Меню

Направление тока в проводниках указано стрелками как взаимодействуют проводники



Направление тока и направление линий его магнитного поля. Правило левой руки

Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.

1779. На рисунке 240 изображен проводник, который приблизили к магниту. Направление тока в проводнике показано стрелками. В какую сторону будет двигаться проводник?

Направление тока и направление линий его магнитного поля. Правило левой руки

1780*. На рисунке 241 изображены четыре проводника с током, расположенные между полюсами магнитов. Как движется каждый из них?

Направление тока и направление линий его магнитного поля. Правило левой руки

1781*. Четыре проводника с током находятся в магнитном поле (рис. 242). Как движется каждый из них? Взаимодействую ли они между собой?

Направление тока и направление линий его магнитного поля. Правило левой руки

1782. Обозначьте стрелками, как взаимодействуют параллельные точки в случаях а, б, в на рисунке 243.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1783. Взаимодействуют ли два провода троллейбусной линии? Если да, то как именно?

1784. На рисунке 244 показано, как взаимодействуют проводники с током. Покажите стрелками направления токов в проводниках.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1785*. Струя расплавленного алюминия при пропускании по ней тока сужается. Чем объяснить это явление?

1786. На рисунке 245 изображена электрическая цепь с проводником в форме пружины. Нижний конец пружины погружен в ртуть. Что происходит с пружиной в электрической цепи после замыкания ключа? Как при этом изменяется сила тока в цепи?

Направление тока и направление линий его магнитного поля. Правило левой руки

1787. Какое действие оказывает однородное магнитное поле на рамку с током (рис. 246) ? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы магнитное поле сжимало рамку?

Направление тока и направление линий его магнитного поля. Правило левой руки

1788*. Как будет поворачиваться рамка с током в однородном магнитном поле (рис. 247)? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы рамка повернулась в противоположную сторону?

Направление тока и направление линий его магнитного поля. Правило левой руки

1789. Рамка с током подвешена между полюсами магнита. Направление тока в ней указано стрелками (рис. 248). Как будет двигаться рамка в случае а и в случае б? Как магнитное поле действует на каждую сторону рамки в случае а? в случае б?

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1790. Если рукой остановить лопасть работающего настольного вентилятора, его корпус начинает нагреваться. Почему?

1791. На рисунке 249 изображен провод длиной 50 см в однородном магнитном поле с индукцией 0,4 Тл. Провод расположен перпендикулярно линиям магнитной индукции, и по нему течет ток силой 0,5 А. Найдите модуль и направление силы, действующей на проводник.

Направление тока и направление линий его магнитного поля. Правило левой руки

1792. Двухметровый прямолинейный проводник, по которому течет ток силой 0,4 А, находится в однородном магнитном поле. На проводние со стороны поля действует сила, по модулю равная 0,4 Н (рис. 250), а вектор индукции магнитного поля перпендикулярен проводнику. Найдите модуль и направление вектора индукции магнитного поля.

Направление тока и направление линий его магнитного поля. Правило левой руки

1793. На прямолинейный проводник длиной 80 см, помещенный в однородное магнитное поле, сто стороны магнитного поля действует сила, равная 0,2 Н (рис. 251). Определите силу тока и направление тока в проводнике, если индукция магнитного поля равна 0,04 Тл.

Источник

Направление тока и направление линий его магнитного поля. Правило левой руки — Перышкин А.В., 7, 8, 9 классы.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1780*. На рисунке 241 изображены четыре проводника с током, расположенные между полюсами магнитов. Как движется каждый из них?

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1781*. Четыре проводника с током находятся в магнитном поле (рис. 242). Как движется каждый из них? Взаимодействую ли они между собой?

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1782. Обозначьте стрелками, как взаимодействуют параллельные точки в случаях а, б, в на рисунке 243.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1783. Взаимодействуют ли два провода троллейбусной линии? Если да, то как именно?
Они притягиваются друг к другу, т.к. ток в них течет в разных направлениях.

1784. На рисунке 244 показано, как взаимодействуют проводники с током. Покажите стрелками направления токов в проводниках.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1785*. Струя расплавленного алюминия при пропускании по ней тока сужается. Чем объяснить это явление?
Ток протекающий в струе, создает магнитное поле, которое сужает струю.

1786. На рисунке 245 изображена электрическая цепь с проводником в форме пружины. Нижний конец пружины погружен в ртуть. Что происходит с пружиной в электрической цепи после замыкания ключа? Как при этом изменяется сила тока в цепи?

Направление тока и направление линий его магнитного поля. Правило левой руки

По пружине начинает течь ток, возникает магнитное поле, пружина сжимается, ток перестает течь, магнитное поле исчезает, пружина возвращается в прежнее положение, ток снова начинает течь и т.д.

1787. Какое действие оказывает однородное магнитное поле на рамку с током (рис. 246) ? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы магнитное поле сжимало рамку?

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1788*. Как будет поворачиваться рамка с током в однородном магнитном поле (рис. 247)? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы рамка повернулась в противоположную сторону?

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1789. Рамка с током подвешена между полюсами магнита. Направление тока в ней указано стрелками (рис. 248). Как будет двигаться рамка в случае а и в случае б? Как магнитное поле действует на каждую сторону рамки в случае а? в случае б?

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1790. Если рукой остановить лопасть работающего настольного вентилятора, его корпус начинает нагреваться. Почему?
Энергия, которая шла на вращение начинает расходоваться на нагрев двигателя.

Читайте также:  Машины постоянного переменного тока разница

1791. На рисунке 249 изображен провод длиной 50 см в однородном магнитном поле с индукцией 0,4 Тл. Провод расположен перпендикулярно линиям магнитной индукции, и по нему течет ток силой 0,5 А. Найдите модуль и направление силы, действующей на проводник.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1792. Двухметровый прямолинейный проводник, по которому течет ток силой 0,4 А, находится в однородном магнитном поле. На проводние со стороны поля действует сила, по модулю равная 0,4 Н (рис. 250), а вектор индукции магнитного поля перпендикулярен проводнику. Найдите модуль и направление вектора индукции магнитного поля.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1793. На прямолинейный проводник длиной 80 см, помещенный в однородное магнитное поле, сто стороны магнитного поля действует сила, равная 0,2 Н (рис. 251). Определите силу тока и направление тока в проводнике, если индукция магнитного поля равна 0,04 Тл.

Источник

Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Читайте также:  Фильтры токов прямой последовательности

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

Читайте также:  Определите силу тока в электрочайнике включенном в сеть с напряжением 125в если сопротивление нити

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Источник

Самостоятельная работа Магнитное поле. Магнитное поле прямого тока. Магнитные линии 8 класс

Самостоятельная работа Магнитное поле. Магнитное поле прямого тока. Магнитные линии 8 класс с ответами. Самостоятельная работа представлена в двух вариантах, в каждом варианте по 5 заданий.

Вариант 1

1. Сколько полюсов у магнита? В какой цвет они обычно окрашены и как называются?

2. Назовите датского физика, который впервые обнаружил взаимодействие проводника с током и магнитной стрелки?

3. Какой существует способ определения направлений магнитных линий прямолинейного тока?

4. Участок прямолинейного провода присоединяют к источнику тока (см. рисунок). Постройте магнитные линии для этого тока и определите их направление.

Участок прямолинейного провода 1 вариант 4 задание

5. По направлению тока (см. рисунок) определите направление магнитной линии.

Направление тока 1 вариант 5 задание

Вариант 2

1. Как взаимодействуют одноимённые и разноимённые полюса магнитов?

2. Что будет с магнитной стрелкой, находящейся около проводника, если по нему пропустить электрический ток?

3. Назовите источники магнитного поля.

4.По участку прямолинейного провода ток направлен вверх (см. рисунок). Постройте магнитные линии для этого тока и определите их направление.

Участок прямолинейного провода 2 вариант 4 задание

5.По направлению магнитной линии прямолинейного тока (см. рисунок) определите условное направление тока.

Направление тока 2 вариант 5 задание

Ответы на самостоятельную работу Магнитное поле. Магнитное поле прямого тока. Магнитные линии 8 класс
Вариант 1
1. У магнита 2 полюса. N — северный, окрашен в синий цвет, S — южный, окрашен в красный цвет.
2. Хане Кристиан Эрстед
3. На направление магнитных линий указывает северный полюс магнита в каждой точке поля.
4. Против часовой стрелки.
5. Магнитные линии движутся по часовой стрелке.
Вариант 2
1. Одноименные полюса магнитов отталкиваются друг от друга, разноименные притягиваются.
2. Магнитная стрелка начнет под действием электрического поля вокруг проводника с током поворачиваться. Она установится перпендикулярно проводнику.
3. Источником магнитного поля являются заряженные частицы, собственное магнитное поле Земли.
4. Против часовой стрелки.
5. Ток направлен от нас.

Источник