Меню

Номинальный ток электродвигателя переменного тока типа аир при трехфазном включении должен быть



Каталог электродвигателей АИР

Таблица асинхронных электродвигателей АИР

Что вы найдете в каталоге двигателей АИР?

Каталог электродвигателей АИР – навигационная страница сайта с легким доступом ко всей детальной технической и рыночной информации, которая может Вам понадобиться. Как о каждой модели электромотора, так и о всей линейке.

  • Каталог моделей электродвигателей АИР с детальными описаниями;
  • Таблица габаритно-присоединительных размеров двигателей;
  • Каталог двигателей с Электромагнитным тормозом;
  • Популярная статья «Что прячется в дешевом электродвигателе АИР»;
  • Доставка электродвигателей по Украине;
  • Отзывы покупателей о компании ТОВ «Системы качества, ЛТД» и поставляемых ею двигателях.

Прежде чем приобрести электродвигатель, вникайте в тонкости и технические особенности. Стоимость на двигатели может колебаться в пределах 100%, а надежность и качество — отличаться в разы.

Характеристики и справочные данные двигателей

Под каждой ссылкой в таблице «каталог» находится страница, посвященная одной модели электродвигателя:

  1. Таблица технических характеристик двигателя
  2. Чертеж и размеры
  3. Что важно знать, чтоб не ошибиться в выборе двигателя
  4. Слабые места дешевых трехфазных электромоторов
  5. Строение и комплектующие асинхронных электромоторов
  6. Подробный обзор производителей

Что скачать паспорт кликните на ссылку паспорт электродвигателей АИР

Источник

Технические характеристики трехфазных электродвигателей

Технические характеристики электродвигателей

Технические характеристики, они же паспортные данные электродвигателя — это характеристики которые указываются заводом-изготовителем на шильдочке прикрепляемой к корпусу электродвигателя.

В случае если шильдик с паспортными данными не сохранился характеристики электродвигателя можно определить расчетным путем.

паспортные данные электродвигателя

Шильдик с характеристиками (паспортными данными) электродвигателя:

шильдик с паспортными данными электродвигателя

И так, какую же информацию мы видим на шильдике электродвигателя? Разберем каждый параметр в отдельности:

характеристики указанные на шильдике электродвигателя

Сначала указывается тип, марка и заводской номер электродвигателя, на этом мы останавливаться не будем. Далее по пунктам:

    3Ф — трехфазный электродвигатель.

— переменный ток сети.

  • 50 Hz — частота тока сети 50 Гц (Герц).
  • У каждого электродвигателя имеется возможность соединения его обмоток по схеме треугольник — обозначается: Δ, либо по схеме звезда — обозначается Y в зависимости от схемы соединения обмоток меняются и такие его характеристики как напряжение сети и ток сети. Например, в нашем случае: Δ/ Y 220/380 V 2,8/1,8 А — это значит, что при схеме соединения «треугольник» Δ — электродвигатель подключается на напряжение 220 Вольт и потребляет из сети 2,8 Ампера, а при схеме соединения «звезда» Y- подключается на напряжение 380 Вольт и потребляет из сети 1,8 Ампера. Подробнее о схемах соединения обмоток электродвигателя вы можете прочитать в этой статье.
  • Мощность на валу электродвигателя в килоВаттах, в нашем случае — 0,55 кВт.
  • Частота вращения вала электродвигателя, в нашем случае 1360 оборотов в минуту.
  • Коэффициент полезного действия (КПД) — это процентное соотношение мощности отдаваемой электродвигателем, т.е. мощности на валу и мощности потребляемой электродвигателем из сети. Например: если мощность электродвигателя 8 кВт, а его КПД — 80%, то из сети он потребляет 10кВт, остальные 2 кВт тратятся на нагрев обмоток электродвигателя, потери на трение в подшипниках и т.д.
  • Коэффициент мощности — это отношение активной мощности к полной, он показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
  • Режим работы электродвигателя. Всего ГОСТом предусмотрено 8 режимов работы (S1-S8), S1 — самый распространенный из них, данный режим подразумевает продолжительную работу электродвигателя, без частых остановок и запусков. Описание всех режимов работы электродвигателей представлено в следующей таблице:
  • Режимы работы электродвигателя таблица

    1. Класс внутренней защиты корпуса, в нашем случае IP54 — пылезащищенный корпус с защитой от водяных брызг. Подробнее о том как расшифровывать Коды классов внутренней защиты вы можете прочитать в этой статье.
    2. Класс изоляции обмоток электродвигателя — показывает до каких температур может нагреваться электродвигатель в процессе работы без вреда для изоляции его обмоток.

    Всего есть семь классов изоляции по нагревостойкости:

    нагревостойкость изоляции электродвигателей

    2. Таблица технических характеристик электродвигателей аир

    Ниже представлены технические характеристики асинхронных электродвигателей серии АИР, кроме того вы можете самостоятельно произвести расчет характеристик электродвигателя с помощью онлайн калькулятора.

    ПРИМЕЧАНИЕ: Пусковой ток электродвигателя рассчитывается путем умножения номинального тока (тока статора) на кратность пускового тока:

    Таблица технических характеристик трехфазных асинхронных электродвигателей АИР

    Приведенные в таблице данные электродвигателей могут немного отличаться в зависимости от производителя электродвигателя и года выпуска.

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Источник

    Номинальный ток электродвигателя трехфазного тока таблица

    Какой ток потребляет двигатель из сети при пуске и работе

    В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

    Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

    I н = P н/ ( √3 U н х η х с osφ).

    где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.

    Номинальный ток электродвигателя трехфазного тока таблица

    Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.

    Читайте также:  Действие магнитного поля проводник током сила ампера

    Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

    Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

    При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

    В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

    Номинальный ток электродвигателя трехфазного тока таблица

    Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

    Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.

    Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

    Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

    Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

    Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

    На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

    В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

    Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

    Номинальный ток электродвигателя трехфазного тока таблица

    Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

    Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

    В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

    Статьи и схемы

    Полезное для электрика

    Подключение и пусковые токи асинхронного двигателя

    Приветствую вас, дорогие читатели. Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, не лишним будет вспомнить о том, что это такое.

    Движком асинхронного типа зовут машину особого вида, которая преобразует энергию электричества в механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.

    Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).

    Номинальный ток электродвигателя трехфазного тока таблица

    Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.

    Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой. Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети. Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и лишь потом переключать на номинал (с целью снижения в несколько раз пускового тока).

    Подключение асинхронного двигателя

    Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

    Читайте также:  Типы вентиляторов постоянного тока

    Подключение звездой

    Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

    Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

    Подключение треугольником

    При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.

    Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

    Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

    Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

    Конденсаторный пуск асинхронного двигателя

    Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.

    Для расчета рабочего конденсатора существует следующая формула:

    Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

    Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

    Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

    Пусковые токи асинхронного двигателя

    Теперь приведу таблицу допустимых значений токов холостого хода трехфазных моторов:

    Мощность электромотора, кВт

    Прежде, чем производить замеры тока на двигателях, их необходимо обкатать (опробовать на холостом ходу 30-60 минут — движки мощностью меньше 100 кВт и от 2 часов движки, чья мощность выше 100 кВт). Данная таблица носит справочный характер, следовательно, реальные данные могут расходиться с этими процентов на 10-20.

    Токи пуска двигателя можно вычислить, применив следующую пару формул:

    где Рн — номинал мощности мотора, Uн — номинал его напряжения, nн — номинал его КПД.

    где Iн — номинал тока, а Кп — кратность постоянного тока к номиналу (обычно указана в паспорте мотора).

    Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта. буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

    Номинальный ток электродвигателя трехфазного тока таблица

    0 Как собрать и разобрать мотор-редуктор? Здравствуйте, мои дорогие читатели! Перед вами моя очередная статья, в которой я […]

    Номинальный ток электродвигателя трехфазного тока таблица

    0 Ремонт генератора автомобиля своими руками Что ломается Автомобильный генератор служит долго. Обычно проблемы с ним возникают у […]

    Номинальный ток электродвигателя трехфазного тока таблица

    0 Ремонт коллектора электродвигателя Во время работы, на коллекторе электродвигателя часто наблюдается искрение, при котором […]

    Чтобы в процессе эксплуатации жилища не возникало проблем с использованием и обслуживанием электросети, нужно знать, что такое фаза. ноль и земля в электропроводке квартиры.

    Александр, чем конкретно данную статью дополнить? Постараюсь учесть Ваше пожелание!

    Автор: admin Рубрика: Электродвигателя 4 комментария

    Расчет тока электродвигателя

    Номинальный ток электродвигателя трехфазного тока таблица

    Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.

    Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей. и когда писал какие бывают номиналы электродвигателей .

    Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

    Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн ),

    Где Pн – это мощность электродвигателя; измеряется в кВт

    Uн – это напряжение, при котором работает электродвигатель; В

    ηн – это коэффициент полезного действия, обычно это значение 0.9

    ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.

    Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.

    Читайте также:  Электрические машины постоянного тока 2тэ116

    Номинальный ток электродвигателя трехфазного тока таблица

    Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.

    Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А

    Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732

    Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.

    Как определить ток электродвигателя на практике.

    Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.

    А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.

    На этом у меня всё. Пока.

    С уважением Александр!

    Читайте также статьи:

    • Номинальный ток электродвигателя трехфазного тока таблицаУстройство и принцип действия асинхронных электродвигателей
    • Номинальный ток электродвигателя трехфазного тока таблицаСхема пуска асинхронного двигателя
    • Номинальный ток электродвигателя трехфазного тока таблицаНеисправности электрических машин
    • Номинальный ток электродвигателя трехфазного тока таблицаРеверсивное управление асинхронным электродвигателем с короткозамкнутым ротором
    • Номинальный ток электродвигателя трехфазного тока таблицаУстройство, принцип действия, способы регулирования частоты вращения, применение, достоинства и недостатки двигателя постоянного тока

    Номинальный ток электродвигателя трехфазного тока таблица

    Хочешь получать статьи этого блога на почту?

    Источник

    ПУЭ 7. Правила устройства электроустановок. Издание 7

    Раздел 1. Общие правила

    Глава 1.8. Нормы приемо-сдаточных испытаний

    Электродвигатели переменного тока

    1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶

    Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶

    По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶

    1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶

    2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶

    Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

    Напряжение мегаомметра, кВ

    Обмотка статора напряжением до 1 кВ

    Не менее 0,5 МОм при температуре 10-30 °С

    Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

    Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

    Подшипники синхронных электродвигателей напряжением выше 1 кВ

    Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

    3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶

    Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. ¶

    Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶

    4. Измерение сопротивления постоянному току: ¶

    а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶

    Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶

    б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶

    5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶

    Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

    Испытательное напряжение, кВ

    Мощность до 1 МВт, номинальное напряжение выше 1 кВ

    Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

    Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

    Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

    Обмотка ротора синхронного электродвигателя

    8Uном системы возбуждения, но не менее 1,2

    Обмотка ротора электродвигателя с фазным ротором

    Реостат и пускорегулировочный резистор

    Резистор гашения поля синхронного электродвигателя

    6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10. ¶

    7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже: ¶

    Синхронная частота вращения электродвигателя, Гц

    Допустимая вибрация, мкм

    8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм. ¶

    9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см 2 ). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании. ¶

    10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч. ¶

    11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. ¶

    Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей.

    Источник