Меню

Найдите направление индукционного тока возникающего в витке в рис 126



§ 40. Направление индукционного тока. Правило Ленца

В предыдущем параграфе были рассмотрены опыты по получению индукционного тока и установлена причина его возникновения.

Как же направлен индукционный ток? Для ответа на этот вопрос воспользуемся прибором, изображённым на рисунке 123. Он представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Рис. 123. При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Возьмём полосовой магнит и внесём его в кольцо с разрезом — кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом (как показано на рисунке), а южным. Объясним наблюдаемые явления.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается (рис. 124). При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Рис. 124. Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции (Вк и Вм) их полей направлены в противоположные стороны (рис. 125). Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки (см. рис. 97) определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Определение направления индукционного тока в кольце

Рис. 125. Определение направления индукционного тока в кольце

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему (рис. 126). Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону (рис. 127). При одинаковом направлении Вк и Вм магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Рис. 126. При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Рис. 127. Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Мы видим, что для определения направления индукционного тока прежде всего необходимо узнать, как направлен вектор магнитной индукции созданного этим током магнитного поля (в центре кольца). На основании результатов рассмотренных опытов (в одном из них внешний магнитный поток увеличивался, а в другом — уменьшался) было сформулировано правило, которое в современной формулировке звучит так:

  • возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток

Данное правило было установлено в 1834 г. российским учёным Эмилием Христиановичем Ленцем, в связи с чем называется правилом Ленца.

Источник

Возникновение индукционного тока в витке

При поступательном движении витка в однородном магнитном поле поток магнитной индукции, пронизывавший его плоскость, не меняется, поэтому и εi=0.

Если же виток вращается вокруг оси, не параллельной B, то в этом случае при его вращении магнитный поток, пронизыва­ющий его плоскость, непрерывно меняется (Рис.22.3). Если угло­вая скорость ω, тo и . Подставив это в (22.1), находим

Т.о., в витке, равномерно вращающемся в магнитном поле, возбуждается э.д.с. индукции, изменяющаяся по гармоническому закону

Это и явилось основой для созданий генераторов перемен­ного тока. Под действием εi в витке возникает индукционный ток, также изменяющийся по гармоническому закону

Явление самоиндукции

Э.д.с. индукции может возникать в контуре (проводе) и без воздействия внешнего магнитного поля. Она может возникать под воздействием меняющегося тока, текущего в самом контуре. Это явление получило название самоиндукции. Если в контуре течет ток i, то он создает индукцию поля В, линии кото­рого пересекают плоскость конту­ра (Рис.22.4). При этом магнит­ный поток Ф через площадь контура как и В будут пропорцио­нальны току:

Читайте также:  Как сгладить пульсации выпрямленного тока

Коэффициент L не зависит от силы тока. Он определяется конфигурацией контура (провода) и называется его индуктивностью. Его называют также самоиндукцией или коэффициентом само­индукции. Для примера вычислим индуктивность тонкого солено­ида. Если его длина l, общее число витков N, площадь од­ного витка S, то индукция внутри соленоида равна

Магнитный поток через один виток равен BS, а через все N витков

Сопоставляя эту формулу с (22.7), находим

где n=N/l — число витков на единицу длины.

В СИ единица индуктивности генри (1Г) — индуктивность контура (провода), который при токе 1 А создает магнитный по­ток 1 Вб: 1Г=1Вб/1А.

При изменении тока в контуре из (22.1) и (22.7) находим возникающую э.д.с., которую называют э.д.с. самоиндукции εS:

т.e. э.д.с. самоиндукции пропорциональна скорости изменения тока в контуре.

Магнитная проницаемость вещества

Опыт показывает, что индуктивность контура зависит и от свойств среды, в которой он находится. Так, если в соле­ноид вдвинуть железный сердечник, то его индуктивность намного возрастет. Величину равную

где L— индуктивность контура в вакууме, a L — в среде, называют магнитной проницаемостью вещества.

Энергия магнитного поля

При размыкании цепи (Рис. 22.5) в ее замкнутом участке аГbа некоторое время будет течь ток за счет самоиндукции — экстраток размыкания I. Работа , совершаемая этим током за время dt, равна , откуда

Эта работа идет на нагревание проводников и сопровожда­ется исчезновением магнитного поля. Т.о., проводник с индуктив­ностью L , по которому идет ток i, обладает энергией, сосредоточенной в окружающем его магнитном поле:

Выразим эту энергию через индукцию магнитного поля. Для этого найдем энергию магнитного поля внутри соленоида, для которого , здесь V=lS — объем. Подставляя эти выражения a (22.12), находим

Для однородного поля плотность энергии равна

Источник

Найдите направление индукционного тока возникающего в витке в рис 126

1. Для чего проводился опыт магнита с кольцом?

Чтобы определить, как направлен индукционный ток в кольце.

а) При приближении к сплошному кольцу любого полюса магнита свободно вращающееся на игле кольцо отталкивается от него.
Почему?
При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток меняется (здесь увеличивается, т.е. увеличивается густота магнитных линий).

В сплошном кольце возникает индукционный ток, который создает вокруг собственное магнитное поле.
Кольцо становится магнитом.
Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него.

б) При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом.
Почему?
При удалении от кольца любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток меняется (здесь уменьшается).
Возникающий в сплошном кольце индукционный ток создает вокруг собственное магнитное поле.
Кольцо становится магнитом.
Взаимодействуя с удаляющимся полосовым магнитом, кольцо притягивается к нему.

В обоих случаях мы наблюдаем взаимодействия двух магнитов: полосового магнита и магнита-кольца.
Очевидно, у кольца-магнита в этих опытах меняются магнитные полюсы.

2. Почему кольцо с разрезом не реагирует на приближение магнита?

Индукционный ток в кольце с разрезом возникнуть не может, так как эта электрическая цепь разомкнута.

3. Как объяснить явления, происходящие при приближении магнита к сплошному кольцу; при удалении магнита?

а) При приближении магнита к кольцу они отталкиваются.
Значит кольцо и магнит обращены друг к другу одноименными полюсами.
А векторы магнитной индукции их полей направлены противоположно друг другу.
Магнитное поле индукционного тока кольца будет противодействовать увеличению магнитного потока полосового магнита, проходящего сквозь кольцо.
Кольцо будет отталкиваться от магнита.

б) При удалении магнита от кольца они притягиваются.
Значит кольцо и магнит обращены друг к другу разноименными полюсами.
Это возможно, когда вектора магнитной индукции их полей направлены одинаково.
Магнитное поле индукционного тока кольца будет противодействовать уменьшению внешнего магнитного потока полосового магнита.
Кольцо будет притягиваться к магниту.

4. Как определить направление индукционного тока в кольце?

Для определения направления индукционного тока прежде всего необходимо знать, как направлен вектор магнитной индукции (направление магнитных линий) созданного этим током магнитного поля (в центре кольца).

Направление индукционного тока в кольце можно определить с помощью правила правой руки:

Если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

. Правило правой руки можно применять не только для катушки (соленоида), но и для определения направления линий магнитного поля в центре одиночного витка с током.
Можно использовать и обратную задачу, т.е. зная направление линий магнитного поля, можно опредилить направление тока в этом витке с током.

Читайте также:  Ток в лампе из за нагревания лампы

Если отставленный большой палец направить по известному уже направлению линий магнитного поля внутри витка (кольца), то четыре пальца, обхватывающие виток (кольцо), укажут направление индукционного тока в витке (кольце).

Правило правой руки применяем дважды:
— для случая приближения магнита к кольцу,
— для случая удаления магнита от кольца.

5. Как сформулировать правило Ленца?

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

Источник

Найдите направление индукционного тока возникающего в витке в рис 126

Проволочный виток, подсоединённый к гальванометру, равномерно перемещают перпендикулярно линиям индукции B однородного магнитного поля слева направо, как показано на рисунке. Индукционный ток в витке

1) не возникает, так как виток перемещают параллельно самому себе в однородном магнитном поле

2) не возникает, так как виток перемещают равномерно

3) возникает, так как при перемещении плоскость витка пересекают линии индукции магнитного поля

4) возникает, так как плоскость витка перпендикулярна линиям магнитной индукции

Согласно закону Фарадея индукционный ток возникает в контуре, если происходит изменение магнитного потока Φ, пронизывающего этот контур, во времени. Поток равен

\Phi = BS косинус \alpha,

где B — модуль вектора магнитной индукции, S — площадь, ограниченная контуром, и α — угол между перпендикуляром к витку и направлением вектора магнитной индукции. Ни одна из этих величин не меняется, т. к. поле однородно и рамка движется параллельно самой себе.

Правильный ответ указан под номером 1.

Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе принципа их действия. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца.

Б) индукционная плита

1) электромагнитная индукция

2) действие магнитного поля на проводник с током

3) тепловое действие тока

Запишите в таблицу выбранные цифры под соответствующими буквами.

В электропаяльнике происходит нагрев рабочей поверхности за счет прохождения по ней электрического тока, что является подтверждением теплового действия тока. (А — 3).

Индукционная плита — кухонная электрическая плита, разогревающая металлическую посуду индуцированными вихревыми токами, создаваемыми высокочастотным магнитным полем частотой 20–100 кГц. В ее принципе действия лежит явление электромагнитной индукции. (Б — 1).

Кольцо из медной проволоки быстро вращается между полюсами сильного магнита (см. рисунок). Будет ли происходить нагревание кольца? Ответ поясните.

1. Кольцо будет нагреваться.

2. При вращении кольца в магнитном поле в кольце возникает индукционный ток, который будет его нагревать.

Изменится ли, и если изменится, то как, время нагревания кастрюли на индукционной плите при увеличении частоты переменного электрического тока в катушке индуктивности под стеклокерамической поверхностью плиты? Ответ поясните.

Принцип действия индукционной плиты

В основе действия индукционной плиты лежит явление электромагнитной индукции — явление возникновени электрического тока в замкнутом проводнике при изменении магнитного потока через площадку, ограниченную контуром проводника. Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления вектора магнитной индукции и скорости его изменения, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание.

Принцип работы индукционной плиты показан на рисунке. Под стеклокерамической поверхностью плиты находится катушка индуктивности, по которой протекает переменный электрический ток, создающий переменное магнитное поле. Частота тока составляет 20–60 кГц. В дне посуды наводятся токи индукции, которые нагревают его, а заодно и помещённые в посуду продукты. Нет никакой теплопередачи снизу вверх, от конфорки через стекло к посуде, а значит, нет и тепловых потерь. С точки зрения эффективности использования потребляемой электроэнергии индукционная плита выгодно отличается от всех других типов кухонных плит: нагрев происходит быстрее, чем на газовой или обычной электрической плите, а КПД нагрева у индукционной плиты выше, чем у этих плит. Устройство индукционной плиты: 1 — посуда с дном из ферромагнитног материала; 2 — стеклокерамическая поверхность; 3 — слой изоляции; 4 — катушка индуктивности.

Читайте также:  Какие частицы могут создавать электрический ток в газах

Индукционные плиты требуют применения металлической посуды, обладающей ферромагнитными свойствами (к посуде должен притягиваться магнит). Причём чем толще дно, тем быстрее происходит нагрев.

Сила вихревого тока, возникающего в массивном проводнике, помещённом в переменное магнитное поле, зависит

1) только от формы проводника.

2) только от материала и формы проводника.

3) только от скорости изменения магнитного поля.

4) от скорости изменения магнитного поля, от материала и формы проводника.

По информации из текста: сила вихревого тока зависит от формы проводника, скорости изменения магнитного поля, свойств проводника.

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Дно посуды для индукционных плит может быть выполнено из стали.

2. Дно посуды для индукционных плит может быть выполнено из алюминия.

3. Дно посуды для индукционных плит может быть выполнено из меди.

4. Сила вихревого тока, возникающего в массивном проводнике, помещённом в переменное магнитное поле, зависит только от скорости изменения магнитного поля.

5. Сила вихревого тока, возникающего в массивном проводнике, помещённом в переменное магнитное поле, зависит от скорости изменения магнитного поля, от материала и формы проводника.

Дно посуды изготавливается из металла, являющегося ферромагнетиком. Таким в предложенном списке является только сталь.

По информации из текста: сила вихревого тока зависит от формы проводника, скорости изменения магнитного поля, свойств проводника.

1. Ответ: время нагревания уменьшится.

2. При увеличении частоты тока в катушке индуктивности увеличивается скорость изменения создаваемого им магнитного поля и, следовательно, увеличивается величина вихревого индукционного тока в днище кастрюли. Согласно закону Джоуля-Ленца, увеличение силы тока в проводнике приводит к увеличению количества теплоты, выделяемого в проводнике за единицу времени.

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Дно посуды для индукционных плит может быть выполнено из стали.

2. Дно посуды для индукционных плит может быть выполнено из алюминия.

3. Дно посуды для индукционных плит может быть выполнено из меди.

4. Сила вихревого тока, возникающего в массивном проводнике, помещённом в переменное магнитное поле, зависит только от скорости изменения магнитного поля.

5. Сила вихревого тока, возникающего в массивном проводнике, помещённом в переменное магнитное поле, зависит от скорости изменения магнитного поля, от материала и формы проводника.

Принцип действия индукционной плиты

В основе действия индукционной плиты лежит явление электромагнитной индукции — явление возникновени электрического тока в замкнутом проводнике при изменении магнитного потока через площадку, ограниченную контуром проводника. Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления вектора магнитной индукции и скорости его изменения, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание.

Принцип работы индукционной плиты показан на рисунке. Под стеклокерамической поверхностью плиты находится катушка индуктивности, по которой протекает переменный электрический ток, создающий переменное магнитное поле. Частота тока составляет 20–60 кГц. В дне посуды наводятся токи индукции, которые нагревают его, а заодно и помещённые в посуду продукты. Нет никакой теплопередачи снизу вверх, от конфорки через стекло к посуде, а значит, нет и тепловых потерь. С точки зрения эффективности использования потребляемой электроэнергии индукционная плита выгодно отличается от всех других типов кухонных плит: нагрев происходит быстрее, чем на газовой или обычной электрической плите, а КПД нагрева у индукционной плиты выше, чем у этих плит. Устройство индукционной плиты: 1 — посуда с дном из ферромагнитног материала; 2 — стеклокерамическая поверхность; 3 — слой изоляции; 4 — катушка индуктивности.

Индукционные плиты требуют применения металлической посуды, обладающей ферромагнитными свойствами (к посуде должен притягиваться магнит). Причём чем толще дно, тем быстрее происходит нагрев.

Источник

Найдите направление индукционного тока возникающего в витке в рис 126



§ 48. Явление электромагнитной индукции. —

Вопросы.

1. С какой целью ставились опыты, изображенные на рисунках 126—128? Как они проводились?

Опыты ставились с целью создания и определения условий возникновения индукционного тока. Для этого в первых двух опытах (рис.126) использовалась катушка, подключенная к гальванометру и магнит. В первом опыте двигали магнит, во втором — катушку. В третьем опыте (рис. 127) магнит заменили на вторую катушку, включенную в цепь. В четвертом и пятом (рис. 128) рамку вращали внутри магнита (а) и магнит внутри рамки (б).

2. При каком условии во всех опытах в катушке, замкнутой на гальванометр, возникал индукционный ток?

Ток возникал в случае изменения магнитного поля.

3. В чем заключается явление электромагнитной индукции?

При изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, не прекращающийся пока происходит изменение.

4. В чем важность открытия явления электромагнитной индукции?

Открытие электромагнитной индукции позволило в промышленных масштабах вырабатывать электрический ток, так как были созданы генераторы электрической энергии.

Упражнения.

1. Как создать кратковременный индукционный ток в катушке К2, изображенной на рисунке 125?

Любым способом, изменяющим силу тока в цепи и соответственно магнитный поток: 1) реостатом; 2) ключом; 3) изменением положения катушки К2.

2. Проволочное кольцо помещено в однородное магнитное поле (рис. 129). Стрелочки, изображенные рядом с кольцом, показывают, что в случаях а и б кольцо движется прямолинейно вдоль линий индукции магнитного поля, а в случаях в, г и д — вращается вокруг оси ОО’. В каких из этих случаев в кольце может возникнуть индукционный ток?

Индукционный ток возникает в случае г), т.к. при этом меняется магнитный поток пронизывающий кольцо.

Источник

Возникновение индукционного тока в витке

При поступательном движении витка в однородном магнитном поле поток магнитной индукции, пронизывавший его плоскость, не меняется, поэтому и εi=0.

Если же виток вращается вокруг оси, не параллельной B, то в этом случае при его вращении магнитный поток, пронизыва­ющий его плоскость, непрерывно меняется (Рис.22.3). Если угло­вая скорость ω, тo и . Подставив это в (22.1), находим

Читайте также:  Классификация сварочной дуги по роду тока полярности

Т.о., в витке, равномерно вращающемся в магнитном поле, возбуждается э.д.с. индукции, изменяющаяся по гармоническому закону

Это и явилось основой для созданий генераторов перемен­ного тока. Под действием εi в витке возникает индукционный ток, также изменяющийся по гармоническому закону

Явление самоиндукции

Э.д.с. индукции может возникать в контуре (проводе) и без воздействия внешнего магнитного поля. Она может возникать под воздействием меняющегося тока, текущего в самом контуре. Это явление получило название самоиндукции. Если в контуре течет ток i, то он создает индукцию поля В, линии кото­рого пересекают плоскость конту­ра (Рис.22.4). При этом магнит­ный поток Ф через площадь контура как и В будут пропорцио­нальны току:

Коэффициент L не зависит от силы тока. Он определяется конфигурацией контура (провода) и называется его индуктивностью. Его называют также самоиндукцией или коэффициентом само­индукции. Для примера вычислим индуктивность тонкого солено­ида. Если его длина l, общее число витков N, площадь од­ного витка S, то индукция внутри соленоида равна

Магнитный поток через один виток равен BS, а через все N витков

Сопоставляя эту формулу с (22.7), находим

где n=N/l — число витков на единицу длины.

В СИ единица индуктивности генри (1Г) — индуктивность контура (провода), который при токе 1 А создает магнитный по­ток 1 Вб: 1Г=1Вб/1А.

При изменении тока в контуре из (22.1) и (22.7) находим возникающую э.д.с., которую называют э.д.с. самоиндукции εS:

т.e. э.д.с. самоиндукции пропорциональна скорости изменения тока в контуре.

Магнитная проницаемость вещества

Опыт показывает, что индуктивность контура зависит и от свойств среды, в которой он находится. Так, если в соле­ноид вдвинуть железный сердечник, то его индуктивность намного возрастет. Величину равную

где L— индуктивность контура в вакууме, a L — в среде, называют магнитной проницаемостью вещества.

Энергия магнитного поля

Читайте также:  Номинальный ток нагрузки формула

При размыкании цепи (Рис. 22.5) в ее замкнутом участке аГbа некоторое время будет течь ток за счет самоиндукции — экстраток размыкания I. Работа , совершаемая этим током за время dt, равна , откуда

Эта работа идет на нагревание проводников и сопровожда­ется исчезновением магнитного поля. Т.о., проводник с индуктив­ностью L , по которому идет ток i, обладает энергией, сосредоточенной в окружающем его магнитном поле:

Выразим эту энергию через индукцию магнитного поля. Для этого найдем энергию магнитного поля внутри соленоида, для которого , здесь V=lS — объем. Подставляя эти выражения a (22.12), находим

Для однородного поля плотность энергии равна

Источник

Найдите направление индукционного тока возникающего в витке в рис 126

1. Для чего проводился опыт магнита с кольцом?

Чтобы определить, как направлен индукционный ток в кольце.

а) При приближении к сплошному кольцу любого полюса магнита свободно вращающееся на игле кольцо отталкивается от него.
Почему?
При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток меняется (здесь увеличивается, т.е. увеличивается густота магнитных линий).

В сплошном кольце возникает индукционный ток, который создает вокруг собственное магнитное поле.
Кольцо становится магнитом.
Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него.

б) При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом.
Почему?
При удалении от кольца любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток меняется (здесь уменьшается).
Возникающий в сплошном кольце индукционный ток создает вокруг собственное магнитное поле.
Кольцо становится магнитом.
Взаимодействуя с удаляющимся полосовым магнитом, кольцо притягивается к нему.

В обоих случаях мы наблюдаем взаимодействия двух магнитов: полосового магнита и магнита-кольца.
Очевидно, у кольца-магнита в этих опытах меняются магнитные полюсы.

2. Почему кольцо с разрезом не реагирует на приближение магнита?

Индукционный ток в кольце с разрезом возникнуть не может, так как эта электрическая цепь разомкнута.

3. Как объяснить явления, происходящие при приближении магнита к сплошному кольцу; при удалении магнита?

Читайте также:  Ток с импульсами прямоугольной формы ток ледюка 1

а) При приближении магнита к кольцу они отталкиваются.
Значит кольцо и магнит обращены друг к другу одноименными полюсами.
А векторы магнитной индукции их полей направлены противоположно друг другу.
Магнитное поле индукционного тока кольца будет противодействовать увеличению магнитного потока полосового магнита, проходящего сквозь кольцо.
Кольцо будет отталкиваться от магнита.

б) При удалении магнита от кольца они притягиваются.
Значит кольцо и магнит обращены друг к другу разноименными полюсами.
Это возможно, когда вектора магнитной индукции их полей направлены одинаково.
Магнитное поле индукционного тока кольца будет противодействовать уменьшению внешнего магнитного потока полосового магнита.
Кольцо будет притягиваться к магниту.

4. Как определить направление индукционного тока в кольце?

Для определения направления индукционного тока прежде всего необходимо знать, как направлен вектор магнитной индукции (направление магнитных линий) созданного этим током магнитного поля (в центре кольца).

Направление индукционного тока в кольце можно определить с помощью правила правой руки:

Если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

. Правило правой руки можно применять не только для катушки (соленоида), но и для определения направления линий магнитного поля в центре одиночного витка с током.
Можно использовать и обратную задачу, т.е. зная направление линий магнитного поля, можно опредилить направление тока в этом витке с током.

Если отставленный большой палец направить по известному уже направлению линий магнитного поля внутри витка (кольца), то четыре пальца, обхватывающие виток (кольцо), укажут направление индукционного тока в витке (кольце).

Правило правой руки применяем дважды:
— для случая приближения магнита к кольцу,
— для случая удаления магнита от кольца.

5. Как сформулировать правило Ленца?

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

Источник

Adblock
detector