеличение количества РЦ в тяговом контуре

Рис. 19. Пример организации отсоса через тупик тяговой подстанции

Точки на схеме канализации указывают на наличие ДТ, не подключенного никуда своей средней точкой. Такой трансформатор необходимо ставить в том случае, если к концу однодроссельной РЦ без ДТ прилегает ответвление без путевого реле или релейный конец. Таким образом защищаются от ложной свободности при пробое изолирующих стыков. Установку таких ДТ мы произведем позднее (в пункте 5.3), когда будем знать, где у нас будут размещаться питающие и релейные концы.

Источник

Схемы распределительных устройств

КОНСПЕКТ ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ

«ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ СТАНЦИЙ и ПОДСТАНЦИЙ» ч.2

Для бакалавров по направлению _” Энергетика и электротехника”_140400

для профилей: “Электроэнергетические системы и сети” , “Электрические станции” , “Релейная защита и автоматизация электроэнергетических систем” , “Электроснабжение”

Ст. преподаватель Галкин А.И.

Новочеркасск 2014 г.

Схемы распределительных устройств

Ранее, в 1й части, была дана формулировка распределительного устройства (РУ), как элемента структурной схемы энергообъекта (станции или подстанции).

РУ – это установка, предназначенная для приема и распределения электроэнергии на одном напряжении и содержащая коммутационные аппараты (выключатели и разъединители, а на подстанциях могут быть отделители и короткозамыкатели), измерительные аппараты (трансформаторы тока и напряжения) и проводники обеспечивающие связь между аппаратами.

Существует большое многообразие схем РУ отличающихся надежностью, оперативной гибкостью и соответственно стоимостью. Имеет место зависимость: чем выше надежность и оперативная гибкость РУ – тем выше его стоимость. К РУ подключаются различные присоединения. К основным присоединениям можно отнести: линии электропередачи (W), силовые трансформаторы (T) и генераторы (G) (если это РУ генераторного напряжения на ТЭЦ).

Все многообразие РУ можно разделить на схемы РУ со сборными шинами и схемы РУ без сборных шин. Последние в свою очередь можно разделить на РУ по упрощенным схемам и на РУ на основе кольцевых схем.(многоугольники) Во многих схемах РУ можно встретить части схемы, которые содержат три последовательно включенных элемента: разъединитель (QS1), выключатель (Q), трансформатор тока (TA) и еще один разъединитель (QS2).

Рассмотрим некоторые самые распространенные схемы РУ в каждой из указанной групп.

РУ по упрощенным схемам. РУ по упрощенным схемам представляют собой различные варианты блоков линия – трансформатор или мостиков, не являются характерными для электростанций и обычно применяются на стороне высокого напряжения подстанций при небольшом числе присоединений. Сюда же можно отнести и схему заход – выход.

Варианты этих схем приведены на рис.8.1. Здесь линии показаны стрелками, а силовые трансформаторы показаны перечеркнутыми (регулировка напряжения под нагрузкой). Линии и силовые трансформаторы не являются элементами РУ, а представляют собой присоединения к РУ. В схеме РУ показаны выключатели, разъединители, трансформаторы тока и трансформаторы напряжения.

РУ по схеме блок линия – трансформатор (рис. 8.1, б) применяется на тупиковых однотрансформаторных подстанциях в качестве РУ ВН при одной питающей линии. На двухтрансформаторных тупиковых подстанциях при двух питающих линиях применяют РУ по схеме два блока линия – трансформатор с выключателями и неавтоматической перемычкой со стороны линий (рис. 8.1,в).

РУ по схеме мостиков (рис. 8.1, г и д) применяются на высокой стороне транзитных подстанциях, которые включаются в рассечку транзитной линии. В пределах подстанции транзит мощности происходит по цепи автоматической перемычки, содержащей выключатель. Кроме этого выключателя в схеме мостиков есть еще два выключателя. Они могут быть установлены или со стороны силовых трансформаторов (рис. 8.1, г ) или со стороны линий (рис. 8.1, д ). На время ремонта элементов автоматической перемычки, чтобы не прекращать транзит мощности, предусмотрена неавтоматическая перемычка (без выключателя), которую называют ремонтной.

Рис. 8.1. РУ по упрощенным схемам:

а — блок с разъединителем; б — то же, но с выключателем; в — два блока с выключателями и неавтоматической перемычкой со стороны линий; г — мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов;

Продолжение рис. 8.1:

д — мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий; е — заход—выход

На транзитных однотрансформаторных подстанциях применяют РУ по схеме заход—выход (рис. 8.1, е ). Здесь также есть ремонтная перемычка без выключателя

Схемы РУ со сборными шинами. РУ со сборными шинами состоит из сборных шин, к которым подключаются различные присоединения. К основным присоединениям можно отнести: линии электропередачи, силовые трансформаторы и генераторы (если это РУ генераторного напряжения).

Сборными шинами называются участки шин жесткой или гибкой конструкции, обладающих малым электрическим сопротивлением, предназначенные для подключения присоединений.

В схемах со сборными шинами в цепи основных присоединений устанавливаются следующие аппараты. Со стороны сборной шины устанавливается разъединитель, который называют шинным, затем устанавливают выключатель, после выключателя – трансформатор тока, а за ним, со стороны присоединения, еще один разъединитель, который называют линейным или трансформаторным (в зависимости от присоединения).

Среди множества РУ со сборными шинами можно выделить следующие:

· схемы РУ с одной рабочей системой шин (обычно секционированной);

· схемы РУ с одной рабочей и обходной системами шин;

· схемы РУ с двумя рабочими и обходной системами шин;

· схемы с двумя рабочими системами шин и тремя выключателями на два присоединения.

Схема РУ с одной рабочей системой шин является простой, наглядной, экономичной, но не обладает достаточной оперативной гибкостью. При ремонте выключателя или другого аппарата в цепи присоединения оно теряет питание, а при ремонте шины или секции шин теряют связь все присоединения, связанные с этой шиной (секцией).

Рис. 8.2 Схема РУ с одной рабочей системой шин: а – несекционированная выключателем; б – секционированная выключателем.

На электростанциях такая схема в секционированном варианте может применятся в схемах РУ питания собственных нужд 6 кВ или в генераторном РУ 6 – 10 кВ на ТЭЦ.

На подстанциях такая схема в секционированном варианте может применятся в схемах РУ на стороне низкого напряжения 6 – 10 кВ (иногда 35 кВ)(РУ НН).

Схема РУ с одной рабочей и обходной системами шин применяется на станциях и подстанциях при напряжении 110, 220 кВ, если число присоединений меньше семи. Важным достоинством данной схемы является возможность замены любого (одного в данный момент) выключателя в цепи присоединения при его ремонте или ревизии обходным выключателем (QB1 на рис.8.3) без перерыва питания присоединения. Путь тока в обход ремонтируемого выключателя создается с помощь обходного выключателя и обходной системы шин. Часто рабочая система шин в этой схеме секционируется, как это и показано на рисунке. В обычном режиме работы обходная система шин не находится под напряжением и её шинные разъединители (QSB ) отключены. В отключенном положении находятся и обходной выключатель и разъединители в его цепи.

Основные операции по замене выключателя в цепи присоединения обходным с учетом правил коммутации рассмотрим на примере выключателя Q1 в цепи линии W1:

-Сначала включают разъединители в цепи обходного выключателя QB1, причем, в вилке разъединителей включают тот, который связан с той же секцией что и W1.

-После этого включают QB1 и этим подают напряжение на обходную шину. Это делается для проверки изоляции обходной шины.

-На следующем шаге отключают QB1.

-Теперь, когда уровень изоляции проверен, включают шинный разъединитель QSB1 в цепи W1.

-Вновь включают QB1.

-Теперь мы имеем два пути протекания тока в цепи W1: один через Q1, а другой через QB1.

-Теперь можно отключить Q1 и разъединители в его цепи за исключением шинного разъединителя QSB1.

Читайте также:  Как добыть электрический ток

Однако в этой схеме сохраняется тот недостаток, что при ремонте секции рабочих шин связь между присоединениями этой секции теряется. Этого недостатка лишена схема с двумя рабочими системами шин, часто она имеет и обходную шину.

Рис. 8.3 Схема с одной рабочей секционированной и обходной системами шин (трансформаторы тока и напряжения не показаны): QSB1, QSB2, QSB3 – шинные разъединители обходной системы шин в цепях присоединений; Q1 – выключатель в цепи присоединения; QS1 и QS2 – шинный и линейный разъединители в цепи присоединения; QB1 – обходной выключатель; QK1 (QK2) – секционный выключатель.

Схема РУ с двумя рабочими и обходной системами шин применяется при напряжении РУ 110, 220 кВ, если число присоединений не меньше семи. В этой схеме часть присоединений связана с одной рабочей шиной (К1), а часть – с другой (К2). Но любое присоединение можно перевести с помощью шиносоединительного выключателя QK и шинных разъединителей присоединения с одной системы рабочих шин на другую. (При этой операции шиносоединительный выключатель QK и разъединители в его цепи должны находиться во включенном состоянии.) Это используют при ремонте любой рабочей шины. Наличие обходного выключателя и обходной шины даёт те же преимущества, что и в предыдущей схеме.

Рис. 8.4 Схема с двумя рабочими и обходной системами шин (трансформаторы тока и напряжения не показаны): QK – шиносоединительный выключатель; QB – обходной выключатель; К1 – первая рабочая система шин; К2 – вторая рабочая система шин; КВ – обходная система шин.

Недостатком этой схемы, как и предыдущих, остаётся то, что при аварийном отключении одной из рабочих шин (например, в следствие КЗ на шине) она будет отключена и потеряется связь между присоединениями, которые связаны с этой шиной.

Схема с двумя рабочими системами шин и тремя выключателями на два присоединения рекомендована к применению в РУ напряжением 330 – 750 кВ и при числе присоединений шесть и более. В этой схеме за счет дополнительного расхода выключателей (условно 1,5 выключателя на присоединение, отсюда второе название схемы «полуторная») достигается высокая оперативная гибкость и надежная связь между присоединениями при многих аварийных и оперативных ситуациях.

Среди достоинств схемы можно отметить, что при ремонте или ревизии любого выключателя все присоединения остаются в работе, а при аварийном отключений одной из рабочих шин связь между присоединениями не теряется, так как она осуществляется через оставшуюся в работе шину

Среди недостатков можно указать на необходимость коммутации присоединений двумя выключателями и на повышенную стоимость. Кроме этого в этой схеме усложняются вторичные цепи трансформаторов тока, т.к. трансформаторы тока здесь устанавливаются в цепи выключателей и чтобы получить ток присоединения приходится суммировать (согласно первому закону Кирхгофа) токи вторичных обмоток двух трансформаторов.

Рис. 8.5 Полуторная схема РУ(трансформаторы тока и напряжения не показаны) : К1 и К2 – рабочие системы шин.

Схемы РУ на основе кольцевых схем (многоугольников). Применяются в РУ 110-220 кВ и более. В кольцевых схемах (схемах многоугольников) выключатели соединяются между собой, образуя кольцо. Каждый элемент — линия, трансформатор — присоединяется между двумя соседними выключателями. Самой простой кольцевой схемой является схема треугольника (рис. 8.6 а). Линия W1 присоединена к схеме выключателями Q1, Q2, линия W2 — выключателями Q2, Q3, трансформатор — выключателями Q1, Q3. Многократное присоединение элемента в общую схему увеличивает гибкость и надежность работы, при этом число выключателей в рассматриваемой схеме не превышает числа присоединений. В схеме треугольника на три присоединения — три выключателя, поэтому схема экономична.

В кольцевых схемах ревизия любого выключателя производится без перерыва работы какого-либо элемента. Так, при ревизии выключателя Q1 отключают его и разъединители, установленные по обе стороны выключателя. При этом обе линии и трансформатор остаются в работе, однако схема становится менее надежной из-за разрыва кольца. Если в этом режиме произойдет КЗ на линии W2, то отключаются выключатели Q2 и Q3, вследствие чего обе линии и трансформатор останутся без напряжения. Полное отключение всех элементов подстанции произойдет также при КЗ на линии и отказе одного выключателя: так, например, при КЗ на линии W1 и отказе в работе выключателя Q1 отключаются выключатели Q2 и Q3. Вероятность совпадения

Рис. 8.6 Кольцевые схемы (многоугольники) (трансформаторы тока и напряжения не показаны).

повреждения на линии с ревизией выключателя, как было сказано выше, зависит от длительности ремонта выключателя. Увеличение межремонтного периода и надежности работы выключателей, а также уменьшение длительности ремонта значительно повышают надежность схем.

В кольцевых схемах надежность работы выключателей выше, чем в других схемах, так как имеется возможность опробования любого выключателя в период нормальной работы схемы. Опробование выключателя путем его отключения не нарушает работу присоединенных элементов и не требует никаких переключений в схеме.

На рис. 8.6, б представлена схема четырехугольника (квадрата). Эта схема экономична (четыре выключателя на четыре присоединения), позволяет производить опробование и ревизию любого выключателя без нарушения работы ее элементов. Схема обладает высокой надежностью. Отключение всех присоединений маловероятно, оно может произойти при совпадении ревизии одного из выключателей, например Q1, повреждении линии W2 и отказе выключателя второй цепи Q4. При ремонте линии W2 отключают выключатели Q3, Q4 и разъединители, установленные в сторону линий. Связь оставшихся в работе присоединений W1, Т1 и Т2 осуществляется через выключатели Ql, Q2. Если в этот период повредится Т1, то отключится выключатель Q2, второй трансформатор и линия W1 останутся в работе, но транзит мощности будет нарушен. Установка линейных разъединителей QS1 и QS2 устраняет этот недостаток.

Достоинством всех кольцевых схем является использование разъединителей только для ремонтных работ. Количество операций разъединителями в таких схемах невелико.

К недостаткам следует отнести более сложный выбор трансформаторов тока, выключателей и разъединителей. Трансформаторы тока здесь устанавливаются, так же как и в полуторной схеме, в цепи выключателей

Главная схема электрических соединений электростанции или подстанции — это совокупность основного электрооборудования <генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.

Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т.д.

На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.

Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).

Источник

Вольтметр

Приборы для измерения напряжения

Вольтметр

Первый учёный, который сконструировал и создал достаточно мощную электрическую батарею постоянного тока, был известный итальянский физик Александро Вольта. Эта батарея получила название «вольтов столб» и состояла из нескольких тысяч кружочков из цинка и меди, которые разделялись пропитанными в соляной кислоте матерчатыми прокладками. Он использовал батареи с большим или меньшим количеством элементов. Маленькие батареи давали слабую искру, большие батареи сильную и яркую.

Учёный вплотную подошёл к количественному понятию напряжения, поэтому единицу разности потенциалов назвали его именем: «Вольт». В международной системе единиц СИ вольт обозначается буквой «V», отсюда напряжение переменного тока обозначается: VAC, а напряжение постоянного тока: VDC. У нас единица величины напряжения обозначается буквой «В» — вольт. Например, 220 В, 380 В и наиболее часто используемые производные: 10 3 -киловольт (kV), 10 6 -мегавольт, 10 -3 -милливольт (mV), 10 -6 -микровольт (μV). Другие большие или меньшие производные используются только в лабораторных условиях. Подробнее о производных величинах читайте на странице про сокращённую запись численных величин.

Для измерения напряжения или разности потенциалов используется прибор, который называется вольтметр. На снимке изображён щитовой стрелочный вольтметр, который может монтироваться на щите управления, какого либо устройства. Он используется только для измерения конкретной величины напряжения на одном из узлов данного устройства. Тот вольтметр, что изображён на фото, применяется для измерения постоянного напряжения до 15 вольт. Взгляните на его шкалу. Она ограничена 15 вольтами.

Читайте также:  Подключение потребителей переменного тока

Стрелочный вольтметр на 15 вольт

На принципиальных схемах условное изображение вольтметра может выглядеть вот так.

Условное изображение вольтметра на схеме

Из рисунка видно, что условное изображение вольтметра на схеме может быть разным. Если в кружке обозначена буква «V», то это означает, что данный вольтметр рассчитан на измерения величин напряжения, составляющих единицы – сотни вольт. Изображения с обозначением «mV» и «μV» указываются в тех случаях, если вольтметр рассчитан на измерение долей вольта — милливольт (1mV = 0,001V) и микровольт (1μV = 0,000001 V). Иногда рядом с изображением вольтметра также указывается максимальная величина напряжения, которую способен измерить вольтметр. Например, вот так – 100 mV. Обычно эта величина указывается для встраиваемых стрелочных вольтметров. Превышать это напряжение не стоит, так как можно испортить прибор.

Кроме этого, рядом с выводами вольтметра могут быть проставлены знаки полярности подключения его в схему « +» и «». Это касается тех вольтметров, которые применяются для измерения постоянного напряжения.

Следует отметить, что щитовые вольтметры это частный случай использования этих приборов. В лабораториях, на радиозаводах, в конструкторских бюро и радиолюбительской практике, вольтметры используются чаще всего в составе мультиметров, которые раньше назывались авометры, то есть ампер-вольт-омметр.

В настоящее время с развитием цифровой электроники стрелочные приборы отходят в прошлое и им на смену приходят цифровые мультиметры с удобной цифровой шкалой, автоматическим переключением предела измерения, малой погрешностью и высоким классом точности.

В радиолюбительской практике на смену «цешкам» и «авошкам» пришли компактные и удобные цифровые приборы. Работать с ними не сложно, но определённые меры безопасности применять необходимо.

Как измерить напряжение мультиметром?

Следует твёрдо помнить, что вольтметр, в отличие от амперметра подключается параллельно нагрузке.

Например, вам надо замерить напряжение на резисторе, который является частью электронной схемы. В таком случае переключаем мультиметр в режим измерения напряжения (постоянного или переменного – смотря какой ток течёт в цепи), устанавливаем наивысший предел измерения. По мере накопления опыта предел измерения вы научитесь выставлять более осознанно, порой пренебрегая данным правилом. Далее подключаем щупы мультиметра параллельно резистору. Вот как это можно изобразить в виде схемы.

Измерительная схема

Вот так плавно мы переходим к определению так называемого шунта. Как видим из схемы, вольтметр, который измеряет напряжение на резисторе R1, создаёт параллельный путь току, который протекает по электрической цепи. При этом часть тока (Iшунт) ответвляется и течёт через измерительный прибор – вольтметр PV1. Далее опять возвращается в цепь.

В данном случае вольтметр PV1 шунтирует резистор R1 – создаёт обходной путь для тока. Для электрической цепи вольтметр – это шунт – обходной путь для тока. По закону ома, напряжение на участке цепи зависит от протекающего по этой цепи тока. Но мы ведь ответвили часть тока в цепи и провели эту часть через вольтметр. Поскольку сопротивление резистора неизменно, а ток через резистор уменьшился (IR1), то и напряжение на нём изменилось. Получается, что вольтметром мы измеряем напряжение на резисторе, которое образовалось после того, как мы подключили к схеме измерительный прибор. Из-за этого образуется погрешность измерения.

Как же уменьшить воздействие измерительного прибора на электрическую цепь при проведении измерений? Необходимо увеличить, так называемое «входное сопротивление» измерительного прибора – вольтметра. Чем оно выше, тем меньшая часть тока шунтируется измерительным прибором и более точные данные мы получаем при измерениях.

Современные цифровые мультиметры обладают достаточно большим входным сопротивлением и практически не влияют на работу схемы при проведении измерений. При этом точность измерений, естественно, достаточно высока.

Ранее все приборы были стрелочные, а для того, чтобы высоким напряжением не вывести прибор из строя применялись резистивные шунты, которые уменьшали величину измеряемого напряжения до безопасной величины. Но эти шунты вносили так называемое «паразитное сопротивление» и это сказывалось на точности измерений.

Поэтому в лабораторных условиях использовались специальные ламповые вольтметры, которые обладали большим входным сопротивлением и некоторые из них имели класс точности в доли процента.

Перейдём к практике.

Прежде всего, не забывайте, что есть переменное (англ. сокращение — VAC) и постоянное напряжение (VDC). Профессиональные приборы сами определяют, с каким напряжением вы работаете, и сами переключаются в нужный режим и на требуемый поддиапазон измерений. При работе с малогабаритными приборами все переключения нужно делать вручную.

На снимке показана часть панели управления популярного и недорогого тестера DT-830B.

Панель прибора DT-830B

Хорошо видно, что пределы измерения переменного напряжения ограничены величинами: 750 вольт (750 V

) и 200 вольт (200 V

). Понятно, что к силовым промышленным сетям с этим прибором не стоит и близко подходить. Шкала постоянного и импульсного напряжения несколько больше: от 200 милливольт (200 mV) до тысячи вольт (1000).

Как уже говорилось, чтобы замерить напряжение на участке схемы, нужно выбрать переключателем пределов измерения самый большой предел измерения и подключить щупы мультиметра параллельно тому участку цепи, на котором производится замер.

Если предел измерения подходит – то на дисплее появятся показания. Если этого не происходит, то отключаем вольтметр от схемы, уменьшаем предел измерения на один шаг. Повторяем измерение. И так далее до получения показаний.

Имейте в виду, что провода измерительных щупов со временем изнашиваются. При этом нарушается электрический контакт. Перед проведением любых измерений проверяйте целостность щупов!

Также часто бывает необходимо замерить напряжение на выходе блока питания или химического источника тока (батарейки или аккумулятора).

Выбираем ту секцию на панели прибора, которая отвечает за измерение постоянного напряжения. Выставляем предел чуть больше того напряжения, что мы хотим измерить. Далее подключаем щупы прибора в соответствии с полярностью и изменяем предел измерения в сторону уменьшения до тех пор, пока на табло не появятся данные.

На фото показан замер напряжения составной батареи из трёх батареек 1,5V с помощью мультиметра Victor VC9805A+. Для измерения выбран предел 20V.

Измерение напряжения составной батареи питания 4,5 V

Аналогично замеряется напряжение на герметичном свинцовом аккумуляторе.

Измерение напряжения на аккумуляторной батарее 12V

Стоит понимать, что таким образом мы замеряем так называемую ЭДС. ЭДС или электродвижущая сила — это напряжение на клеммах аккумулятора без подключенной нагрузки. Если к аккумулятору подключить какой-либо прибор, то напряжение будет чуть меньше.

Никогда не касайтесь руками оголённых щупов! Небольшим напряжением от 1,5-вольтовой батарейки вас, конечно, не убьёт, но вот при измерении напряжений более 24 вольт могут быть серьёзные последствия от удара током.

Чтобы руки оставались свободными используйте зажимы типа «крокодил», но подключать их нужно при отключенном от сети приборе. Часто возникает необходимость измерять напряжение на рабочей плате, в разных её точках.

Если вы работаете с низковольтным устройством, бойтесь только закоротить щупами отдельные проводники. Для замеров напряжения в устройстве, как правило, применяется следующая методика.

Соедините «земляной» щуп прибора и «землю» платы как можно надёжнее. Работать одним щупом всегда удобнее. Для тех, кто не в курсе, «земляным» или «общим» щупом у прибора называется тот щуп, который подключается к разъёму COM. Обычно он чёрного цвета. Сокращение COM получено от английского слова common – «общий».

Наденьте на рабочий щуп прибора кусочек трубки ПВХ, оставив только крохотный острый кончик. Это делать не обязательно, но желательно. При случайном касании щупом соседних проводников трубка ПВХ изолирует контакты и убережёт от короткого замыкания.

По принципиальной схеме, в контрольных точках проведите нужные вам замеры по отношению к «земле» — корпусному или по-другому общему проводу. Высокое входное сопротивление тестера работу вашей схемы не нарушит.

Измерение переменного напряжения производится аналогичным образом. Можно для пробы измерить переменное напряжение электросети в собственной квартире.

Измерение переменного напряжения в сети 220В цифровым мультиметром

На снимке видно, что установлен максимальный предел 750 вольт (напряжение переменное – V

). При установке этого предела на индикаторе высвечиваются две буквы: HV – высокое напряжение (сокращение от англ. – High Voltage). Поскольку напряжение переменное, то полярность не имеет значения. В данном случае величина напряжения сети — 217 вольт.

Как уже говорилось, при работе с высоким напряжением следует соблюдать правила электробезопасности.

Источник