Меню

Находились ли вы возле генератора электрического тока



Как выбрать электрогенератор

Как выбрать электрогенератор

Аватар пользователя

Электричество настолько плотно вошло в нашу жизнь, что мы пользуемся им, практически его не замечая. Степень нашей зависимости от электричества становится заметна, только когда его нет. И тут-то выясняется, что жить без электричества еще можно, а вот жить комфортно – уже нет. В городах отключения электричества редки и кратковременны, поэтому почувствовать все прелести жизни в доиндустриальной эпохе не получится. А вот за городом без электрогенератора порой не обойтись:

— Для строительных работах на участках без электричества приобретение генератора будет намного выгоднее, чем покупка комплекта аккумуляторного инструмента.

— Электрогенератор поможет с ремонтом автомобиля, если в гараже нет электричества.

— Электрогенератор позволит обеспечить привычный уровень комфорта при выезде не природу или на дачу в «глухом углу» без электричества.

— И наконец, электрогенератор может буквально спасти владельца загородного дома от замерзания системы отопления в зимнее время при продолжительном отключении электричества. Да и летом не помешает – насос-то в скважине тоже от электричества работает.

Последний довод на сегодняшний день является самой распространенной причиной покупки электрогенератора. Именно развитие частного домостроения вызвало настоящий бум на рынке электрогенераторов, приведший к сегодняшнему их изобилию. И это неудивительно: потребности у всех покупателей генераторов разные: кто-то хочет запитать от генератора только печку, кто-то – добавить еще насос и холодильник, кому-то генератор нужен для работы включения мощного электроинструмента. Генераторы во всех этих случаях потребуются разные, и внимание следует обратить не только на мощность, но и на остальные характеристики.

Характеристики электрогенераторов

Выходная мощность определяет и возможности генератора (сколько он «потянет» электротехники), и его вес, и его цену.

Но какая мощность нужна? Консультант в магазине, скорее всего, посоветует просуммировать мощность всех используемых дома приборов и обязательно напомнит о пусковом коэффициенте реактивных потребителей электроэнергии. Дело в том, что все электроприборы делятся на два вида — активных и реактивных потребителей. У активных потребителей вся электроэнергия преобразуется в тепло — это электронагреватели, утюги, лампы накаливания, электрочайники и т.д. Потребляемая мощность активных потребителей постоянна. А реактивные потребители часть энергии расходуется на создание электромагнитного поля и в момент включения они непродолжительное время потребляют мощность, значительно превышающую номинальную. Реактивными потребителями являются электроприборы, содержащие двигатели, трансформаторы, электромагниты и т.д — холодильники, стиральные машины, пылесосы и пр. Поскольку четких закономерностей – какой прибор какой пусковой ток потребляет – нет, то при подсчете необходимой мощности часто используются таблицы наподобие этой:

И если взять для примера какой-нибудь частный дом с электроводонагревателем на 1,5 кВт, со скважинным насосом на 750 Вт, холодильником на 120 Вт и двумя циркуляционными насосами по 100 Вт, то уже по этим приборам необходимая мощность получится 1500+750*7+120*3+200*4=7910 Вт. Потом консультант еще посоветует добавить пару киловатт на телевизор, компьютер и «что, вы даже свет включать не будете?» и вот покупатель везет домой 10-киловаттного «монстра». В то время как из перечисленных электроприборов непрерывно работают только циркуляционные насосы, потребляя свои 200 Вт, а продолжительная нагрузка будет составлять максимум 2-3 кВт. Поговорка «запас карман не тянет» к электрогенераторам не подходит – продолжительная работа с нагрузкой, не превышающей 30% номинала, для них вредна — при таком режиме быстро нарастает нагар на свечах и в выпускном тракте. Кроме того, расход топлива генераторов (особенно неинверторного типа) зависит от нагрузки нелинейно – расход на 20% нагрузке будет всего в 1,5-2 раза меньше, чем при полной нагрузке.

Поэтому оптимальный метод подбора мощности заключается в том, чтобы определить, какой из реактивных потребителей имеет максимальную пиковую мощность, затем сложить её с мощностью постоянно работающих активных нагрузок. При определении потребителя с максимальной пиковой мощностью, следует уточнить его пусковой коэффициент в руководстве по эксплуатации (если он там есть) – приведенное в таблице значение может сильно отличаться от реального для конкретной модели.

Так, в вышеприведенном примере максимальную мощность потребляет во время пуска погружной насос с 750*7=5250 Вт пиковой мощности. Если принять, что этим насосом является Grundfos SP 1A-28, то согласно руководству, его множитель пускового тока составляет не 7, а всего 3,6. Таким образом, пиковая мощность насоса будет 750*3,6=2700 Вт. Максимальная возможная активная нагрузка в момент включения насоса будет равна 1820 Вт (электронагреватель + холодильник + два насоса). Добавив 2700, получаем 4520 Вт.

Причем полученное значение мощности потребуется только для пуска насоса, постоянная нагрузка на генератор будет меньше, поэтому подбираем генератор не с номинальной, а с максимальной выходной мощностью, соответствующей полученному числу. Максимальная выходная мощность – это мощность, которую генератор способен кратковременно выдать без вреда для себя. В данном случае именно это и надо.

Так что генератор с номинальной мощностью в 4 кВт и максимальной – в 4,5 кВт для приведенного примера вполне подойдет, и будет стоить в 5-10 раз дешевле ранее «подобранного» 10-киловаттного.

Единственная особенность, которую следует учесть при таком способе подбора мощности генератора, это то, что потребители к нему следует подключать постепенно. Ни в коем случае нельзя подключать генератор к сети электропитания дома с включенными электроприборами так, что они получат питание одновременно – это может привести к выходу генератора из строя, особенно, если у него нет защиты от перегрузок.

Вид генератора.

Асинхронный генератор имеет максимально простую конструкцию, его ротор не содержит обмоток (только постоянные магниты), щеточный узел отсутствует. Такой генератор проще в обслуживании, дешевле, легче, меньше подвержен действию пыли и влаги. Еще одно немаловажное достоинство асинхронного генератора заключается в том, что он не боится высоких токов – вплоть до короткого замыкания. Это позволяет использовать генератор для подключения сварочных аппаратов.

Главный недостаток асинхронного генератора – параметры генерируемого им напряжения зависят от нагрузки. Поэтому асинхронные генераторы не рекомендуется использовать для снабжения электроэнергией потребителей, требовательных к её качеству (стабильности частоты и напряжения, формы синусоиды сигнала) – газовых котлов, холодильников, ИБП, циркуляционных и скважинных насосов. Зато невосприимчивость к высоким токам позволяет подключать к асинхронному генератору мощный строительный инструмент, часто работающий с перегрузками.

Синхронный генератор имеет обмотку возбуждения на роторе, запитываемую через щеточный узел. Частота переменного напряжения на выходе синхронного генератора зависит только от частоты вращения ротора и остается постоянной при изменении нагрузки. Это позволяет использовать синхронный генератор для подключения бытовой техники, требовательной к качеству электропитания.

Недостатком синхронного генератора является то, что для поддержания частоты напряжения, двигатель должен вращаться с постоянной скоростью независимо от снимаемой с генератора мощности. Это сильно снижает КПД генератора при падении нагрузки. Для стабильной производительной работы синхронный генератор должен быть постоянно нагружен на 50-80% номинала.

Инверторный генератор может иметь в основе как асинхронный, так и синхронный генератор. Но в отличие от «чистых» синхронных и асинхронных, в инверторном генераторе выходное напряжение сначала выпрямляется, затем преобразуется в переменное с помощью электронной схемы – инвертора.

Это позволяет добиться высокой стабильности частоты и напряжения электропитания без поддержания постоянных оборотов двигателя. Инверторные генераторы допускают работу с малой нагрузкой (расход при этом у них будет намного меньше, чем у синхронных). Однако при номинальной нагрузке КПД инверторных генераторов ниже, чем синхронных.

Часто можно услышать утверждение, что только инверторные генераторы способны обеспечить идеальную форму выходного сигнала при любых условиях работы. И что поэтому газовый котел можно запитать только от инверторного генератора. Это не всегда верно – да, инверторный генератор лучше чем любой другой выдерживает частоту и напряжение при изменениях нагрузки.

Но вот форма сигнала (синусоида) на недорогих инверторных преобразователях изначально далека от идеала. В целях снижения цены сглаживающий фильтр на выходе генератора производитель не ставит, и к потребителю вместо синусоиды идет «лесенка».

Вред такого сигнала неоднозначен – большинство бытовой техники разницы «не заметит», но некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать.

Хороший инверторный генератор, обеспечивающий «чистую» синусоиду выходного напряжения, будет стоить намного дороже синхронного.

Так что котел можно запитывать не только от инверторного генератора – синхронный генератор скорее даст «чистую» синусоиду, чем дешевый инверторный. И вообще, большинство проблем при подключении котла к генератору возникает не из-за формы сигнала, а из-за незаземленной нейтрали генератора, приводящей к отсутствию «нулевого» провода питания. Для правильной работы схем контроля пламени газовых котлов, на одном проводе питания должна быть фаза 220В, а на другом – 0. Чтобы получить такое питание от однофазного генератора (у которого на каждом из двух выходов по фазе), достаточно заземлить один выходной провод (любой).

Читайте также:  Как определяют силу тока напряжение сопротивление параллельной цепи

Стабилизация напряжения применяется для поддержания параметров электропитания при изменении нагрузки.

Большинство современных синхронных генераторов снабжено AVR – автоматическим регулятором напряжения. Электронная схема AVR контролирует выходное напряжение, и, при его изменении, увеличивает или уменьшает ток обмотки возбуждения. Это позволяет поддерживать выходное напряжение в пределах 220+5% при любых нагрузках.

Асинхронные генераторы стабилизируются с помощью шунтирующих и компаундирующих конденсаторов, помогающих поддержать напряжение при кратковременных его перепадах. Но с сильными и продолжительными перепадами такой стабилизатор не справляется.

Инверторные генераторы в стабилизаторе напряжения не нуждаются – оно и так будет стабильным при любой нагрузке.

Напряжение. Генераторы могут быть как однофазными – для подключения бытовой техники на 220В (230В), так и трехфазными – для подключения более мощной техники на 380В (400В). К трехфазному генератору можно подключить однофазный электроприбор (на нем, как правило, есть отдельные розетки 220В), наоборот – нельзя. Трехфазные генераторы предоставляют больше возможностей, но и стоят дороже.

Многие генераторы также имеют дополнительный выход 12В постоянного тока – такие модели можно использовать для подзарядки автомобильного аккумулятора.

Цикл двигателя. Двухтактные двигатели легче и дешевле четырехтактных, но для заправки большинства из них требуется готовить топливную смесь (добавлять в топливо определенное количество масла). Кроме того, двухтактные двигатели имеют значительно меньший моторесурс – 500-700 часов.

Для резервного генератора, включающегося несколько раз в год, это не критично, но, если генератор приобретается для постоянной работы, лучше выбирать среди четырехтактных. Кроме на порядок большего моторесурса, четырехтактные двигатели отличаются экономичностью и меньшим уровнем шума.

Запуск. Большинство генераторов оборудовано веревочным стартером для ручного пуска двигателя. Наличие электростартера (электрического пуска) может заметно облегчить работу с генератором, но имейте в виду, что электростартер заметно увеличивает цену и вес генератора. Если генератор приобретается для эпизодического использования, то лучше остановиться на модели с ручным пуском – за месяцы простоя аккумулятор, скорее всего, разрядится, и пускать генератор все равно придется вручную.

Электрический пуск аварийных генераторов действительно необходим только в том случае, если предполагается пуск генератора при пропадании сетевого электропитания – установка АВР (автомата пуска резерва) позволит таким генераторам запускаться автоматически. Некоторые генераторы уже снабжены автоматическим пуском.

Вид топлива. Для большинства задач бензиновые генераторы предпочтительнее в силу невысокой цены и небольшого веса. Но если запускать генератор планируется часто и подолгу, то цена топлива становится немаловажным критерием – в этом случае имеет смысл обратить вимание на гибридные газобензиновые генераторы – хоть они и дороже бензиновых, но эта разница быстро окупится за счет меньшей цены газа.

Дизельные двигатели экономичнее бензиновых и имеют больший ресурс. Но весят они намного больше, поэтому дизельным двигателем обычно комплектуются мощные генераторы, предназначенные для продолжительной работы на одном месте.

Варианты выбора генераторов

Инверторный генератор небольшой мощности позволит не чувствовать себя оторванным от цивилизации во время выездов за город – с его помощью можно организовать освещение, подзарядить ноутбук или аккумулятор автомобиля.

Для аварийного питания самой необходимой электротехники будет достаточно недорогого синхронного генератора мощностью 2-4 кВт – этого хватит, чтобы «поддержать на плаву» отопление и водоснабжение частного дома при отключении электроэнергии.

Если вам нужен генератор, чтобы обеспечить питанием электроинструмент на площадках без подведенного электричества, выбирайте среди моделей мощностью 4-6 кВт. Этого хватит, чтобы обеспечить пуск большинства видов ручного электроинструмента.

Генератор мощностью в 7-10 кВт способен полностью обеспечить электричеством большой частный дом.

Гибридные газо-бензиновые генераторы позволяют в разы снизить цену киловатт-часа – при частом использовании генератора это дает значительную экономию.

Источник

Почему кипит аккумулятор автомобиля при езде — причины и последствия

Генераторы

Если, открыв капот Вы заметили на корпусе аккумулятора потеки электролита и кристаллы соли, во время подзарядки услышали резкий неприятный запах, клеммы покрылись зеленым налетом – это признаки того, что закипел электролит в аккумуляторе.

Как определить закипание аккумулятора

Для этого следует открутить пробки банок и проверить плотность электролита ареометром в каждой банке. Если плотность будет высокой, то значит в результате электролиза вода в виде газов водорода и кислорода ушла из банок. На необслуживаемых аккумуляторах бывают заметные потеки электролита из-под штуцера сброса давления, возможно вздутие или сильный нагрев корпуса, шипение.

Процесс закипания электролита в конечном счете приводит к следующим проблемам:

  • разрушение пластин из-за высокой концентрации серной кислоты в электролите;
  • химического повреждения проводки и металлических частей кузова под капотом;
  • в случае если АКБ находится в салоне или багажнике, то происходит медленное разрушение клемм, разъемов, элементов обшивки;
  • из-за выкипания электролита и повышения тока заряда может привести к выходу из строя генератора;
  • возможен взрыв АКБ и разрушение механизмов под капотом из-за попадания элементов корпуса между вращающимися деталями и кислоты на электрическую аппаратуру и проводку внутри капота.

Причины закипания электролита

Электролит может закипать во время езды или во время зарядки аккумулятора.

Закипает аккумулятор при езде причины следующие:

  • Генератор выдает напряжение выше 14,4В из-за выхода из строя регулятора напряжения.
  • Забиты вентиляционные каналы в АКБ. Они необходимы для вывода образующегося при зарядке водорода и кислорода. При скоплении этих газов они могут создать большое давление и выдавив грязевую пробку вместе с электролитом вырваться из канала.
  • Вышел из строя диодный мост на генераторе. В этом случае на клеммы аккумулятора начинает поступать переменное напряжение и это причина почему выкипает аккумулятор.

В случае закипания электролита причинами закипания электролита в АКБ бывают:

  • перезаряд аккумулятора;
  • короткое замыкание банок;
  • сульфатация пластин;
  • перегрузка электрической системы;
  • недостаточная вентиляция;
  • переполюсовка АКБ.

Перезаряд аккумулятора

В случае неправильного обслуживания аккумулятора используя нерегулируемый источник тока. Оптимальный ток заряда должен быть около 10%. То есть АКБ емкостью 60 А-ч должен заряжаться 10 часов с током 6 А. После 10 часов заряда свинец уже восстановился из сульфата и начинается электролиз воды (разложение на водород и кислород) с нагревом и даже кипением электролита. С уменьшением количества воды плотность электролита увеличивается и увеличивается ток заряда.

Короткое замыкание банок

Замыкание пластин в АКБ может случиться не только в старых аккумуляторах, но и в новых. Во время движения аккумулятор постоянно трясет и пластины сепараторы разделяющие пластины могут разрушиться. Это приводит к замыканию пластин в одной из банки. Идет большой ток короткого замыкания и может привести к взрыву. Если взрыва не произошло, то, на клеммах АКБ будет уже не 12,7В, а 10,5В. Такой автомобиль может и завестись, но от генератора будет все равно подаваться ток с напряжением 13,5-14,4В. Ток заряда соответственно будет больше и это является причиной почему закипает аккумулятор. Внешне определить не работающую банку можно таким образом – поставить аккумулятор на зарядку со снятыми пробками, через некоторое время из окрытых отверстий начнут выделяться пузырьки. В неработающей банке пузырьки выделяться не будут.

Сульфатация пластин

Когда аккумулятор сильно разрядился, то пластины покрываются сернокислым свинцом, который является диэлектриком. Площадь контакта свинцовых пластин с электролитом уменьшается и емкость батареи снижается. Поэтому быстрее заряжается и быстрее разряжается. Большой ток при зарядке такой АКБ приводит к закипанию. Для удаления сернокислого свинца можно выполнить следующие операции:

  • слить электролит;
  • залить дистиллированную воду;
  • поставить на зарядку (использовать повышенное напряжение);
  • разрядить и повторить процедуру несколько раз с промывкой зарядом и разрядом.
  • залить свежий электролит.

Перегрузка электрической системы

Когда в авто включается много потребителей электроэнергии – дальний свет, печка, кондиционер, мощная акустическая система. Мощности генератора может не хватать для восполнения заряда АКБ. Электролит начнет нагреваться и может закипеть.

Недостаточная вентиляция

Иногда автолюбители ставят аккумулятор большей емкости и соответственно больших размеров. Расстояние между стенками аккумулятора и другими узлами автомобиля уменьшается. Греется аккумулятор когда не хватает естественного охлаждения.

Читайте также:  Зависимость силы сварочного тока от толщины металла

Переполюсовка АКБ

Это случается очень редко, когда при полном разряде аккумулятора его зарядят, не соблюдая полярность. При подключении возникают большие токи разряда и электролит закипает.

Процесс кипения

Причиной почему испаряется электролит в аккумуляторе является то, что после полного заряда АКБ, если продолжается процесс подачи тока происходит электролиз или разложение воды. Возле положительного электрода собирается кислород, а возле положительного электрода – водород. Они собираются в виде пузырьков и выходят смешиваясь и получается гремучая смесь. В начале процесса пузырьки маленькие, но потом их количество увеличивается, и они выходят с бурлением похожим на кипение. Процесс идет с выделением тепла и греется аккумулятор.

Последствия кипения электролита в аккумуляторе

Если процесс бурления газов происходит в конце зарядки, то это нормально и просто говорит, что батарея зарядилась. Если закипел аккумулятор сразу в начале зарядки, то это приведет к проблемам:

  • потеря электролита;
  • нарушение его плотности;
  • осыпание пластин;
  • потеря емкости;
  • снижение силы пускового тока;
  • короткое замыкание в банках;
  • возможное разрушение АКБ.

Действия водителя при закипании аккумуляторной батареи

Выкипел аккумулятор что делать ясно из статьи – требуется:

  • остановиться и заглушить двигатель;
  • открыть капот, обеспечить приток воздуха;
  • дождаться остывания до температуры ниже 40 о C (проверяется рукой).
  • закрыть капот и доехать до дома или ближайшей заправки;
  • приобрести дистиллированную воду и долить электролит в банки;
  • проверить напряжение на аккумуляторе при заведенном двигателе и если выше 15 Вольт, то отключить толстый провод от генератора и заизолировать его.
  • двигаться в автосервис или домой выключив все потребители электроэнергии.

Как не допустить закипания аккумулятора

Зная почему кипит аккумулятор требуется выполнять несложные правила:

  • Убрать от АКБ все предметы, мешающие охлаждению.
  • Периодически проверять уровень электролита особенно в жару. При необходимости подливать дистиллированную воду.
  • Проводить проверку напряжения на клеммах при работающем двигателе.
  • Осматривать аккумулятор и клеммы. Не должно быть вспучиваний и потеков на банках.

Источник

Электрические. люди

Электрические. люди - электричество, сверхспособности, суперспособности

Для того чтобы изучать аномальные явления, иной раз совершенно нет нужды бегать за зелеными человечками, караулить летающие тарелки или пытаться отыскать порталы в иное время или иное измерение.

Достаточно посмотреть вокруг — на людей. Потому что очень часто люди сами являются ходячим аномальным явлением. Например, так называемые «электрические люди».

В истории человечества их считанные единицы. Их дар заключается в чрезвычайной электрической активности организма, в результате чего на поверхности тела сосредотачивается значительный электрический заряд, не влияющий на их здоровье, но осложняющий им жизнь по причине влияния этого неизвестно откуда взявшегося электричества на окружающих людей, вещи и домашних животных.

Исторические данные говорят, что такого рода феномены наблюдались и ранее, до наступления эпохи электричества. Однако только с ее наступлением им стали придавать истинное значение. Так, например, в 1869 г. во Франции появился на свет младенец, который был постоянно насыщен статическим электричеством. Матери было достаточно прикоснуться к нему, как она ощущала сильный удар током.

Кормление же грудью превращалось в настоящую пытку: удары следовали один за другим. Но между тем сам ребенок, казалось, ничего не чувствовал. В темноте от его пальцев исходили какие-то лучи и даже небольшие молнии, а в воздухе возле него всегда пахло озоном. Было также отмечено, что небольшие предметы начинали спонтанно двигаться, когда ребенок к ним тянулся. Через восемь месяцев несчастный младенец умер. То, что в его смерти было виновато его внутреннее электричество, несомненно.

Аналогичная ситуация сложилась с уже взрослой девушкой из Канады, которая также била током всех, кто к ней прикасался или даже подходил близко. Кроме электрических явлений, с ней происходили и магнитные, называемые в наши дни биопритяжением: мелкие и даже крупные предметы, включая те, что изготовлены из немагнитных материалов, намертво прилипали к ее коже

В те же годы в одном медицинском журнале сообщалось о 29-летней парижанке, которая с детства была насыщена электричеством: от ее волос в темноте летели искры, пальцы притягивали к себе мелкие предметы, а нижнее белье приставало к телу так сильно, что его невозможно было снять, не повредив кожу.

Первое научное исследование феномена было произведено профессором французской академии наук Франсуа Араго в 1846 г., когда появились слухи о некой парижанке Анжелике Коэн, обладающей способностью «искрить» и отталкивать предметы. Достаточно ей было слегка прикоснуться рукой или краем платья к тяжелой мебели, как она принималась прыгать по комнате, отскакивая от девушки.

«Электрическая сила» временами воздействовала и на саму девушку: она начинала биться в судорожном припадке, а частота пульса возрастала до 120 ударов. Однако если Анжелика разряжалась, опуская руки в проточную воду или даже прикасаясь к дереву, то с ней такого не происходило.

В своем научном отчете Араго не без стеснения писал, что изучение данного феномена поставило его в тупик, поскольку наука еще не созрела для того, чтобы понять природу электричества в человеке. Однако даже в наш просвещенный век аналогичные электрические явления в человеке сопровождаются полной беспомощностью науки, пытающейся объяснить данное явление или хотя бы найти ему причину.

Так, некая англичанка Ники Хайд-Палли неожиданно для себя превратилась в настоящую «машину», производящую электричество. Случилось это после удара молнии. К счастью, она осталась жива, но превратилась в монстра, поражающего людей и предметы электростатическими разрядами. В ее присутствии сами собой переключались каналы телевизора, перегорали лампочки и другая бытовая техника, а компьютер превратился в кучу хлама. От нее постоянно исходили искры, болезненно действующие на окружающих людей.

Мало того, от этих электрических ударов страдает и сама Ники, причем и чисто физически. В результате полной невозможности супружеской жизни от нее ушел муж. Он был до того напуган, что даже проверил и свою новую подругу на предмет наличия в ней электричества. Сама же Ники превратилась в полную затворницу, а выходя на улицу или в магазин, надевает на руки резиновые перчатки, носит обувь на толстой подошве, не пропускающей электричества, и т.д.

В числе «электрических людей» следует назвать и ныне живущего в Украине пенсионера В.Т.Максютинского, который также является источником статического электричества. Однако среди односельчан он известен более как человек, нечувствительный к электрическому току.

Так, например, в процессе одного из экспериментов Максютинский без особых болезненных ощущений для себя и без вреда для своего здоровья выдерживал в течение нескольких минут воздействие электрическим напряжением 850 вольт!

Похож на него и другой пенсионер — но уже китайский, по имени Чжан Дэкэ из города Алэтай. Он регулярно устраивает своему телу «атлетические упражнения», пропуская через него ток, напряжение которого составляет 220 вольт! При этом тело Дэкэ не только служит проводником электричества, но и удерживает его некоторое время в себе.

Этого бывает достаточно, чтобы за две минуты буквально поджарить на ладонях небольшую рыбу! Очень часто этот «трюк» служит причиной спонтанных экскурсий: люди не верят, что такое бывает на самом деле, и приезжают в Алэтай посмотреть на чудо-пенсионера.

Впрочем, Дэкэ не только жарит рыбу на ладонях благодаря своему дару, но и занимается. лечением. Тем, что он регулярно пропускает через себя ток, он успешно лечит ревматизм, артрит и поясничные боли. Тем не менее специалисты настоятельно советуют ему не слишком увлекаться «электротерапией»: мало ли что! Они, в общем-то, правы: феномен не изучен, и неизвестно, как такое лечение повлияет на ход болезни. Однако пока еще никто не жаловался.

Чжан Дэкэ является объектом пристального внимания ученых. Недавно он проходил обследование в Академии наук Китая, но его результаты не дали полного объяснения феномену.

«Дружит» с оголенными электрическими проводами, находящимися под напряжением, и 51-летний Константин Крайю из румынского города Бузау. Кроме того, он утверждает, что может засунуть два пальца в розетку и только почувствовать, что они становятся теплее.

Он может чинить электропроводку, сломанные электроприборы, не отсоединяясь от источника питания. На глазах у журналистов Крайю засунул два провода в розетку и, используя свое тело как проводник, включил лампочку.

Не боится дотрагиваться до оголенных проводов и житель Ингушетии Леча Ватаев. Ватаев спокойно держит в руках оголенные провода и разъемы с напряжением в 220 вольт и при этом даже не шелохнется. Однако дотрагиваться до тела Ватаева в это время смертельно опасно. До тех пор, пока в его руках электрический ток, он — проводник высокого напряжения.

Читайте также:  Схемы выпрямления переменного тока с помощью диодов мостовая

Как сообщал недавно один из российских телеканалов, специалисты-электрики с любопытством проверяли и наблюдали наличие тока в его организме с помощью индикаторов. Когда индикатор подносили к левому уху и к языку «чудо-человека», лампочка загоралась, т.к. это был «плюс», а когда подносили к правому — не загоралась, т.к. это оказался «минус». Очевидцы были ошеломлены.

Двенадцатилетний подросток Джо Фальчитано из штата Нью-Йорк приводит компьютеры в негодность, просто дотрагиваясь до них. Кроме того, парень вполне может «подвесить» на длительное время компьютер или игровую приставку.

Эксперты, которые провели над парнем уже не один десяток тестов, все еще ломают голову над его «загадочными способностями», однозначно утверждая лишь, что Джо является т.н. «носителем биоэлектричества».

Английский астрофизик Майкл Шаллис в течение четырех лет занимался изучением шестисот носителей экстремального биоэлектричества, но так до конца и не выяснил причину появления электрического потенциала в телах исследуемых. Тем не менее, многие из его подопечных могли бы попасть в Книгу рекордов Гиннесса. Некоторые и попали.

Среди испытуемых Шаллиса есть совершенно удивительные люди. Например, Шейла. Так случилось, что служащие одного из банков в Бирмингеме чем-то ее обидели, и она в отместку чуть не довела банкиров до разорения. Женщине достаточно было прикоснуться к розетке или к месту скрытой электропроводки в стене холла, чтобы компьютеры в банке начинали давать искаженную информацию, стирать из памяти различные данные или вообще отключаться.

Ни один специалист не мог определить, что происходит с аппаратурой. Однако после ухода Шейлы из банка все компьютеры опять исправно работали. Иными словами, в данном случае феномен заключается не только в нечувствительности к электротоку, но и в способности воздействовать на информацию, хранящуюся в компьютерах, причем не в техническом, так сказать, аспекте, а в качественном: информация не исчезала, она менялась!

А что же по этому поводу говорит официальная наука? Физикам, биофизикам и биоэнергетикам давно известно, что электрические явления происходят в человеческом организме постоянно. Более того, от их наличия зависит все наше существование. Всем известны такие диагностические методики, как ЭКГ и ЭЭГ, определяющие состояние работы сердца и, соответственно, мозга по качеству электрических импульсов.

Другой вид электрической активности имеется в т.н. каналах или меридианах внутри тела человека, а также в биологических активных точках. Его вырабатывает любой организм — за счет наличия в живых тканях и клетках электронов, ионов и заряженных макромолекул, движение которых и создает разность потенциалов. При определенных условиях эти потенциалы могут вызвать биотоки во внутренней среде организма.

Но величина биопотенциалов в человеческом организме исчисляется всего лишь тысячными долями вольта, т.е. оказываются настолько незначительными, что определяются только с помощью особо чувствительных приборов. Поэтому приводить в пример «микротоки» среднестатистического человеческого организма в данном случае бесполезно — не тот, что называется, масштаб.

Может быть, стоит обратиться к животным? В природе, как известно, имеются и виды, способные продуцировать и накапливать в себе электрический разряд большой мощности, например, электрический скат. Но это, скорее, исключение из правил. Да и мощность у того ската — по сравнению хотя бы с вышеописанными пенсионерами — смехотворна.

И официальная современная наука заявляет: продуцирование или накапливание в человеческом теле электрической энергии подобной мощности не просто невозможно, но и смертельно опасно. Вот так! Невозможно и смертельно опасно. Однако все «электрические люди» (за небольшим исключением) живы и здоровы и реально существуют. Но наука утверждает именно так, и других точек зрения не имеет.

По мнению медиков, электрические токи большой интенсивности чаще всего возникают при сбоях в работе человеческого организма. Резко поднимается температура тела, появляется шум в ушах, проявляются другие симптомы, свидетельствующие о нарушениях каких-то процессов, происходящих в человеческом теле.

Но все это совершенно не объясняет самого феномена. Откуда берется в человеке электрический ток и почему он не приводит к фатальным последствиям — по-прежнему загадка.

Источник

Как можно «убить» генератор: самые распространенные ошибки

 Фото: iStock

Нередко многие узлы автомобиля выходят из строя от банального невнимания, а именно нежелания хотя бы изредка поднимать капот и смотреть, что происходит в моторном отсеке. При таком раскладе вполне можно недосмотреть, что вы эксплуатируете автомобиль с неисправной или ослабленной клеммой или, как еще говорят, с плохой или пропавшей массой».

Фото: iStock

Из-за этого генератор начинает работать под большой нагрузкой, не выдавать заявленное напряжение и разогреваться до нештатных температур.

Не менее часто проблемы с генератором возникают, когда вы используете старый или поврежденный аккумулятор, в одной или нескольких «банок» которого имеет место короткое замыкание. В этом случае «гена» становится мощной паразитной нагрузкой в цепи генератора. Он опять-таки начинает перегреваться и рано или поздно выходит из строя — сгорают реле-регулятор, диодный мост, обмотка ротора и статора. А случается и такое — вы даете «прикурить» соседу по парковке, а в этот момент двигатель вашего автомобиля работает.

В этом случае генератор и электронный блок-контроллер электропитания получат экстремальную нагрузку от стартера второго автомобиля, и генератор, равно как блок-контроллер электропитания, могут не вынести издевательства. Ну и совсем, казалось бы, нелепый, но встречающийся сценарий — это когда при «прикуривании» или установке нового аккумулятора путают клеммы. При самом оптимистичном сценарии вам придется менять плавкие предохранители. Однако случается, что «переплюсовка» убивает диодный мост генератора, статор реле-регулятор и провода.

Вывести генератор из строя с помощью воды вполне можно при мойке двигателя. Причем тут все зависит о того, как долго и как активно вы ездили, прежде чем приехали на мойку.

Фото: Пресс-служба Mitsubishi.

Из-за того, что в процессе езды генератор сильно нагревается, попадание воды на этот узел вызовет резкое охлаждение, и как вариант — появление трещин внутри изоляционного материала обмоток статора либо диодов.

А это в свою очередь может привести к коррозии диодного моста, окислению контактов диодов и как следствие — поломке генераторного устройства. Кто-то скажет — но ведь генератор заизолирован от воды. Иначе как бы джиперы форсировали глубокие броды!

Однако это верно, если речь идет о генераторе в хорошем состоянии — как минимум с лаком на обмотке статора. Если же в обмотке есть скрытые дефекты, «купание» «гены» может поставить на его дальнейшей работе точку. Кроме того, генератор боится соленой воды, грязи и масла. К примеру, подтекающий из сальников лубрикант может просочиться внутрь генератора, после чего графитовые щетки пропитаются маслом и станут жесткими.

Все это может спровоцировать искрение щеток, их быстрый износ, а также перегрев регулятора напряжения и блокировку щеток. Кроме того, сформировавшаяся пастообразная масса может стать токопроводной. А это значит, что при скоплении замасленных элементов между коллектором ротора и корпусом генератора вполне может произойти короткое замыкание.

Нередки случаи, когда генератор сжигают меломаны, происходит все примерно следующим образом. Любители громкой музыки устанавливают в небольшую «легковушку» серьезный сабвуфер и множество динамиков без доработки штатной электрики автомобиля.

Фото: Пресс-служба АвтоВАЗа.

В результате при воспроизведении треков в стиле «тынц-тынц» в электросети возникают пиковые скачки, резко повышается токопотребление, генератор начнет сильно перегреваться и в конце концов выйдет из строя.

Чтобы исключить такой сценарий, не устанавливайте такую технику самостоятельно, а обратитесь к специалистам. Они, вероятнее всего, подключат усилитель через конденсатор (он сгладит скачки энергии) или установят более мощный или дополнительный генератор.

Или, как вариант, штатный генератор может сгореть на бездорожье, после того как джиперы некорректно задействуют лебедку, например, поднимая обороты двигателя в надежде «добыть» из генератора побольше электричества.

Отсюда правило, которое хорошо знают любители «оффроуда» — «лебедиться» нужно на холостых оборотах двигателя или чуть выше холостых, именно для того, чтобы сберечь генератор. Можно также поступить по следующей схеме — на время выключить лебедку и только тогда добавить оборотов, чтобы подзарядить аккумулятор.

Источник