Меню

Номинальный ток статора синхронного двигателя



Синхронный двигатель

Принцип действия синхронного двигателя.

Так как синхронная машина обладает свойством обратимости, конструкция двигателя практически не отличается от конструкции синхронного генератора. Однако взаимодействие элементов теперь отвечает принципу действия двигателя.

Электрическая активная мощность Р потребляется из сети, в результате чего по обмоткам статора протекает ток . Ток , как и в генераторе, создаёт МДС Fст, а она – потоки Фd и Фр,я, наводящие в обмотке статора ЭДС и .

По обмотке ротора протекает ток возбуждения Iв, её МДС Fв создаёт магнитный поток ротора Ф. Вращаясь вместе с ротором, поток Ф в соответствии с законом электромагнитной индукции (ЭМИ) индуцирует в обмотке статора ЭДС , которая направлена против напряжения сети . Сумма ЭДС с учётом падения напряжения на активном сопротивлении обмотки статора уравновешивает напряжение сети . Магнитные потоки Ф, Фd и Фр,я образуют результирующий магнитный поток двигателя Фрез.

Вал двигателя сцеплён с валом рабочей машины РМ (например, со шпинделем металлорежущего станка), потребляющей механическую энергию и создающей момент сопротивления Мс. В результате действия тормозящего момента Мс полюсы ротора отстают от полюсов результирующего поля статора (см. рис. 4.6).

В двигательном режиме результирующий магнитный поток двигателя Фрез является ведущим; вращаясь, он увлекает за собой ротор, создавая вращающий момент М двигателя, преодолевающий тормозной момент Мс механической нагрузки.

Уравнение второго закона Кирхгофа для обмотки статора.

В двигательном режиме синхронная машина потребляет из сети ток , который направлен навстречу ЭДС (рис.4.14,а).

Уравнение, записанное по второму закону Кирхгофа для фазы обмотки статора

показывает, что противо-ЭДС и индуктивное падение напряжения jXсин уравновешивают напряжение сети (предполагается, что
=0).

Векторная диаграмма синхронного двигателя.

Векторная диаграмма построена по уравнению (4.4) на рис. 4.14, б. В результате действия механической нагрузки Мс ось магнитного потока ротора Ф отстает на угол от оси результирующего магнитного потока Фрез. Поэтому в двигательном режиме вектор ЭДС отстает по фазе на угол от вектора напряжения сети . Сопоставление векторных диаграмм синхронного двигателя (рис. 4.14,б) и синхронного генератора (см. рис. 4.13) показывает, что угол меняет свой знак. При построении векторной диаграммы двигателя вектор принимается за исходный.

Вектор тока отстает по фазе на 90° от вектора jXсин .

Мощность и вращающий момент синхронного двигателя.

Если пренебречь потерями, которые относительно малы, то активная потребляемая мощность равна электромагнитной мощности, т. е. мощности, передаваемой магнитным полем из статора в ротор , где — угол сдвига фаз между током и ЭДС.

Из треугольников Оса и асb векторной диаграммы на рис. 14.14, б следует, что отрезок , где —масштабный коэффициент. Подставляя значение IcosΨ в выражение для Рэм, получаем для механической мощности на валу двигателя
.

Механический момент на валу двигателя
,

где — угловая скорость ротора; Мтах = — максимальный момент, развиваемый двигателем. При постоянном напряжении сети Uc максимальный момент двигателя зависит только от ЭДС Е, т.е. от тока возбуждения ротора Iв.

Угловая и механическая характеристики.

В двигательном режиме угол положительный, поэтому на графике двигательному режиму соответствует положительная полуволна синусоиды. В генераторном режиме угол отрицательный, ему соответствует отрицательная полуволна синусоиды. В диапазоне угла нагрузки -90° Мmax , то угол нагрузки станет больше 90°, рабочая точка перейдёт на неустойчивый участок угловой характеристики. Вращающий момент двигателя М начнёт уменьшаться, ротор тормозиться, двигатель выйдет из синхронизма и может остановиться.

Аналогичные явления происходят и в генераторном режиме. Выход («выпадение») машины из синхронизма – явление недопустимое, оно может привести к тяжёлой тобы в номинальном режиме угол нагрузки и запас по моменту и активной маварии в электрической сети. Поэтому синхронные машины проектируются так, чощности составлял не менее 1,65.

Механической характеристикой синхронного двигателя называется зависимость частоты вращения от момента двигателя. В синхронном двигателе частота вращения ротора постоянна и от нагрузки не зависит. Поэтому механическая характеристика n(M) (рис. 4.18) – прямая, параллельная оси абсцисс.

Регулирование коэффициента мощности синхронного двигателя.

Если в этих условиях изменять ток возбуждения, ЭДС обмоток статора и изменяются так, что активная составляющая тока Icosφ и составляющая ЭДС остаются неизменными (рис. 14.17).

При изменении тока возбуждения вектор скользит вдоль прямой ab, изменяются положение вектора jXсин и угол φ сдвига фаз между током и напряжением сети , а, вследствие того, что , конец вектора тока скользит по прямой cd.

Когда ток возбуждения двигателя мал (недовозбуждение), = , ток отстаёт по фазе от и двигатель потребляет реактивную мощность. При некотором, относительно большом токе возбуждения = и ток является чисто активным.

Наоборот, при перевозбуждении и вектор тока опережает по фазе вектор напряжения , , ток, потребляемый двигателем из сети, имеет ёмкостную составляющую. Последнее весьма ценно, поскольку ёмкостный ток компенсирует индуктивные токи, потребляемые из сети другими потребителями (асинхронными двигателями, различного рода катушками и т.п.), и тем самым улучшается cosφ всей сети. Обычно синхронные двигатели работают с перевозбуждением при .

U – образные характеристики.

При уменьшении тока возбуждения Iв уменьшается ЭДС Е и угол увеличивается (рис.4.17).

Штриховая кривая АВ на рис. 4.18 представляет собой границу устойчивости, на которой =90°.

Наиболее экономичным для самого синхронного двигателя является режим работы с , так как двигатель развивает заданную механическую мощность при наименьшем, чисто активном токе статора.

Рис. 4.17 и 4.18

Обычно в эксплуатации синхронный двигатель перевозбуждают с целью улучшения cosφ сети. Режим перевозбуждения выгоден и тем, что уменьшается угол и возрастает перегрузочная способность двигателя. Вместе с этим следует учитывать, что обмотки статора двигателя рассчитаны на определённый ток с точки зрения нагрева. Поэтому, чем больше загрузка двигателя активным током Ia (определяющим механическую мощность и момент на валу), тем меньше возможности использования двигателя в качестве генератора реактивной (ёмкостной) мощности за счёт реактивной составляющей тока Ip.

Синхронные компенсаторы.

Пуск синхронного двигателя.

Пуск синхронного двигателя сопряжён с трудностями. Если статорную обмотку включить в трёхфазную сеть, а обмотку возбуждения питать от источника постоянного напряжения Uв (рис. 4.19), то ротор не сдвинется с места – из-за инерционности ротора вращающееся поле статора не успевает сцепиться с неподвижным полем ротора.

Читайте также:  Сила тока в проводнике не зависит от вида проводника 1

Распространение получил так называемый асинхронный пуск синхронного двигателя. Для осуществления асинхронного пуска ротор синхронного двигателя снабжается специальной пусковой короткозамкнутой обмоткой из медных или алюминиевых стержней типа беличьей клетки асинхронного короткозамкнутого двигателя. Пуск двигателя осуществляют следующим образом (рис. 4.19).

Вначале обмотка возбуждения синхронного двигателя замыкается на пусковой реостат Rп, сопротивление которого в 8 – 10 раз больше, чем сопротивление обмотки возбуждения (если оставить обмотку возбуждения разомкнутой, то в ней при пуске вращающимся полем статора будет наводиться значительная ЭДС, опасная для изоляции).

При включении обмотки статора на трёхфазное напряжение двигатель за счёт короткозамкнутой обмотки начинает работать как асинхронный. Когда частота вращения ротора двигателя достигает примерно 95% синхронной частоты вращения поля статора n, пусковой реостат Rп отключают, а обмотку возбуждения ротора включают на постоянное напряжение Uв.

Так как теперь частота вращения поля статора отличается незначительно от частоты поля вращающегося ротора, полюсы полей статора и ротора вступают во взаимодействие, двигатель втягивается в синхронизм и начинает работать как синхронный.

В рабочем, т.е. в синхронном, режиме токи в пусковой короткозамкнутой обмотке не возникают и она в работе машины не участвует. Однако при кратковременных толчках механической нагрузки на валу в пусковой обмотке токи наводятся и создают момент, демпфирующий колебания ротора.

Преимущества, недостатки и применение синхронных двигателей.

Наконец, вращающий момент синхронного двигателя пропорционален напряжению сети Uc . Поэтому при понижении напряжения в сети синхронный двигатель сохраняет большую перегрузочную способность, чем асинхронный, и, следовательно, обладает большей надёжностью.

Вместе с тем синхронный двигатель сложнее по конструкции, чем асинхронный той же мощности, и поэтому дороже. Синхронные двигатели должны иметь источник постоянного тока (специальный возбудитель или выпрямитель), пуск у них протекает сложнее, чем у асинхронных. Частотное регулирование является единственным способом регулирования угловой частоты вращения ротора синхронного двигателя.

Тем не менее, преимущества синхронных двигателей настолько велики, что при мощностях свыше 100 кВт их целесообразно применять всюду, где не требуется часто останавливать и пускать механизмы или регулировать их скорость. В настоящее время они применяются для привода преобразовательных агрегатов, компрессоров, насосов, вентиляторов, мельниц, дробилок, нерегулируемых прокатных станов и т.п.

Отечественная промышленность выпускает трёхфазные синхронные двигатели мощностью от 20 кВт до нескольких десятков тысяч киловатт при частотах вращения от 100 до 1000 об/мин в явнополюсном исполнении и при 1500, 3000 об/мин – в неявнополюсном, с различным исполнением по способу защиты от внешних воздействий (открытое, защищённое, закрытое и т.д.), с различным рабочим положением вала (горизонтальные, вертикальные) и с различными системами возбуждения: от генератора постоянного тока, расположенного на одном валу с двигателем, от тиристорных выпрямителей и т.д.

Источник

Расчет трехфазного синхронного двигателя. Номинальное фазное напряжение

Страницы работы

Фрагмент текста работы

Расчет трехфазного синхронного двигателя

1. Номинальная мощность

2. Номинальное напряжение (линейное)

3. Номинальная частота вращения

6. Кратность максимального момента

Режим работы — продолжительный.

1. Номинальное фазное напряжение (предполагается, что обмотка статора соединена в звезду)

2. Номинальная полная мощность

исходя из номинальных данных машины

3. Номинальный фазный ток

4. Число пар полюсов

5. Расчетная мощность

-коэффициент представляющий собой отношение ЭДС в якоре при номинальной нагрузке к номинальному напряжению. При работе синхронного двигателя с опережающим током и можно принять

6. Графическим методом предварительно определяем внутренний диаметр статора для при

7. Внешний диаметр статора

-имеет значение в зависимости от числа полюсов

По табличным данным выбираем ближайший нормализованный внешний диаметр статора(Габарит №11):

-высота оси вращения

8. Полюсное деление

9. Расчетная длина статора. По графикам для при р=3 находим . Задаемся:

-зависят от размеров и конфигурации полюсного наконечника, а так же воздушного зазора и полюсного деления. Они берутся предварительно.

— обмоточный коэффициент. Определяется предварительно , что соответствует шагу обмотки

— удовлетворяет заданному промежутку значений при р=3

11. Действительная длина статора

12. Число вентиляционных каналов при

Из этого предела выбираем целое значение

13. Длина пакета

14. Суммарная длина пакетов магнитопровода

Зубцовая зона статора.

15. Число параллельных ветвей обмотки статора.

Так как , то выбираем

16. По графику для находим

17. Максимальное число пазов (зубцов) магнитопровода статора

18. Минимальное число пазов (зубцов) магнитопровода статора

19. Число пазов магнитопровода статора

Так как то сердечник выполняется не сегментированным

Выберем значение Z1 из заданного промежутка Z1min…Z1max, чтобы удовлетворяла условиям:

а) Z1 должно быть кратным числу фаз m и числу параллельных ветвей а б) должно быть целым или дробным вида , причем d не может быть кратное числу фаз и должно быть меньше числа пар полюсов в) число параллельных ветвей и число полюсов должны быть связаны следующим соотношениям:

— при дробном числе пазов на полюс и фазу — целое число

-при целом числе пазов на полюс и фазу — целое число

20. Расчет числа проводников в пазу

Уточненная линейная нагрузка

Пазы и обмотка статора

21. Ширина паза (предварительно)

22. Поперечное сечение эффективного проводника обмотки статора (предварительно)

23. Возможная ширина изолированного проводника

Изоляция катушек выбрани для класса нагревостойкости «В». Двусторонняя толщина изоляции

Предварительная ширина элементарного проводника с изоляцией

24. Размеры проводников обмотки статора. Принимаем, что эффективный проводник состоит из двух элементарных.( ) Марка провода ПСД с толщиной двухсторонней изоляции 0,33. Толщина изоляции элементарного проводника 0,05. Ширина голого прямоугольного проводника . Ширина голого элементарного проводника

Выберем стандартные значения и равные .

— допуски на разбухание изоляции

— технологические допуски на укладку

— суммарная толщина изоляции по высоте паза

— допуски на разбухание изоляции

— технологические допуски на укладку

Эскиз паза изображен на рис.1 в масштабе 4:1

Источник

Устройство и принцип действия синхронных электродвигателей

Синхронный электродвигатель – электрическая установка, действующая от сети переменного и постоянного тока. Синхронная машина улучшает коэффициент мощности. Данные моторы используются довольно часто в электрической системе, потому что они подходят для любой сети напряжения и обладают высокими экономическими данными.

Область применения

  • конвейеры,
  • мощные вентиляторы,
  • мельницы,
  • эксгаустеры,
  • компрессоры,
  • дробилки,
  • прокатные станки.

Преимущества и недостатки

Синхронный электродвигатель имеет сложнее структуру, чем асинхронный, но обладает некоторыми достоинствами.

Главным положительным качеством данных агрегатов является способность поддерживать оптимальный режим реактивной энергии. Из-за автоматического регулирования силы тока двигателя, он работает, не употребляя, не давая реактивную энергию, значение коэффициента мощности равняется 1. Если нужна реактивная энергия, она будет производиться синхронным мотором.

Читайте также:  Как определить ток по мощности в сети 380 в

Данным двигателям не страшны перебои в сети, которой равен их максимальный момент. А значение критического момента равно квадрату напряжения.

Агрегат выдерживает большую перегрузку, которую можно еще увеличить автоматически повышением тока при необходимости непродолжительной нагрузки на вал. Он имеет постоянную скорость вращения независимо от нагрузки.

Трехфазный синхронный двигатель дороже обычного асинхронного из-за сложного механизма и особого устройства.

Еще недостатком оказывается надобность в постоянном источнике энергии, функции которого выполняет выпрямитель или специализированный возбудитель.

Устройство электродвигателя

Синхронный мотор имеет две основные части — статор и ротор. Неподвижная часть называется статором, а подвижный элемент ротором.

Устройство синхронного двигателя

Однофазный двигатель с короткозамкнутым ротором, расположенным в статоре или снаружи в двигателях обращенного вида. В основе ротора — постоянные магниты. Материал магнитов имеет высокую коэрцитивную силу. Полюсы ротора могут быть явно и неявно выраженными. Синхронный двигатель с короткозамкнутым ротором бывает с магнитами на поверхности или с уже встроенными.

Статор представлен корпусом и сердечником, состоящим из двухфазных и трехфазных обмоток. Обмотка бывает распределенная и сосредоточенная. У распределенной насчитываются пазы полюса и фазы Q= 2,3.

У сосредоточенной обмотки пазы полюса и фазы Q=1. Пазы размещены на одинаковом расстоянии на окружности неподвижной части двигателя. Катушки статора соединяются последовательно или параллельно. Такие обмотки не могут влиять на форму кривой ЭДС. Электродвижущая сила имеет трапецеидальную и синусоидальную форму. У явно выраженного полюса форма ротора и наводимая электродвижущая сила проводника является трапециевидной формы (а). При необходимости создания синусоидальной ЭДС, полюсные наконечники приобретают другую форму, где величина кривой распределения индукции близкая синусоидальной. Осуществление возможно благодаря наличию скосов на наконечнике полюса ротора.

Ротор синхронного двигателя переменного тока

Ротор синхронного двигателя переменного тока: а — явно выраженный полюс, 6 — неявно выраженный полюс.

Неявно выраженные полюса обладают равной индуктивностью продольных и поперечных осей, а явно выраженные полюса имеют одинаковую величину поперечной и продольной индуктивности (б).

Принцип действия

Принцип действия электрической машины переменного тока

Принцип действия электрической машины переменного тока: 1 — статор, 2 — ротор.

У однофазного двигателя отсутствует пусковой момент. При подключении обмотки якоря к сети переменного тока, ротор неподвижен, в обмотку возбуждения поступает постоянный ток, за время одного изменения напряжения, два раза происходит смена направления электромагнитного момента. Значение среднего момента равняется нулю. Ротор разгоняется посредством внешнего момента до вращающейся частоты, которая приближается к синхронности.

Из-за высокого значения коэффициента мощности обеспечивается снижение потребления электричества, уменьшаются потери. В сравнении с асинхронным механизмом с такой же мощностью, синхронный двигатель имеет КПД выше. Так как крутящийся момент аналогичен напряжению сети. Даже снижение напряжения не влияет на нагрузочную способность. Что свидетельствует о надежности механизма.

Тип подключения делится на однофазный и трехфазный. Синхронные агрегаты чаще бывают трехфазными. При положении проводников трехфазного двигателя в определенной геометрической позиции появляется электромагнитное поле, которое вращается с одновременной скоростью. При имении магнита во вращающемся поле, они замыкают, крутятся параллельно. Двигатель можно назвать нерегулируемым, так как его скорость постоянная.

Пуск электродвигателя

Существует два способа пуска синхронной машины.

  1. Асинхронное включение

Схема пуска на основе глухо подключенного возбудителя, применима для статистического момента нагрузки менее 0,4, без падений напряжения.

Асинхронный пуск с помощью трансформатора

Асинхронный пуск с помощью трансформатора

В обмотке возбуждения замыкается сопротивление разряда, избегая тем самым перебои возбуждения обмотки на впуске, потому как на небольшой скорости вращения ротора возникают перенапряжения. Если скорость приближается к синхронной, реагирует контактор, а обмотка возбуждения переключается из разрядного сопротивления на якорь возбудителя.

  1. Применение тиристорного возбудителя

Возбуждение, осуществляемое при помощи электромагнитного реле

Возбуждение, осуществляемое при помощи электромагнитного реле

Пуск с тиристорным возбудителем более надежный, обладает высоким КПД. Легче становится управление возбуждением, напряжение шин, остановка в аварийном режиме. Во многих моделях электродвигателей установлены тиристорные возбудители. Подача возбуждения работает автоматически функцией скорости и тока.

Синхронный компенсатор

Упрощенная конструкция для холостого хода называется компенсатором.

Синхронный компенсатор

Потребление электричества, помимо активной мощности, нуждается в реактивной мощности. Генератор вырабатывает реактивную мощность с минимальными затратами. Переход реактивной мощности генератора связан с потерями на линии передач. Поэтому применение компенсаторов является обоснованным экономически. При возбуждении синхронные двигатели не используют напряжение сети, а при перевозбуждении отдают реактивную мощность.

Синхронный электродвигатель применяется в сети переменного и постоянного тока, обеспечивая высокую надежность работы. Этот двигатель улучшит коэффициент мощности предприятия.

Источник

Глава 2. ОБЩАЯ ХАРАКТЕРИСТИКА СИНХРОННОГО ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ И ЕГО НАЗНАЧЕНИЕ

Синхронные машины, как и другие электрические машины, обратимы, т.е. они могут работать как в двигательном, так и генераторном режимах. Однако электропромышленность выпускает синхронные машины, предназначенные для работы только в генераторном или только в двигательном режиме, так как особенности работы машины в том или ином режиме предъявляют различные требования к конструкции машины [6, с. 431].

Синхронные двигатели чаще работают в пусковых режимах и должны развивать больший пусковой момент, чем генераторы. Это накладывает определенные условия на конструкцию ротора: демпферную (пусковую) обмотку синхронных двигателей рассчитывают на большие токи и более длительный режим.

Для возбуждения синхронных двигателей используется электромашинная система возбуждения или тиристорная система возбуждения. В электромашинных системах возбуждения якорь возбудителя — генератора постоянного тока — соединяется с валом синхронного двигателя жестко или в тихоходных машинах — через клиноременную передачу, которая обеспечивает увеличение частоты вращения возбудителя и снижение его массы. Системы возбуждения синхронных двигателей принципиально не отличаются от систем возбуждения генераторов.

Уравнения синхронного двигателя отличаются от уравнений синхронного генератора лишь тем, что в них изменяется знак момента сопротивления.

Чтобы из генераторного режима перейти в двигательный, надо изменить знак момента сопротивления, приложенного к валу синхронной машины. Тогда изменится знак угла θ и направление активной мощности; машина начнет потреблять мощность из сети.

На угловой характеристике (рис. 6) область двигательного режима находится в зоне отрицательных углов θ. Устойчивой частью угловой характеристики в двигательном режиме является область от 0 до — 90°. Номинальный момент, соответствующий θ ном, находится в области 20-30°. Двигатель с неявнополюсным ротором имеет максимум момента при θ = — 90°:

Читайте также:  Туннельный ток фаулера нордгейма

3

Максимальный момент зависит от размера воздушного зазора двигателя. Чем больше зазор, тем меньше xd и больше М эм мах . Однако при большом зазоре растут габариты машины. Предел статической устойчивости

4

Рис. 6 Угловая характеристика синхронной машины

Удельный синхронизирующий момент, как и в генераторном режиме, максимален при θ = 0 и равен нулю при θ = 90° .

Для явно полюсного двигателя зависимость Мс , Мэм = f (0) имеет такой же вид, как и для генератора, но располагается в зоне отрицательных углов θ. [6, с. 432]

U-образные характеристики синхронных двигателей имеют тот же вид, что и для генераторов. При перевозбуждении синхронный двигатель по отношению к сети является емкостью, недовозбужденный двигатель потребляет из сети реактивную мощность, являясь по отношению к сети индуктивностью. При недовозбуждении реакция якоря в синхронном двигателе — подмагничивающая, при перевозбуждении — размагничивающая. Важное значение для исследования процессов преобразования энергии в синхронных двигателях имеют рабочие характеристики (рис. 7).

Рис. 7. Рабочие характеристики синхронного двигателя

С ростом нагрузки на валу двигателя увеличивается момент и ток в якоре, сначала по линейному закону, а затем из-за изменения параметров — по нелинейному закону. Если не изменяется If , cos φ может падать, расти или иметь максимум. Это зависит от значения If и может быть прослежено по U-образным характеристикам: при увеличении Р2 — переходе с одной U-образной характеристики на другую cos φ изменяется, так как из-за внутреннего падения напряжения кривая cos φ = 1 смещается в область больших нагрузок. При изменении If можно получить постоянное значение cos φ при разных Р2 (рис. 8). Кривая 1 на рис. 8 соответствует работе синхронного двигателя с постоянным током возбуждения в зоне недовозбуждения на U-образных характеристиках, кривая 2 – работе синхронного двигателя с перевозбуждением; кривая 3 возможна при регулировании тока возбуждения.

Рис. 8. Зависимости cos φ синхронного двигателя от нагрузки

Зависимость КПД от нагрузки такая же, как и для всех электрических машин.

Характерным отличием синхронных двигателей является постоянство частоты вращения при изменении нагрузки. Синхронные двигатели имеют предельно жесткие механические характеристики [6, с. 432].

Одним из основных недостатков синхронных двигателей являются плохие пусковые свойства, которые ограничивают их применение. Пуск синхронных двигателей может быть частотным, при помощи разгонного двигателя или синхронные двигатели могут включаться на полное напряжение сети (асинхронный пуск). Наиболее распространенным является асинхронный пуск. Вследствие наличия короткозамкнутых контуров на роторе (демпферной обмотки, массивных полюсных наконечников) ротор разгоняется до частоты вращения, близкой к синхронной. Обмотка возбуждения при асинхронном пуске закорачивается на активное сопротивление. После подхода ротора к частоте вращения, близкой к синхронной ( s ≈ 0,05), обмотка возбуждения подключается к возбудителю и осуществляется грубая синхронизация машины.

Применяется также пуск с наглухо присоединенным возбудителем. В этом случае при частоте вращения, равной (0,5 ÷ 0,7) n ном , в обмотке возбуждения синхронного двигателя начинает протекать постоянный ток и машина втягивается в синхронизм. Пуск двигателя с наглухо присоединенным возбудителем сопровождается большими бросками токов и может осуществляться, если нагрузка не превышает (0,4-0,5) М ном . Однако схема пуска с наглухо присоединенным возбудителем более простая и находит все большее применение.

При тяжелых условиях пуска мощных синхронных двигателей применяется реакторный или автотрансформаторный пуск по схемам, рассмотренным для асинхронных двигателей.

При пуске синхронного двигателя с помощью разгонного двигателя синхронный двигатель доводится до почти синхронной частоты вращения. В качестве разгонного двигателя может использоваться асинхронный двигатель, имеющий большую, чем синхронный, синхронную частоту вращения или двигатель постоянного тока, если есть сеть постоянного тока. Пуск с помощью разгонного двигателя применяется редко, так как разгонный двигатель используется только при пуске [6, с. 432].

При частотном пуске обмотка статора синхронного двигателя подключается к преобразователю частоты, который изменяет частоту от нескольких герц до номинальной частоты. При частотном пуске синхронный двигатель входит в синхронизм при малых частотах. Частотный пуск удобно использовать, если преобразователь частоты можно применять для пуска нескольких двигателей.

Сравнивая синхронные двигатели с асинхронными, следует отметить основное преимущество синхронных двигателей — возможность работать с cos φ = 1, а при перевозбуждении — и с опережающим cos φ.

Максимальный момент синхронного двигателя пропорционален U, а асинхронного – U2 . Поэтому синхронные двигатели менее чувствительны к изменению напряжения сети и имеют большую перегрузочную способность. Регулирование потока возбуждения путем изменения тока возбуждения обеспечивает регулирование реактивной мощности при падении напряжения и уменьшении частоты сети.

Недостатком синхронных двигателей является их более сложная конструкция, необходимость в источнике постоянного тока и худшие по сравнению с асинхронными пусковые свойства.

При мощности двигателей от нескольких киловатт до 100 кВт проявляется еще один недостаток синхронных двигателей — склонность к качаниям. При определенном соотношении параметров синхронных двигателей ротор покачивается около синхронной частоты вращения.

Синхронные двигатели при условии легких пусков целесообразно применять при мощности свыше 200 кВт. Области применения синхронных двигателей непрерывно расширяются, и их мощности возрастают до 50 МВт.

Синхронные двигатели мощностью до 1-2 кВт выполняются с явнополюсным ротором без обмотки возбуждения. За счет различия проводимости по продольной и поперечной осям машины в таких машинах возникает реактивный момент, а асинхронный пуск обеспечивается демпферной обмоткой [6, с. 433].

На рис. 9 показаны две наиболее распространенные конструкции роторов синхронных реактивных двигателей. Четырехполюсная конструкция ротора (рис. 9, а) имеет стальной шихтованный явнополюсный магнитопровод 1 и демпферную обмотку 2. Двухполюсный шихтованный ротор, залитый алюминием, дан на рис. 9, б. Сердечник ротора 3 заливается алюминием 4, который скрепляет сердечник и образует демпферную обмотку.

Рис. 9. Конструкции роторов синхронных реактивных двигателей

Реактивные двигатели имеют низкие cos φ и КПД (η = 0,3÷0,4), их масса больше, чем у обычных трехфазных асинхронных двигателей.

Вместо электромагнитного возбуждения можно применять постоянные магниты. Серии двигателей с постоянными магнитами выпускаются на мощности от десятков ватт до нескольких киловатт. Они имеют лучшие энергетические показатели по сравнению с реактивными.

Для обеспечения пускового момента двигатели с постоянными магнитами имеют пусковую обмотку в виде беличьей клетки, залитой алюминием. Ротор из магнитотвердого материала изготовляется путем литья из специальных сплавов. Этот процесс трудоемкий, поэтому ротор имеет.

Источник