Меню

Низкий ток в двигателе



Чем опасно низкое напряжение в сети для электродвигателя?

При снижении напряжения питания в электродвигателе происходят следующие взаимосвязанные процессы:

1. Понижение напряжения уменьшает электромагнитный момент двигателя. Электромагнитный момент (а, следовательно, и крутящий момент) находятся в квадратичной зависимости от напряжения. Если напряжение понизилось на 10%, электромагнитный момент окажется ниже первоначального на 19% ((0,9U)2=0.81U2). При уменьшении напряжения на 30% момент снизится вдвое.

2. При неизменной нагрузке и снижающемся крутящем моменте скорость вращения двигателя снижается. Как только реальная мощность двигателя окажется недостаточной, чтобы выполнять работу, обусловленную нагрузкой на валу, скорость вращения начнёт снижаться. При значительном снижении напряжения двигатель может совсем остановиться. Снижение частоты вращения означает увеличение скольжения электродвигателя. Обмоткой статора электродвигателя создаётся вращающееся магнитное поле. Под скольжением понимается относительная разность между скоростью вращения электромагнитного поля статора и частотой вращения ротора.

3. Увеличение скольжения увеличивает ЭДС и ток в обмотке ротора. Наводимая в обмотке ротора электродвижущая сила пропорциональна скольжению и достигает максимума в момент пуска.

4 .С появлением тока в обмотке ротора появится и магнитодвижущая сила обмотки ротора. Согласно закону Ленца магнитодвижущая сила ротора будет действовать против магнитодвижущей силы обмотки статора – той самой, которая создаёт дополнительное реактивное сопротивление переменному току.

5. Электромагнитное поле ротора наводит в статоре электродвижущую силу, компенсирующую действие ЭДС самоиндукции статора. Результирующее сопротивление обмотки статора уменьшается, а ток увеличивается в полном соответствии с законом Ома.

6. Тепловыделение проводника пропорционально квадрату силы тока. Вследствие повышения тока происходит разогрев обмоток. Длительное протекание токов перегрузки может вызвать их сильный нагрев, повреждение изоляции и выход машины из строя. Та же участь может постигнуть и проводку в вашем доме, став причиной пожара.

Источник

Пусковой ток.

В паспорте электрического двигателя указывается ток при номинальной нагрузке на валу, он меньше пускового тока. Если отмечено 13,8/8 А, то это значит, что при подсоединении двигателя к сети 220 В и номинальной нагрузке ток двигателя будет равен 13,8 А. При подсоединении к сети 380 В — ток 8 А, таким образом верно равенство мощностей: √3 х 380 х 8 = √3 х 220 х 13,8.

Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

пусковой ток пасспорт

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

пусковой ток

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

Читайте также:  Что возникает если по проводнику идет ток

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи.

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

пусковой ток

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Что такое пусковой ток и как его ограничить

Что такое пусковой ток

Пусковой ток – это максимальный ток, потребляемый электрической цепью во время ее включения. Значение пускового тока намного выше, чем установившийся ток цепи, и этот высокий ток может повредить устройство или привести в действие автоматический выключатель. Пусковой ток обычно появляется во всех устройствах, где присутствует магнитный сердечник, таких как трансформаторы, промышленные двигатели и т. д. Пусковой ток также известен как входной импульсный ток или импульсный ток включения.

Что такое пусковой ток и как его ограничить

Почему появляется пусковой ток

Есть причина появления пускового тока. Подобно некоторым устройствам или системам, которые имеют развязывающий конденсатор или сглаживающий конденсатор, при запуске потребляется большое количество тока для их зарядки. Ниже приведенная диаграмма даст вам представление о разнице между пусковым, пиковым и установившимся током цепи.

Пусковой ток

Пиковый ток: это максимальное значение тока, достигаемое сигналом в положительной или отрицательной области.

Ток установившегося состояния: он определяется как ток в каждом интервале времени, который остается постоянным в цепи. Ток установившегося состояния достигается, когда di/dt = 0, что означает, что ток остается неизменным во времени.

Особенности пускового тока: появляется мгновенно, когда устройство включается; появляется на короткий промежуток времени; выше номинального значения цепи или устройства.

Пусковой ток трансформатора

Пусковой ток трансформатора определяется как максимальный мгновенный ток, потребляемый трансформатором, когда вторичная сторона не нагружена или находится в состоянии разомкнутой цепи. Этот бросок тока вредит магнитным свойствам сердечника и вызывает нежелательное переключение автоматического выключателя трансформатора.

Пусковой ток трансформатора

Величина пускового тока зависит от точки волны переменного тока, в которой запускается трансформатор. Если трансформатор (без нагрузки) включается, когда напряжение переменного тока достигает своего пика, тогда пусковой ток не возникает при запуске, и если трансформатор (без нагрузки) включается, когда напряжение переменного тока проходит через ноль, то значение броска ток будет очень высоким, и он также будет превышать ток насыщения, как вы можете видеть на изображении выше.

Пусковой ток двигателя

Как и трансформатор, асинхронный двигатель не имеет непрерывного магнитного пути. Сопротивление асинхронного двигателя высокое из-за воздушного зазора между ротором и статором. Следовательно, из-за такого характера индуктивного устройства с высоким сопротивлением требуется большой ток намагничивания для создания вращающегося магнитного поля при запуске. График ниже показывает пусковые характеристики двигателя при полном напряжении.

Пусковой ток двигателя

Как вы можете видеть на графике, пусковой ток и пусковой момент очень высоки в начале. Этот высокий пусковой ток может повредить электрическую систему, а начальный высокий крутящий момент может повлиять на механическую систему двигателя. Если уменьшить начальное значение напряжения на 50%, это может привести к снижению крутящего момента двигателя на 75%. Таким образом, для преодоления этих проблем используются схемы питания с плавным пуском.

Как ограничить пусковой ток

Всегда следует помнить о пусковом токе в асинхронных двигателях, трансформаторах и в электронных цепях, которые состоят из катушек индуктивности, конденсаторов или сердечников. Как упоминалось ранее, пусковой ток – это максимальный пиковый ток, наблюдаемый в системе, и он может быть в два-десять раз больше нормального номинального тока. Этот нежелательный всплеск тока может повредить устройство, пусковой ток может вызвать срабатывание выключателя при каждом включении. Регулировка допуска выключателя может помочь нам, но компоненты должны выдерживать пиковое значение.

Читайте также:  Трансформатор тока тогф 110 зэто

Находясь в электронной схеме, некоторые компоненты должны выдерживать высокие значения пускового тока в течение короткого промежутка времени. Но некоторые компоненты сильно нагреваются или повреждаются, если значение при быстром запуске очень велико. Поэтому лучше использовать схему защиты от пускового тока при проектировании электронной схемы или печатной платы.

Для защиты от пускового тока вы можете использовать активное или пассивное устройство. Выбор типа защиты зависит от частоты пускового тока, производительности, стоимости и надежности.

Вы можете использовать NTC-термистор (с отрицательным температурным коэффициентом), который является пассивным устройством, работает как электрический резистор, сопротивление которого очень высоко при низкотемпературном значении. Термистор NTC соединяется последовательно с входной линией питания. Обладает высокой устойчивостью при температуре окружающей среды. Поэтому, когда мы включаем устройство, высокое сопротивление ограничивает пусковой ток, который протекает в систему. По мере непрерывного протекания тока температура термистора повышается, что значительно снижает сопротивление. Следовательно, термистор стабилизирует пусковой ток и позволяет постоянному току течь в цепь. Термистор NTC широко используется для ограничения тока из-за его простой конструкции и низкой стоимости. У него также есть некоторые недостатки, например, нельзя полагаться на термистор в экстремальных погодных условиях.

Активные устройства ограничения пускового тока стоят дороже, а также увеличивают размер системы или схемы. Они состоят из чувствительных компонентов, которые переключают высокий входящий ток. Некоторые из активных устройств – устройства плавного пуска, регуляторы напряжения и преобразователи постоянного тока.

Эти средства защиты используются для защиты как электрической, так и механической системы путем ограничения мгновенного пускового тока. На приведенном ниже графике показано значение пускового тока со схемой защиты и без схемы защиты. Мы ясно видим, насколько эффективна защита от пускового тока.

ограничить пусковой ток

Как измерить пусковой ток

Сегодня на рынке представлено большое количество клещей (мультиметров), которые обеспечивают измерение пускового тока. Также вы можете использовать токовые клещи Fluke 376 FC True-RMS для измерения пускового тока. Иногда пусковой ток показывает значение, которое выше номинального значения автоматического выключателя, но, тем не менее, автоматический выключатель не отключается. Причина этого заключается в том, что автоматический выключатель работает по кривой зависимости тока от времени, например, если бы вы использовали автоматический выключатель на 10 А, поэтому пусковой ток, превышающий 10 А, должен протекать через автоматический выключатель больше, чем номинальное время.

Токовые клещи

Выполните следующие шаги для измерения пускового тока:

  • Тестируемое устройство должно быть отключено изначально.
  • Поверните циферблат и установите переключатель на Hz-A.
  • Поместите провод под напряжением в клещи или используйте датчик, соединенный с измерителем.
  • Нажмите кнопку измерения пускового тока, как показано на рисунке выше.
  • Включив испытуемое устройство, вы получите значение пускового тока на дисплее прибора.

Источник

Пусковой ток

При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства. Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов. Снизить пусковые токи можно с помощью систем гашения и устройств плавного пуска.

Пусковые токи электродвигателей

Пусковой ток

В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.

Точно такие же явления затрагивают и электрические устройства – электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 1000 С. То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании. Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.

Читайте также:  Моделирование двигателя постоянного тока последовательного возбуждения

Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток. Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.

Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом. В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя. При росте сопротивления пусковой ток снижается до нормативных показателей.

В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, устройства плавного пуска используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.

Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями. Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.

Пусковой ток аккумуляторной батареи

Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, автомагнитола, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.

Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля. Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 18 С. Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.

Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия. Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота. Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.

Плавный пуск электродвигателя схема

Соединение звездой и треугольником обмоток электродвигателя

Частотные преобразователи: принцип работы

Устройство синхронного двигателя

Асинхронный двигатель с короткозамкнутым ротором схема

Источник