Назначение компенсации емкостных токов

Компенсация емкостных токов

В кабельных и разветвленных воздушных сетях емкость проводов относительно земли значительна. Напр., емкость одной фазы кабеля напряжением 1000 В по отношению к свинцовой оболочке (земле) составляет 1 мкФ на 1 км длины кабеля:

Сечение провода, кв.мм ………. 10 25 50 150 240

Емкость, мкФ/км………………..0,15 0,19 0,33 0,37 0,45

проводимость будет равна j C, и Iчел = 3Uф/ . С увеличением емкости фаз относительно земли ток поражения возрастает (рис. , кривая 1.).

Пример.Человек прикасается к корпусу электродвигателя с поврежденной изоляцией. Емкость жил питающего кабеля относительно земли = 0,2 мкФ/км, длина сети l=1 км, Rчел=1000 Ом, номинальное напряжение Uл=380

В. Активное сопротивление жил кабеля весьма велико, поэтому активной проводимостью изоляции кабеля можно пренебречь. Ток, проходящий через

тело человека Iчел = 3*220/ где

С= *l=0,2*10 Ф. Этот ток опасен.

Если протяженность сети будет составлять 10 км, то Iчел = 3*220/

= 0,19 А=190 мА, т.е ток увеличивается почти в 5 раз и будет смертельно опасным.

Емкостный ток однофазного замыкания на землю компенсируют индуктивной катушкой, включаемой между нулевой точкой источника питания и землей (рис. ). Результирующий ток в месте замыкания равен сумме активной, емкостной и индуктивной составляющих. Когда индуктивность катушки настроена в резонанс с емкостью, индуктивная составляющая тока отстает от емкостной на 180 градусов. Практически они находятся в противофазе и взаимно исключаются.

Векторные диаграммы для трех случаев приведены на рис. (а-в):

идеальная компенсация IL=Ic, результирующий ток равен только активной составляющей: недокомпенсация IL Ic, индуктивный ток больше емкостного.

Значение тока, проходящего через тело человека, прикоснувшегося к фазе сети с полной компенсацией, значительно меньше, чем в сети без

компенсации емкостной составляющей тока замыкания (кривая 2). Этот ток определяют по формуле (в случае полной компенсации):

Iчел=(Uф/Rчел)*[(gк+3gиз)/( gк+3gиз + gчел)] , где 3gиз – суммарная активная проводимость изоляции (gиз = 1/Rиз), gчел = 1/Rчел – проводимость тела человека, gк – проводимость компенсирующего устройства gк = Rка/[R ка + ( Lк) ], где Rка и Lк –активное и индуктивное сопротивления компенсирующего устройства; Lк 1/(3 С) в случае полной компенсации (без учета активных сопротивлений компенсирующего устройства и рабочего заземления); 1/(3 С) – емкостное сопротивление изоляции.

Индуктивный ток регулируют изменением числа витков компен-сирующей катушки или изменением индуктивности катушки подмагни-чивающим током, который, в свою очередь, меняется автоматически в зависимости от емкости проводов относительно земли.

Пример.Ток, проходящий через тело человека при однофазном прикосновении в сети без компенсации, достигает смертельно опасного значения 190 мА. Как изменится этот ток, если включить компенсирующее устройство с активным сопротивлением дросселя 25 Ом ( см рисунки выше).

Емкость одной жилы кабеля С=2 мкФ, Rиз , компенсация — полная.

Ток, проходящий через тело человека при полной компенсации составляет: Iчел =( 220/1000)*[(10 +0)/( 10 +0 + 10 )] = 0,02 А=20 мА.

Проводимость компенсирующего устройства определяется по формуле:

gк = 25/[25 + (1/3*2 *50*2*10 ) ] = 10 Cм.

Активной проводимостью жил кабеля можно пренебречь: gиз 0; проводимость тела человека 0,001 См. Т.о., с помощью устройства компенсации ток поражения значительно уменьшен: с 190 до 20 мА.

7. Контроль изоляции электроустановок

Задача профилактики изоляции.Профилактикой изоляции наз. система мероприятий, направленных на обеспечение ее надежной работы.

Необходимо исключить механические повреждения, увлажнение, хим воздействие, запыление, перегревы. Даже в нормальных условиях изоляция постепенно теряет свои первоначальные свойства, стареет. С течением времени развиваются местные дефекты. Сопр. изол. начинает резко уменьшаться, а ток утечки непропорционально растет. В месте дефектов появляются частичные разряды тока. Изоляция выгорает. Происходит пробой изоляции, в результате возникает КЗ, которое может привести к пожару или поражению людей током.

Чтобы поддержать диэл. свойства изоляции, необходимо систематиче- ски выполнять профилактические испытания, осмотры, удалять непригодную изоляцию и заменять ее.

Измерение мегаомметром.Периодически в установленные сроки проверяют соответствие сопротивления изоляции норме.

При обнаружении дефектов изоляции, а также после монтажа сети или ее ремонта на отдельных участках отключенной сети между каждым проводом и землей или между проводами разных фаз проводят измерения. При этом в силовых цепях отключают электроприемники, аппараты, приборы; в осветительных – вывинчивают лампы, а штепсельные розетки, выключатели и групповые щитки оставляют присоединенными.

Перед началом измерения необходимо убедиться в том, что на исследуемом участке сети (между двумя предохранителями или за последним предохранителем) или оборудовании никто ьне работает и оно отключено со всех сторон. Кабели, электрические машины, шины, воздушные линии (ВЛ), конденсаторы «разряжают на землю», т.е. касаются заземленным проводом токопроводящих частей каждой фазы, снимая остаточный емкостный заряд. Значение измеренного сопротивление должно быть не менее нормы, указанной в ПУЭ.

Для измерения используют прибор – мегаомметр на напряжения 500, 1000, 2500 В с пределами измерения 0-100, 0-1000, 0-10000 Мом. Прибор имеет три зажима: Л – линия, З (земля), Э (экран). Если сопротивление изоляции измеряют относительно земли, зажимы Л и З присоединяют соответственно к объекту – заземлителю заземленной им части, затем – к проводу (рис а). При замере сопротивления изоляции между фазами (рис. б) оба зажима присоединяют к этим фазам В тех случаях, когда результат испытаний может быть искажен поверхностными токами по изоляции, на нее накладывают охранный электрод, который присоединяют к зажиму Э.

Схема измерения сопротивления изоляции жил кабеля мегаомметром между проводом и землей (а) и между проводами двух фаз (б)

Измерения на отдельных участках не позволяют судить об исправности изоляции всей сети, в том числе и потребителей тока. Для этого измеряют сопротивление изоляции всей сети, включая источник и потребителей тока.

Результат измерения сравнивают с предыдущим. Если результаты ряда измерений совпадают, значит, изоляция исправна; резкое изменение сопротивления изоляции по сравнению с предыдущим измерением указывает на появление в ней дефектов. В электроустановках напряжением до 1000 В эти измерения производят под рабочим напряжением (рис.а) Сопротивления изоляции фаз параллельны, поэтому прибор покажет их эквивалентное сопротивление (рис. б). Достоинством способа является то, что измеренное

сопротивление изоляции соответствует ее действительному состоянию под рабочим напряжением.

Испытание изоляции повышенным напряжением.Этот метод наи-более эффективен для выявления местных дефектов изоляции и определения ее прочности, т.е. способности длительно выдерживать рабочее напряжение.

Электрические машины и аппараты испытывают током промышленной частоты, как правило, в течение 1 мин. Дальнейшее воздействие тока может повлиять на качество изоляции. Значение испытательного напряжения нормируется в зависимости от номинального напряжения Uном эл установки и вида изоляции. Так, обмотку статоров эл двигателей мощностью Р

При замыкании на землю фазы А подключенный к ней вольтметр покажет нуль (Va=0), а вольтметры, подключенные к фазам В и С – линейное напряжение.

К схемам контроля изоляции предъявляются следующие требования: входной сигнал (напр., напряжения фаз относительно земли) должен зависеть только от активного сопротивления изоляции; входное сопротивление схемы должно быть достаточно высоким для того, чтобы не снижать сопротивление между фазами и землей; для этого используют электростатические вольтметры с большим внутренним сопротивлением; схема должна реагировать на симметричные и несимметричные изменения сопротивления фаз относительно земли; схема должна содержать устройство сигнализации о предельно допустимом сопротивлении изоляции фаз.

Недостаток рассмотренной схемы состоит в том, что при симметричном снижении сопр. изоляции всех фаз вольтметры не будут реагировать. Поэтому используют более чувствительные автоматические приборы непрерывного контроля изоляции.

Читайте также:  Как понизить ток с генератора

Под автоматическим контролем изоляции понимают непрерывное измерение сопр. изоляции эл. установки в рабочем режиме сети (т.е. под рабочим напряжением и при включенных токоприемниках); сравнение результатов измерения с заданным значением сопр. изоляции Rиз и в случае снижения этого сопротивление – выработки звукового, светового или телесигнала.

Рассмотрим прибор МКН 380 завода «Мегаомметр» для непрерывного контроля изоляции сетей перем. тока 50 Гц и напряжением до 380 В. Работа прибора основана на принципе наложения на контролируемую сеть постоянного оперативного тока, источником которого служат обмотка

В качестве измерительного прибора используют логометр магнитоэлектрической системы, одна рамка которого включена в цепь измерительного оперативного тока, а вторая – противодействующая – в

цепь трансформатора напряжения.

Измерительная цепь состоит из источника оперативного напряжения – (обмотка трансформатора TV, выпрямительный мост VD1-VD-4, конденсатор С1), рабочей рамки логометра, обмотки реле КV, балластного резистора R2 и контролируемого сопротивления изоляции. Реле KV называется пороговым элементом схемы – оно реагирует на наименьшее допускаемое сопротивление изоляции и включает контрольно-сигнальное устройство в случае снижения контролируемого сопр. изол. ниже значения уставки.

В приборе ПКИ (рис.б) использован также принцип наложения постоянного оперативного тока на переменный рабочий. Постоянный ток получают от сети понижающим тр-ром TV и выпрямителем. От выпрямителя ток проходит по фазным проводам через пути утечки в изоляции фаз, заземление и поступает в измерительную цепь – омметр и обмотку реле утечки KV . Для ограничения тока в измерительной цепи служат резистор R1 и дроссель L.

Прибор работает следующим образом. Пока сопр. изол. Rиз не ниже нормы, ток в измерительной цепи незначителен; омметр Р показывает сопр. изол. в килоомах. При снижении сопр. изол. ниже 15-20 кОм ток в измерительной цепи возрастает, срабатывает реле KV и включает контр-сигнальное устройство, которое подает сигнал о снижении сопр. изол. ниже установленной нормы. Оперативный персонал отыскивает поврежденный участок сети и отключает его.

Источник

Пояснительная записка. Компенсация емкостных токов замыкания на землю в сетях 6-35кВ

Пояснительная записка.

Компенсация емкостных токов замыкания на землю в сетях 6-35кВ.

Введение. Самым частым видом повреждения (до 95%) в сетях 6, 10, 35 кВ являются однофазные замыкания на землю (ОЗЗ), сопровождающиеся протеканием через место замыкания емкостного тока и перенапряжениями высокой кратности на элементах сети (двигателях, трансформаторах) в виде высокочастотного переходного процесса. Такие воздействия на сеть приводят в лучшем случае к срабатыванию земляных защит. Отыскание поврежденного присоединения представляется трудоемкой и длительной организационной задачей – поочередное отключение присоединений затягивается на продолжительное время и сопровождается комплексом оперативных переключений для резервирования потребителей. И, как правило, большинство междуфазных замыканий начинается с ОЗЗ. Развитие однофазных замыканий на землю сопровождается разогревом места замыкания, рассеиванию большого количества энергии в месте ОЗЗ и заканчивается отключением потребителя уже защитой МТЗ при переходе ОЗЗ в короткое замыкание. Изменить ситуацию можно применением резонансного заземления нейтрали.

Токи замыкания. При ОЗЗ на землю через место повреждения протекает емкостный ток, обусловленный наличием электрической емкости между фазами сети и землей. Емкость сконцентрирована, в основном, в кабельных линиях, длина которых и определяет общий емкостный ток ОЗЗ (ориентировочно на 1 А емкостного тока приходится 1 км кабеля).

Виды ОЗЗ. Все ОЗЗ делятся на глухие (металлические) и дуговые. Наиболее частым (95% всех ОЗЗ) и наиболее опасным видом ОЗЗ являются дуговые ОЗЗ. Опишем каждый вид ОЗЗ отдельно.

1) с точки зрения уровней перенапряжений на элементах сети наиболее безопасны металлические замыкания на землю (например, падение провода воздушной ЛЭП на землю). В этом случае через место пробоя протекает емкостный ток, не сопровождающийся большими перенапряжениями в виду специфики такого рода ОЗЗ.

2) особенность дуговых ОЗЗ — наличие электрической дуги в месте ОЗЗ, которая является источником высокочастотных колебаний, сопровождающих каждое ОЗЗ.

Способы подавления токов ОЗЗ. Существует два способа подавления токов ОЗЗ.

1) отключение поврежденного присоединения – этот способ ориентирован на ручное либо автоматическое (с использованием средств РЗА) отключение. При этом потребитель в соответствии с категорией переводится на резервное питание или остается без питания. Нет напряжения на поврежденной фазе – нет тока через место пробоя.

2) компенсация емкостного тока в месте замыкания установленным в нейтрали сети реактором, обладающим индуктивными свойствами.

Суть компенсации емкостных токов ОЗЗ. Как было замечено, при замыкании фазы на землю (пробое) через место ОЗЗ протекает емкостный ток. Этот ток при ближайшем рассмотрении обусловлен емкостями двух оставшихся (неповрежденных) фаз, заряженных до линейного напряжения. Токи этих фаз, сдвинутые друг относительно друга на 60 электрических градусов, суммируются в точке повреждения и имеют по величине тройное значение фазного емкостного тока. Отсюда и определяется величина тока ОЗЗ через место повреждения: . Этот емкостный ток можно скомпенсировать индуктивным током дугогасящего реактора (ДГР), установленного в нейтраль сети. При ОЗЗ в сети на нейтрали любого присоединенного к ней трансформатора, обмотки которого соединены в звезду, появляется фазное напряжение, которое, если имеется вывод нейтрали, присоединенный к высоковольтной обмотке реактора L, инициирует индуктивный ток реактора через место пробоя. Этот ток направлен встречно емкостному току ОЗЗ и может его компенсировать при соответствующей настройке реактора (рис. 1)

Рис. 1 Пути прохождения токов ОЗЗ через элементы сети

Необходимость автоматической настройки в резонанс. Для достижения максимальной эффективности ДГР контур, образованный емкостью всей сети и индуктивностью реактора – контур нулевой последовательности сети (КНПС) — должен быть настроен в резонанс на частоте сети 50 Гц. В условиях постоянных переключений в сети (включений/отключений потребителей) емкость сети изменяется, что приводит к необходимости применения плавнорегулируемых ДГР и автоматической системы компенсации емкостных токов ОЗЗ (АСКЕТ). К слову сказать, применяемые в настоящее время ступенчатые реакторы типа ЗРОМ и др. настраиваются вручную, исходя из расчетных данных о емкостных токах сети, и поэтому не обеспечивают резонансной настройки.

Принцип действия АСКЕТ. КНПС настраивается в резонанс устройством автоматической регулировки компенсации типа УАРК.101М, работающим на фазовом принципе. На вход УАРК.101М подаются опорный сигнал (линейное напряжение) и сигнал 3Uo с измерительного трансформатора (например, НТМИ). Для правильной и устойчивой работы АСКЕТ необходимо создать искусственную несимметрию в сети, что делается источником возбуждения нейтрали (ИВН) — либо включением высоковольтной конденсаторной батареи в одну из фаз сети, либо установкой специального несимметричного трансформатора типа ТМПС со встроенным ИВН (с возможностью регулирования коэффициента трансформации с дискретностью 1,25 % фазного напряжения). В последнем случае величина напряжения 3Uo в режиме резонанса и устойчивость работы АСКЕТ остаются постоянными при изменении конфигурации сети (см. формулы ниже). В нейтраль этого же трансформатора устанавливается ДГР (например, типа РДМР). Таким образом, АСКЕТ представляется в виде системы ТМПС+РДМР+УАРК.101М.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

О соотношении величин естественной и искусственной несимметрии. В сети с изолированной нейтралью напряжение на разомкнутом треугольнике НТМИ с учетом коэффициента трансформации соответствует напряжению естественной несимметрии. Величина и угол этого напряжения нестабильны и зависят от различных факторов (погодных,…..и т. д.), поэтому для правильной работы АСКЕТ необходимо создать более стабильный сигнал как по величине, так и по фазе. Для этой цели в КНПС вводится источник возбуждения нейтрали (источник искусственной несимметрии). Если использовать терминологию теории автоматического управления, искусственная несимметрия представляет собой полезный сигнал, используемый для управления КНПС, а естественная – помеха, от которой необходимо отстроиться путем выбора величины искусственной несимметрии. В сетях с наличием кабельных линий с емкостным током 10 и более ампер величина естественной несимметрии, как правило, очень мала [2]. П.5.11.11. ПТЭЭСиС [4] ограничивает величину напряжения несимметрии (естественной + искусственной) в сетях, работающих с компенсацией емкостного тока, на уровне 0,75% фазного напряжения, а максимальную степень смещения нейтрали на уровне не выше 15% фазного напряжения. На разомкнутом треугольнике НТМИ эти уровни будут соответствовать значениям 3Uo= 0,75В и 15В. Максимальная степень смещения нейтрали возможна в режиме резонанса (рис.2).

Читайте также:  Как определить номинальный ток вторичной обмотки однофазного трансформатора

Приведем ниже формулы для расчета напряжения 3Uo в режиме резонанса для двух способов создания искусственной несимметрии:

1) в случае применения конденсатора Co

где — угловая частота сети, 314,16 с-1,

— емкость асимметрирующего конденсатора, Ф,

— предполагаемый ток замыкания на землю, А

— коэффициент трансформации по 3Uo измерительного трансформатора, в сети 6 кВ – 60/ , в сети 10 кВ — 100/ ,

2) в случае применения специального несимметричного трансформатора

где Ксм – переключаемый коэффициент смещения фазы В специального трансформатора.

Из формул видно, что в случае применения конденсатора Co величина 3Uo в точке резонанса зависит от емкостного тока сети ( ), а в случае применения специального несимметричного трансформатора не зависит.

Минимальное значение 3Uo выбирается, исходя из условия надежной работы устройства УАРК.101М, и составляет 5В.

В вышеприведенных формулах не учитывается величина напряжения естественной несимметрии сети ввиду ее небольших значений. Пример суммарного вектора показан на рис. 3 внизу.

Работа при ОЗЗ. Рассмотрим эффективность резонансного заземления нейтрали в двух режимах работы сети: при металлическом однофазном замыкании на землю и дуговом ОЗЗ.

1) Металлическое ОЗЗ. В данном случае происходит минимизация емкостного тока через место замыкания индуктивным током дугогасящего реактора. Нескомпенсированными остаются только активный ток ОЗЗ, который меньше емкостного примерно в 20 раз, а так же ток высокочастотных составляющих.

2) При дуговом ОЗЗ происходит сброс напряжения на поврежденной фазе и его постепенное нарастание в течение 15-20 периодов. Время нарастания напряжения поврежденной фазы зависит от точности настройки в резонанс и состояния изоляции кабельных линий и определяет бестоковую паузу между двумя повторяющимися пробоями, благодаря которой может произойти восстановление изоляционных свойств поврежденного участка (здесь речь идет о так называемом эффекте самоустранения дугового пробоя). Чем точнее КНПС настроен в резонанс и чем выше изоляционные характеристики сети, тем дольше нарастает напряжение на поврежденной фазе, тем больше бестоковая пауза [1,3] (рис. 4). В этом случае не менее 85 % дуговых ОЗЗ переходят в разряд самоустраняющихся и не требуют отыскания поврежденного присоединения.

Рис. 3 Векторы напряжений в резонансно-заземленной сети

Точная автоматическая компенсация емкостного тока ОЗЗ является бесконтактным средством дугогашения и по сравнению с сетями, работающими с изолированной нейтралью, с резистивно-заземленной, с частично компенсируемой, а также с комбинированно заземленной нейтралью имеет следующие преимущества:

уменьшает ток через место повреждения до минимальных значений (в пределе до активных составляющих и высших гармоник), обеспечивает надежное дугогашение (предотвращает длительное воздействие заземляющей дуги) и безопасность при растекании токов в земле;

облегчает требования к заземляющим устройствам;

ограничивает перенапряжения, возникающие при дуговых ОЗЗ, до значений 2,5-2,6 Uф (при степени расстройки компенсации 0-5%), безопасных для изоляции эксплуатируемого оборудования и линий;

значительно снижает скорости восстанавливающихся напряжений на поврежденной фазе, способствует восстановлению диэлектрических свойств места повреждения в сети после каждого погасания перемежающейся заземляющей дуги;

предотвращает набросы реактивной мощности на источники питания при дуговых ОЗЗ, чем сохраняется качество электроэнергии у потребителей;

предотвращает развитие в сети феррорезонансных процессов (в частности, самопроизвольных смещений нейтрали), если выполняются ограничения в отношении применения плавких предохранителей на линиях электропередачи;

исключает ограничения по статической устойчивости при передаче мощности по линиям электропередачи.

При компенсации емкостных токов воздушные и кабельные сети могут длительно работать с замкнувшейся на землю фазой.

1. Лихачев на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов. М.: Энергия, 1971. – 152 с.

2. Обабков адаптивных систем управления резонансными объектами. Киев: Наукова думка, 1993. – 254 с.

3. Способы заземления нейтрали в сетях 6-35 кВ. Точка зрения проектировщика. Новости Электротехники, №2, 2008

4. Правила технической эксплуатации электрических станций и сетей Российской федерации. РД 34.20.501-издание. Москва, 1996.

Рис. 2 Примеры резонансных характеристик КНПС

Рис. 4 Реакция резонансно-заземленной сети на дуговой пробой

Источник

Компенсация емкостных токов. Определение и назначение.

компенсации реактивной мощности

Емкостная компенсация — это процесс полной компенсации мощности (реактивной) в электрическое сетях, которые питают ЭПС. Они различаются на продольные, поперечные, а также совмещенные емкостные компенсации.

Продольная компенсация используется для нужного повышения напряжения во всей тяговой сети с переменным током, а также для симметрирования напряжения на подстанциях. Прибор продольной емкостной компенсации (сокращенно УПРК) является батареей конденсаторов, включающейся последовательно в рассечку с тяговой нагрузкой контактной провода или подвески, который питает эту подвеску. Данное устройство существенно повышает напряжение во всей тяговой сети, при этом компенсируя это падением напряжения нa емкостных сопротивлениях конденсаторов такое падение напряжения на всех индуктивных сопротивлениях электросберегающей сети.

УПРK чаще всего размещают на различных ТП (тяговых подстанциях), а реже всего — на разнообразных постах или перегонах секционирования сети (контактной). Вследствие достаточно больших затрат и очень малых возможностей компенсации упада напряжения в электроснабжении УПPK не устанавливают в стороне 220 или же 110 (150) B. B стороне тягового напряжения 28 kB возможно применение УПPK в однофазном или двухфазном исполнении. В TП используют неполнофазные УПPK, которые включаются непосредственно в рассечку одной или двух фаз. B трёхфазном исполнении УПPK не нашло использования из-за достаточно больших затрат.

УППK устанавливают на TП в тяговой сети точно на постах секционирования. Если данный прибор установлен УППK на посту секционирования реактивной энергии, а также значительное снижение потерь электроэнергии, а также напряжения происходят как в сети внешнего электроснабжения, так и в тяговой ceти. УППK могут быть передвижными и стационарными. Передвижные УППK располагают в вагонах. Повышение ур. напряжения в самих тяговых сетях при достаточно больших размерах движения, а также организации движения всех тяжеловесных поездов благодаря устройству регулирования напряжения на всех трансформаторах тяговой подстанции не эффективно. Для этого используют УРППК, включаемые на многих постах секционирования. Однофазные УPППK могут применяться на TП для компенсации реактивной энергии, а также симметрирования всех тяговых нагрузок.

Источник

Компенсация емкостных токов в сетях с изолированной нейтралью

1. Основные характеристики ОЗЗ

Одним из наиболее частых видов повреждений на линиях электропередачи является однофазное замыкание на землю (ОЗЗ) — это вид повреждения, при котором одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей. ОЗЗ является наиболее распространенным видом повреждения, на него приходится порядка 70-90 % всех повреждений в электроэнергетических системах. Протекание физических процессов, вызванных этим повреждением, в значительной мере зависит от режима работы нейтрали данной сети.

В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.

Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.

Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.

Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ
Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.

Читайте также:  Токи воздуха у антициклона

На рис. 2 представлена векторная диаграмма напряжений.

Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ

При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.

Компенсация емкостных токов в сетях с изолированной нейтралью

Сети 6-35 кВ работают, как правило, с изолированной нейтралью и относятся к сетям с малым током замыкания на землю, при полном (металлическом) замыкании на землю одной фазы такой сети напряжение поврежденной фазы относительно земли становится равным нулю, а значения напряжения неповрежденных фаз относительно земли увеличиваются до значений междуфазного напряжения, то есть в √3 раз:

Iса = Icb = √3 · Ic0 = √3 · U · ф · ω · С,

где Ic0 — емкостный ток фазы в нормальном режиме.

Поскольку векторы напряжений на неповрежденных фазах, а следовательно, и емкостных токов на землю этих фаз сдвинуты на 60⁰, ток в месте замыкания на землю поврежденной фазы равен:

Ic = √3 · Iса = 3 · Ic0 = 3 Uф · ω · С.

Соответственно емкостные токи в неповрежденных фазах также возрастают в √3 раз.

При проектировании сетей ток Iс может приближенно определяться следующим образом:

— для воздушных сетей: Iс = U · L / 350

— для кабельных сетей: Iс = U · L / 10,

где U — среднеэксплуатационное значение линейного напряжения, кВ; L — длина электрически связанной сети данного напряжения, км.

Ток Ic во много раз меньше тока междуфазных замыканий, однако при больших его значениях возникает угроза повреждения оборудования (в сетях 6-10 кВ), перехода однофазного замыкания на землю в междуфазное, а также возникновения перемежающейся дуги вызывающей опасные перенапряжения в сетях 20-35 кВ.

С незаземленными нейтралями могут работать сети 6 кВ при Ic ≤ 30 А, 10 кВ при Ic ≤ 20 А, 15-20 кВ при Ic ≤ 15 А. 35 кВ при Ic ≤ 10 А.

При больших емкостных токах для их компенсации устанавливаются дугогасящие заземляющие реакторы. При полном замыкании на землю одной фазы дугогасящий реактор оказывается под фазным напряжением и через место замыкания на землю проходят токи емкостный и индуктивный, отличающиеся по фазе на 180⁰ и взаимно компенсирующие друг друга. Мощность реактора выбирается по полному емкостному току замыкания на землю с учетом перспективы на 8-10 лет и округляется до ближайшего стандартного значения.

На подстанциях, трансформаторы которых работают раздельно, при емкостном токе каждой секции шин, превышающем допустимые значения, дугогасящие реакторы устанавливаются на обеих секциях. если емкостный ток секции меньше допустимого, а суммарный ток двух секций превышает допустимый, на подстанции устанавливается один дугогасящий реактор, который выбирается по суммарному емкостному току обеих секций и присоединяется к секции с большим током.

Последствия ОЗЗ

Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:

  1. В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Такая величина тока может представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.
  2. В большинстве случаев при ОЗЗ возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения, превышающие в 2-4 раза номинальное фазное напряжение. Изоляция в процессе замыкания может не выдержать такие перенапряжения, вследствие чего возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.
  3. В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.

Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.

Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

Расчет суммарного тока ОЗЗ

При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.

Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.

Выражение для определения тока ОЗЗ:

где С∑ – суммарная емкость фазы всех ЛЕП, причем С∑ = Суд l; Суд – удельная емкость фазы сети относительно земли, Ф/км; l – общая длина проводника одной фазы сети.

Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector