Меню

Мотор постоянного тока для генератора



Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Принцип действия генератора постоянного тока

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

График тока, выработанного примитивным генератором

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Ротор генератора

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.
Читайте также:  Степень проявления действий электрического тока характеризует физическая величина

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Внешняя характеристика ГПТ

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Характеристика ГПТ с параллельным возбуждением

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Внешняя характеристика генератора с последовательным возбуждением

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Внешняя характеристика ГПТ со смешанным возбуждением

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Источник

Система генератор — двигатель или система Леонардо

Ранее наиболее доступным источником электрической энергии были сети постоянного тока неизменного напряжения. Такие системы обычно ограничивались крупными промышленными городами. Соответственно промышленность в качестве приводных электродвигателей использовала только машины постоянного тока.

Регулирование скорости вращения таких машин осуществлялось по потоку возбуждения. Это вызывало большое количество проблем, связанных с коммутацией и соответственно скорым выходом из строя коллекторного узла. Это обуславливалось тем, что ток якоря существенно больше тока возбуждения и его регулирование (тогда в качестве регулирующего устройства применялись резисторы) вызывало большие потери мощности, а также тем, что процессы коммутации в коллекторном узле на то время были очень плохо изучены. Поэтому большинство таких электродвигателей работало без регулирования параметров. Схема установки:

Регулирование скорости ДПТ НВ изменением возбуждения

Но с развитием промышленных технологий автоматически росли и требования к электроприводам, все больше исследований проводилось в этой области. Значительных успехов при решении проблем процессов коммутации достигли благодаря новым конструкциям обмоток дополнительных и главных полюсов. Но это не решало проблему управления двигателем постоянного тока.

Довольно большим прорывом в области данного рода электропривода стало появление на свет в 1890-е годы системы генератор – двигатель или системы Леонардо. Схема показана ниже:

Система генератор-двигатель с приводным двигателем постоянного тока

В данной системе питание якоря электродвигателя производится напрямую от генератора без каких либо преобразовательных устройств. Приводной двигатель генератора вращается с постоянной скорость ω = const. Регулирование выходного напряжения генератора производится изменением потока возбуждения генератора, при этом не возникает проблем в коммутирующем узле (коллекторе). Это связано с тем, что коэффициент пульсаций генератор и двигателя как правило не отличаются или отличаются не существенно. Данная система позволяет регулировать напряжения якоря двигателя от 0 до Umax.

Если двигатель работает с постоянной мощностью Р = const, то регулируют только ток возбуждения машины, а если с постоянным моментом М = const, то регулируют только напряжение и ток якоря. Включения электроприводов по такой схеме впервые обеспечило широкий диапазон и большую точность (на то время) регулирования координат при этом процессы коммутации происходят довольно надежно. Характеристики такой системы:

Регилорование в системе генератор-двигатель момента и мощности

Также прогресс не обходил и машины переменного тока и системы производства, распределения и преобразования электрической энергии переменного напряжения. Усовершенствованные двигатели переменного напряжения стали активно применяться на производстве в качестве нерегулируемых электроприводов. Они привлекали проектировщиков все больше и больше своей простотой, относительно невысокой стоимость и меньшими (в сравнении с машинами постоянного напряжения) массогабаритными показателями. На строящихся заводах активно внедрялись системы электроснабжения переменного тока. Предприятия работающие на постоянном токе впоследствии были переведены на переменный. Впоследствии в качестве приводных двигателей для систем генератор – двигатель стали использовать машины переменного напряжения. Схема показана ниже:

Читайте также:  От чего умирает человек при ударе током

Система генератор-двигатель с приводом от электродвигателя переменного тока

В начале своего развития система генератор – двигатель не имела какого-то особенного конструктивного облика. Установка, сборка и монтаж производились в соответствии с предоставляемыми производственными площадями. В начале 1940 – х начали появляться модульные конструкции системы генератор – двигатель. Регулирующую аппаратуру, приводной двигатель и генератор стали объединять в общие блоки управления электроприводом.

Установка генератор – двигатель обладает следующими достоинствами:

  • Отсутствие пульсаций якорного тока;
  • Большие кратковременные перегрузки;
  • Регулирование скорости в обеих направления в любом допустимом диапазоне;
  • Рекуперация энергии в сеть при генераторном режиме работы электродвигателя;

Также есть и недостатки:

  • Очень высокие капитальные затраты;
  • Большие массогабаритные показатели;
  • Необходимость смазки вращающихся частей и их проверка;
  • При выходе из строя длительное время ремонта;
  • Очень низкий КПД, не выше 80%;

Источник

—> Сайт Георгия Таненгольца —> Главная | —> Мой профиль | —> Регистрация | —> Выход | —> Вход | RSS

—> —>Категории раздела —>

—> —>Статистика —>

Каталог статей

Самоделки на самоизоляции

Отличный электромотор из генератора постоянного тока.

Худшие прогнозы сегодняшнего дня намекают на возможное возвращение цивилизации в пещеры.

Значит надо учиться разводить огонь и выживать на подножном корму.
Начнем с опыта, приобретенного при социализме. Ничего не купишь, а инструменты нужны.

Отличный электромотор из генератора постоянного тока.

Генератор постоянного тока, что это такое?

генератор постоянного тока

Генератор постоянного тока, применялся на автомобилях до середины 60х годов.
Это была самая классическая динамомашина, которая широко применялась еще в 19 веке для генерации постоянного тока.

До сих под можно услышать слово «динамо», когда говорят о генераторе автомобиля.

Генераторы переменного тока (в других сферах) тоже имели широкое применение, но это в том случае, если надо было запитывать цепи переменного тока. Сети электроснабжения были переменного тока, благодаря изобретениям и авторитету Н. Тесла. Одно из преимуществ переменного тока было то, что генераторы, для получения переменного тока были проще, надежнее и при одинаковом весе были значительно мощнее.
Это было ясно и для автомобильных генераторов, однако, в автомобиле был важнейший второй источник – аккумулятор, который давал энергию, пока двигатель не работает и главное, он давал возможность заводить двигатель стартером.
Аккумулятор – источник постоянного тока, поэтому все электрооборудование было рассчитано именно на постоянный ток, напряжением 12 Вольт.

А что если все-таки использовать генератор переменного тока, а затем полученный переменный ток выпрямлять? Тема была убедительной, но генератор постоянного тока с выпрямителем, становился больше и тяжелее, чем просто генератор постоянного тока.
Однако к середине 60 годов 20 века, было налажено производство недорогих кремниевых диодов, и диодный мост из таких диодов практически не увеличивал массу генератора переменного тока. Настало время автомобильных генераторов переменного тока, в течении всего нескольких лет, они вытеснили генераторы постоянного тока.

Например, генератор Г108, который применялся на советских легковых автомобилях, был способен отдать максимальный ток 20 ампер. Только фары потребляют около 10 Ампер, а печка, а габариты, а стеклоочистители. Короче, ночью, зимой, или в дождь, аккумулятор практически нечем было заряжать, весь ток разбирали другие потребители.

На смену этим генераторам пришел генератор переменного тока Г250, он способен был отдать ток уже 40 Ампер, а по размерам был даже меньше, чем Г108. Фары стали светить ярче, щетки работать стали быстро, и аккумулятор продолжал заряжаться даже ночью и в дождь.
Кроме того, генератор переменного тока не надо было обслуживать, там нечего менять, настраивать, регулировать и чистить. В генераторе постоянного тока есть щетки и коллектор. Щетки периодически требуют замены, а коллектор нужно очищать.

К началу семидесятых годов появилось множество уже никому не нужных генераторов постоянного тока. купленные в запчасти они стали просто хламом, который некуда было девать. Это было время, когда еще ничего не выбрасывали, «А вдруг пригодится».

Электромотор всегда полезная вещь, но купить в советское время электромотор для каких-то поделок, было невозможно.

Из школьной физики было известно, что машина постоянного тока обратима. Крутишь ее внешним моментом – она генератор, подаешь в нее ток, она начинает крутиться и, значит, она электромотор.

Если генератор не нужен, то можно использовать его как электромотор.
Устанавливаем на вал наждачный круг, подключаем к источнику и порядок, можно точить.
На вал мотора можно поставить множество различных инструментов, пожалуйста – точите, пилите, шлифуйте.

Вопрос — От какого источника его нужно запитывать?
Да, источник питания проблема, к счастью единственная серьезная проблема.
Аккумулятор? Аккумулятор действительно заряжается от этого генератора, но если аккумулятором пробовать крутить такой двигатель, то он крутиться будет, но вяло и слабо, так что использовать его не захочется. Почему так, могу объяснить, но думаю, что это не важно.

Для того, чтобы автомобильный генератор постоянного тока работал нормально как хороший электромотор, нужно питать его постоянным напряжением 36 – 40 Вольт. Тогда он потребляет ток порядка 8 Ампер и значит, электрическая мощность его составит около 320 Ватт. На валу получится Ватт 250. Опыт показал, что этого вполне достаточно для использования во многих гаражных случаях.
Совершенно уверенно он работает и при 50 Вольтах, мощность получается около 500 Вт., но обороты явно за 3000.

Можно заморочиться и сделать инвертор.

Чем хорош такой электромотор
Его можно найти бесплатно, поспрашивайте у гаражных стриков, поспрашивайте тех, кто купил старый гараж.
Обороты удобные для большинства случаев между 2000 и 3000.
Если нужно меньшие обороты, можно снизить напряжение.
У него довольно жесткая характеристика, то есть, он хорошо держит обороты под нагрузкой.
Не боится перегрузок, вплоть до полной остановки.
Может работать непрерывно часами, становится горячим, но сжечь его практически невозможно.
Срок службы при гаражном использовании за пределами обозримой перспективы (у меня работает 40 лет)
Использует безопасное напряжение, можно работать в сырости и не бояться.
Не боится пыли и грязи
Не требует обслуживания, новые щетки будут работать десятки лет.

Недостатки:
Нужен мощный трансформатор на 250 – 500 Ватт, 36 — 40 Вольт. Выпрямитель – диодный мост из диодов, способных держать ток 10 Ампер. Очень удобно использовать старый диодный мост от генератора переменного тока, если в нем остались две пары целых диодов.
Сложно менять подшипники, хотя, скорее всего, делать этого не придется.
Сложно поменять направление вращения, придется разбирать и менять направление тока возбуждения.
От переменного напряжения не работает.

Для чего использовать

Возможные инструменты, которые ставятся на генератор постоянного тока, если мы используем его как электромотор.

Тонкий диск до 230 мм. Резать как УШМ нельзя, но вытачивать, править, точить ножи, сверла, зачищать, делать фаски очень удобно.

С диском от УШМ Развернутый к себе.

Мотор можно поставить к себе режущей кромкой диска и можно повернуть плоскостью

Щетка-корщетка 200 мм. Идеально удобный инструмент очищать грязь и ржавчину.

Работать обязательно в очках!

Мотор с дисковой щеткой

Шлифовальный диск из наждачной бумаги. Сделано несколько дисков с разной наждачкой. Смена в одно мгновение.

Мотор с наждачным диском

Пробовал с подручным столиком, но он скорее мешает.

Читайте также:  Задать направление токов в ветвях

Мотор с полировальным кругом

Приятно держать в руках сияющие отполированные детали.

Можно поставить наждачный круг до 200 мм. Оказалось, что он мне не нужен. Его трудно отбалансировать и от него много пыли. Все время нужно поддерживать его форму.

Можно сделать привод гриндера, пока это в планах.

Привод токарного станка по дереву. Можно использовать прямой привод, но придется менять направление вращения. Осевую нагрузку держит вполне удовлетворительно. Станок готов, но двигатель пока не адаптирован..

Для рубанка и циркулярки не подходит — обороты маловаты и не хватает мощности.

У меня 4 мотора, очень удобно, не надо переставлять инструмент, Щелкнул тумблером и работай.

.

Как я делал источник питания для генератора постоянного тока в режиме электромотора

Схема источника питания

Самый обычный мостовой выпрямитель

схема источника питания

Полярность включения + — не имеет значения, крутиться будет в ту же строну.

Нашел в гаражном хламе трансформатор ОСО 0,25, 250 Вт. вполне достаточно. К сожалению он был на 12 Вольт. Это стандартный трансформатор и он бывает на все напряжения, так что может быть найдете на 36 Вольт.

трансформатор ОСО

Пришлось доматывать. Конструкция трансформатора позволяет сделать это не разбирая железо.

Не хватает 24 Вольта. У этого трансформатора примерно 2,5 витка на вольт. Значит надо дополнительно 60 витков добавить ко вторичной обмотке.

Размотал старое втягивающее реле, растянул провод втягивающей обмотки, он диметром больше миллиметра, вполне достаточно. И начал терпеливо протягивать по очереди витки через большую щель. Да, муторно и долго, больше часа. Но меня вдохновляло то, что новый такой трансформатор сейчас стоит тысячи три. Натянул провод, закрепил два его конца на свободные клеммы. Подключил на первичную обмотку 220 Вольт и замерил вторичное напряжение. Родная обмотка показала 12 Вольт, новая показала 24 Вольта. Если бы было меньше, можно было спаять концы и домотать сколько нужно. Если оказалось больше на 5 — 6 Вольт. то все будет отлично.

Теперь нужно соединить обмотки, чтобы получить суммарное напряжение.

Здесь внимание! Обмотки соединяются последовательно и согласно. Что это значит? Если обмотки включить встречно, то напряжения вычтутся, поэтому согласное включение, это когда напряжения складываются. Как угадать? Очень просто. Две вторичных обмотки -12В — 2 конца и 24 В, два конца. Берем конец одной обмотки, соединяем с любым концом второй обмотки. Включаем первичное напряжение и замеряем напряжения на оставшихся свободными концах вторичных обмоток, если напряжение стало 36 Вольт, то все нормально и можно окончательно соединить. Если напряжение стало меньше, то для соединения надо взять другой конец одной из обмоток.

согласное включение

Можно использовать любой подходящий трансформатор, мощностью больше 250 Вт. Например, ОСМ1 0,4 кВт на 36 Вольт

Подключение диодного моста

Удобнее всего старый диодный мост от генератора переменного тока. В нем должно быть две пары исправных диодов.

Нельзя использовать диодные мосты, которые на самом деле «Блоки выпрямительно — ограничительные», то есть от современных генераторов типа десяточного, или от 406 двигателя и т. п. Они рассчитаны на напряжения 14 Вольт и при 36 — 40 Вольтах работать не будут.

Подойдут ДМ от старых генераторов Г250, от восьмерочного генератора, и от копеечного.

диодный мост для источника

Концы от вторичной обмотки трансформатора подключаем к входам переменного напряжения диодного моста, а к алюминиевым шинам привинчиваем провода , которые идут к электромотору.

Источник

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

фото бесколлекторных двигателей постоянного тока

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - переделка

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил – переломил вдвое плату вместе с металлической пластиной крепления.

использование моторчика в качестве генератора электричества

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Схемы сборки соединены методом «дельта»

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было. На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - схема 1

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора, вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 – 100 мкФ х 16 В, все шесть диодов 1N5817.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - схема 2

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант — поставить на выход стабилизатор.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ CD DVD

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика – «жучка».

Шестерёнки (зубчатая пара) с передаточным отношением

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

двигатель возможно использовать в качестве генератора

Схема собрана, вновь обращённый генератор к тесту готов.

Как собрать ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

двигатель использовать в качестве генератора тока

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео — работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве ветрогенератора способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay.

Форум по обсуждению материала ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

Простая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.

Обзор возможностей комплекта бесконтактного модуля считывателя карт RFID RDM6300. Подключение схемы и тесты.

Предусилитель со стерео темброблоком для усилителя мощности, собранный на ОУ 4558.

Источник