Меню

Модификации измерительных трансформаторов тока



Измерительные трансформаторы тока — назначение, устройство, виды конструкций

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Как устроен измерительный трансформатор тока

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

Технические характеристики измерительного трансформатора тока ТТ-В

Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

Катушечный ИТТ

  1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

Обозначения:

Пример установки встроенного ТТ

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
  • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider ElectricШинные ТТ производства Schneider Electric
  1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.Разъемный ТТ

Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.

Шильдик на ТТ с указанием его марки

Шильдик на ТТ с указанием его марки

Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

Подключение трехобмоточного ТТ «звездой» и «треугольником»

Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

Пример как подключить ТТ на разность двух фаз (А) и неполной звездой (В)

Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

Подключения: А – для суммы токов всех фаз, В и С - последовательное и параллельное включение двухобмоточных ТТ

Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

Пример расчета ТТ

Пример расчета трансформатора тока

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

  • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
  • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
  • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
  • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
  • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
  • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
  • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

Источник

Точный учет: трансформаторы тока

Реализуемая в Российской Федерации политика энергосбережения, а также растущая стоимость электрической энергии требуют все большей и большей эффективности ее учета. С этой целью создаются автоматизированные системы учета электроэнергии, в штат предприятий принимаются специалисты для их обслуживания. Для создания и эксплуатации таких систем требуются не только дополнительные капиталовложения, но и решения для ряда технических задач, одна из которых будет рассмотрена в этой статье.

Низшим уровнем в иерархии автоматизированных систем учета является уровень информационно-измерительного комплекса (ИИК). Он включает в себя измерительные трансформаторы, счетчики электрической энергии, вторичные цепи измерительных трансформаторов. Очень важным на этапе построения ИИК является минимизация его погрешности, которая в большей мере зависит от правильного выбора измерительных трансформаторов тока (ТТ) и напряжения (ТН). Проблемы выбора ТН — отдельная тема, которая не затрагивается этим материалом. Стоит лишь отметить, что в отличие от ТТ их погрешности не зависят от изменяющейся нагрузки в контролируемой цепи. С ТТ все значительно сложнее.

Часто проектировщики и эксплуатирующие организации недостаточно серьезно относятся к выбору ТТ для учета. Выбирается ТТ с наилучшим классом точности, не заостряя внимания на других его параметрах. Так поступают будучи уверенными, что использование ТТ с наилучшим классом точности — уже экономия средств. Причиной этого является или неумение правильно выбрать ТТ, или желание сэкономить: устанавливаются трансформаторы тока имеющиеся в наличии, или выбираются ТТ, имеющие меньшую стоимость и более простые в установке, несмотря на ограниченность их метрологических характеристик. Результатом являются значительные финансовые потери, появляющиеся вследствие отсутствия точного учета.

Требования к применяемым в нашей стране трансформаторам тока регулирует ГОСТ 7746-2001 (1). В числе прочих характеристик этим стандартом задан ряд первичных токов и значения вторичных токов (1 и 5 А), с которыми ТТ могут быть изготовлены. Также регламентируются диапазоны измерений первичного тока, при которых должен быть сохранен класс точности: от 5-120% для классов точности 0,5 и 0,2, от 1-120% для классов 0,5S и 0,2S. Таким образом, классы точности с литерой «S» отличаются от прочих увеличенным диапазоном измерений в область минимальных значений (с 5% до 1%). Кроме того, существует требование ПУЭ (п.1.5.17) (2), согласно которому требуется выбирать коэффициент трансформации так, чтобы ток в максимальном режиме загрузки присоединения составлял не менее 40% тока счетчика, а в минимальном — не менее 5%. А ток счетчика, как правило, равняется вторичному току ТТ, поэтому приведенное выше требование можно смело отнести к обмотке учета измерительного трансформатора. Стоит отметить, что требование к минимальному режиму идет вразрез с ГОСТ 7746, т.к. делает нецелесообразным применение ТТ классов точности с литерой «S». Что касается требования 40% в максимальном режиме то оно, вероятно, основано на стремлении минимизировать погрешности ТТ классов без «S» (см. рис. 1), в то время как для классов 0,2S и 0,5S целесообразнее было бы применять критерий «20%», в связи с ростом погрешностей при уменьшении первичного тока ниже этой величины (см. рис.2).

Читайте также:  Как определить необходимый ток заряда


Рис. 1. Токовая и угловая погрешности ТТ классов точности 0,2; 0,5; 1
Рис. 2. Токовая и угловая погрешности ТТ классов точности 0,2S; 0,5S

Итак, при выборе коэффициента трансформации ТТ необходимо «убить двух зайцев»: не только «вписаться» в указанный ГОСТ 7746-2001 диапазон, но и соблюсти требование ПУЭ.

Кроме того, фактическая нагрузка присоединения может быть значительно (в десятки и сотни раз) ниже его номинального тока, как часто случается в сетях распределительных компаний — сети были построены с учетом перспективы развития, которое так и не произошло. В таких случаях нужно обеспечить легитимный учет в области фактических нагрузок и предусмотреть возможность работы присоединения в режиме максимальной пропускной способности, чтобы в случае увеличения объемов транзита электрической энергии не пришлось менять ТТ. Использовать ТТ с завышенным коэффициентом экономически неэффективно, докажем это на конкретном примере. В расчет возьмем только токовую погрешность трансформатора тока, не принимая во внимание его угловую погрешность, а также погрешности других элементов измерительного комплекса — трансформаторов напряжения и счетчика. Имеем трансформатор тока класса точности 0,2S и коэффициентом трансформации обмотки учета 600/5. Используемая мощность силового трансформатора при напряжении 110 кВ равняется 10000 кВА, cos φ равен 0,8. Фактический ток в первичной цепи равен 52,5 А, т.е. 8,75% от номинального первичного тока. При заданной нагрузке токовая погрешность составит примерно 0,31% (см. рис.2), количество неучтенной электрической энергии в год — 217 248 кВ*ч. Принимая стоимость одного киловатт-часа равной 1 руб., получаем неучтенной электроэнергии на сумму 217 248 рублей. При погрешности 0,2 эта сумма составила бы 140 160 рублей, т.е. в полтора раза или на 77 088 рублей меньше. В масштабах распределительных сетевых компаний такое количество неучтенной электроэнергии с каждого силового трансформатора может вылиться в кругленькую сумму. А если загрузка по первичной стороне трансформаторов тока будет еще меньше — цифры будут значительно внушительней, см. табл. 1. Приведенная таблица применима для любого уровня напряжений — необходимо умножить используемую мощность на удельную величину, результатом будет являться годовое количество неучтенной электроэнергии в год, при заданной погрешности ТТ.

Таблица 1. Удельное количество неучтенной электрической энергии в год, в зависимости от погрешностей трансформатора тока классом точности 0,2S.

Первичный ток,%
номинального значения
Погрешности ТТ
класса 0,2S,%
Удельное количество
неучтенной э/э,
кВт*ч в год
1 ±0,75 52,56
5 ±0,35 24,528
20 ±0,2 14,016
100
120

Задача обеспечения легитимного учета при малых и номинальных нагрузках присоединений решаема. Отечественной и зарубежной промышленностью производятся трансформаторы тока с расширенным диапазоном измерений — от 0,2 до 200% от номинального тока. Погрешности этого диапазона регламентируются международным стандартом IEС 60044-1 (3)). В частности, для первичных токов свыше 120% номинального тока, погрешности приравнены к значениям, достигаемым при 120% номинала. Зачастую такого диапазона измерений производителям удается достичь применением материалов с высокой магнитной проницаемостью — для изготовления сердечников используются нанокристаллические (аморфные) сплавы, но иногда и применения таких сплавов не требуется. Но существует проблема документального обеспечения улучшенных характеристик: производители при утверждении типа ТТ как средства измерения декларируют испытания на соответствие ГОСТ 7746, т.е. от 1 до 120%. Таким образом, расширенный диапазон номинального тока не подтверждается ничем, кроме заверений заводов-изготовителей. Поэтому, при применении таких ТТ следует убедиться, что расширенный диапазон измерений указан в описании типа и эксплуатационной документации. Следует еще раз отметить, что ГОСТ 7746-2001 не регламентирует погрешностей ТТ при токе свыше 120% номинального. О необходимости внесения в него изменений в части диапазонов первичных токов, расширения значений других параметров передовыми специалистами говорится уже несколько лет (4) и предлагается ввести новые классы точности, однако ГОСТ 7746-2001 до настоящего времени применяется в неизменном виде.

Отдельно необходимо рассмотреть вопрос замены существующих ТТ. К выше обозначенной проблеме выбора коэффициента трансформации обмотки АИИС КУЭ прибавляется проблема сохранения коэффициентов трансформации других обмоток — к ним подключены существующие измерительные приборы, устройства противоаварийной автоматики, телемеханики и релейной защиты. Это, как правило, значительные по величине коэффициенты, определяемые максимальной пропускной способностью присоединений. Таким образом, требуются трансформаторы тока с различными коэффициентами трансформации обмоток АИИС КУЭ, измерений и РЗА. Необходимая кратность Ктт этих обмоток может составлять два, три и более. Такие трансформаторы производятся для уровней напряжений от 6 кВ и выше, но их ассортимент достаточно ограничен — чаще всего это ТТ с кратностью Ктт обмоток измерений и РЗА к Ктт обмотки учета равной двум. Это направление производителями освоено недостаточно, возможно ввиду традиционного подхода проектировщиков к выбору ТТ, хотя выгода при использовании таких ТТ налицо. Производству ТТ с разными коэффициентами обмоток мешают проблемы, связанные с конструкцией ТТ: в связи с тем, что число первичных витков для всех обмоток одинаково, необходимый коэффициент каждой из обмоток достигается варьированием количества ее вторичных витков, как следствие размеры вторичных обмоток увеличиваются и встает вопрос размещения их в габаритах корпуса трансформатора а также достижения требуемой термической и динамической стойкости. К примеру, для трансформаторов тока напряжением 35 кВ и выше изготовление ТТ с различными коэффициентами трансформации возможно при количестве ампервитков измерительной обмотки, большем или равном 1200 (в редких случаях от 600 ампервитков). Даже при наличии таких конструктивных сложностей, производителям удается изготавливать трансформаторы с кратными коэффициентами в широком диапазоне — от 50 до 3000 А. Сегодня предлагается в связи с появлением таких ТТ заменить термин «номинальный ток ТТ» на «номинальный первичный ток вторичной обмотки» (4).

Кроме ТТ с расширенным диапазоном, и кратными коэффициентами трансформации, существуют ТТ с возможностью увеличения коэффициентов трансформации всех обмоток единовременно в два раза, путем изменения количества витков первичной обмотки. У ТТ с такой возможностью существует два первичных вывода, один из которых замыкает первичную обмотку на два витка, другой — на один. Когда замкнуты два витка, коэффициент трансформации понижен, при замыкании на один виток коэффициент трансформации увеличивается в два раза, в соответствии с известной формулой

Производятся и ТТ, у которых коэффициенты трансформации обмоток изменяются по вторичной стороне, используя различное количество ампервитков вторичной обмотки — так называемые ТТ с отпайками.

В настоящее время такие ТТ изготавливаются на напряжения от 10 кВ и выше, как с литой, так с масляной и элегазовой изоляцией.


Рис. 3. Отдельно стоящий
трансформатор тока

Вторичные обмотки существующих ТТ очень часто перегружены. Значение мощности вторичной нагрузки может составлять 150, а то и 200-300% номинальной мощности, а разгрузка ТТ прокладкой новых вторичных цепей кабелем большего сечения не всегда решает задачу. Эта проблема актуальнее всего для обмоток измерений, так как требуется их значительная точность. Поэтому наряду с вышеописанными параметрами ТТ должны иметь достаточно большую номинальную мощность вторичных обмоток, а также возможность изготовления с несколькими измерительными обмотками — тогда мощность нагрузки, которую можно подключить к ТТ, увеличивается кратно количеству измерительных обмоток. Общее число измерительных и релейных обмоток тоже ограничивается конструктивными особенностями отдельных видов ТТ и составляет от 1 до 6, в зависимости от уровня напряжения. С ростом уровня напряжения, увеличиваются габаритные размеры трансформатора — тем больше обмоток можно разместить внутри ТТ.

Также при замене ТТ необходимо учитывать, что коэффициент безопасности приборов должен быть как можно ниже, во избежание выхода из строя оборудования вторичных цепей при возникновении токов короткого замыкания. Это означает, что ток во вторичной цепи должен перестать расти раньше (сердечник должен насытиться), чем будут повреждены установленные во вторичных цепях приборы. Следует отметить, что несмотря на то, что зачастую производители ТТ декларируют возможность работы в классе точности даже при нулевой вторичной нагрузке, догрузка трансформаторов тока требуется, именно исходя из достижения требуемого коэффициента безопасности. Опытным путем доказано, что при уменьшении вторичной нагрузки ТТ его коэффициент безопасности увеличивается в несколько раз (5). Поэтому невозможно понять, на сколько же необходимо догрузить обмотку измерений ТТ для достижения требуемого коэффициента безопасности приборов. В связи с этим необходимо, чтобы изготовители ТТ на каждый производимый тип ТТ приводили кривую зависимости коэффициента безопасности от вторичной нагрузки, это требование тоже должно быть внесено в ГОСТ 7746-2001. Сейчас можно рекомендовать догружать ТТ как минимум до нижнего предела загрузки, регулируемого ГОСТ 7746-2001.


Рис.4. Трансформатор тока,
устанавливаемый на ввод силового
оборудования (встраиваемый ТТ).

Номинальная предельная кратность обмоток, в свою очередь, должна быть выше кратности тока короткого замыкания и не ниже кратности существующего ТТ, для обеспечения нормальной работы существующих релейных защит. Не стоит забывать и о проверке на термическую и динамическую стойкость трансформаторов тока напряжением свыше 1 кВ, выполняемую по ГОСТ Р 52736-2007 (7) — трансформатор не должен выйти из строя при коротких замыканиях в электроустановке.

Какие же ТТ наиболее функциональны? Все зависит от задачи, которая решается при выборе измерительных трансформаторов. Если необходима организация как цепей учета, так и измерения, релейных защит, автоматики и пр. — целесообразно применять отдельно стоящие ТТ (рис.3), так как их функционал гораздо более обширен, чем, например, у ТТ, устанавливаемых на ввод силового оборудования (встраиваемых) (рис.4). В частности, для уровня напряжения 110 кВ последние ограничены классами точности — для отечественных ТТ класс 0,2S достигается только при использовании трансформатора с номинальным первичным током от 600 А, при вторичном токе 5 А. Кроме того, если сравнить отдельно стоящий ТТ с встраиваемым по мощностям вторичных обмоток — встраиваемый также уступает. Поэтому, выгодно применять отдельно стоящие ТТ решении комплексных задач по организации одновременно вторичных цепей учета, измерений и РЗА, а также при новом строительстве объектов, при установке ТТ только для организации учета и при условии наличия больших токов в первичной цепи — целесообразно применение встраиваемых ТТ.

Конечно, большую роль играет стоимость трансформаторов и их монтажа. Здесь однозначно лидирующими являются встраиваемые ТТ наружной установки. Они дешевле в изготовлении, при монтаже не требуют установки отдельных опорных конструкций, а также обслуживания в период эксплуатации, так как имеют литую изоляцию. Но стоит еще раз обратить внимание на ограниченность их применения и недостаточный функционал, по сравнению с отдельно стоящими ТТ.

Выводы

  1. При выборе ТТ необходимо учитывать соотношение номинального первичного тока обмотки учета и фактической нагрузки. Использование ТТ с большими номинальными первичными токами при значении фактических нагрузок присоединений менее 20% от номинального первичного тока ТТ экономически нецелесообразно и приводит к тому, что часть транзита электрической энергии не учитывается, это может повлечь финансовые потери.
  2. Производимые промышленностью измерительные трансформаторы могут обеспечить точный учет и в области минимальных нагрузок присоединений, и при максимальной пропускной способности линии, используя расширенный диапазон измерений от 1 до 200%, при условии документального подтверждения работы ТТ в классе точности в этом диапазоне.
  3. При замене существующих ТТ доступны ТТ с различными Ктт обмоток или ТТ с отпайками — таким образом будет обеспечиваться достаточная точность учета и сохранение существующих коэффициентов трансформации обмоток измерений и РЗА. Также можно использовать ТТ с изменяемым количеством первичных витков. При этом необходимо помнить, что при переключении изменяется Ктт всех обмоток одновременно.
  4. Номинальная мощность обмоток изготавливаемых в настоящее время трансформаторов тока достигает 50-60 ВА — этого, как правило, достаточно для работы в допустимых классах точности. Также возможно производство ТТ с увеличенным количеством обмоток измерений и/или РЗА.
  5. Необходимо выбирать ТТ с как можно более низким коэффициентом безопасности приборов. Не нужно забывать о догрузке вторичных обмоток — с уменьшением их загруженности увеличивается коэффициент безопасности. Кроме того, необходимо, чтобы производители ТТ декларировали для каждого типа зависимость коэффициента безопасности приборов от вторичной нагрузки.
  6. При замене ТТ необходимо следить за тем, чтобы номинальная предельная кратность обмоток РЗА была не менее кратности существующих ТТ и выше кратности токов КЗ. Также необходимо осуществлять проверку на термическую и динамическую стойкость.
  7. Отдельно стоящие ТТ значительно функциональнее встраиваемых, поэтому их использование целесообразно при реконструкции распределительных устройств и новом строительстве. При установке ТТ только для учета и соблюдении условия наличия значительных токов в первичной цепи — возможно применение встраиваемых ТТ.
Читайте также:  Огурец как источник тока

Используемая литература

  1. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
  2. Правила устройства электроустановок, 7-е изд.
  3. IEС 60044-1 «INTERNATIONAL STANDARD. Instrument transformers — Part 1: Current transformers»
  4. М. Зихерман «Стандарты по измерительным трансформаторам. Новые требования».
  5. Легостов В.В., Легостов В.В. «Измерительные трансформаторы тока», ИЗМЕРЕНИЕ.RU № 12 2’06
  6. Афанасьев В.В. «Высоковольтные ТТ».
  7. ГОСТ Р 52736-2007 «Методы расчета термического и динамического действия тока короткого замыкания».

Серяков Андрей Александрович,
главный инженер проекта
Управления технического сопровождения
ООО «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ»

Источник

Разновидности и классификация трансформаторов тока

Июль 26th, 2012 Рубрика: Трансформаторы тока, Электрооборудование

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_12

Добро пожаловать на страницы сайта «Заметки электрика».

В прошлой статье я рассказал Вам про трансформаторы тока и их назначение.

Но в настоящее время на рынке существует большой выбор и разнообразие трансформаторов тока. И чтобы Вам было легче ориентироваться среди них, необходимо их классифицировать.

Вот сегодня мы и поговорим об их разновидностях и классификации.

Классификация ТТ по назначению

Как разделяются трансформаторы тока по назначению, я подробно описал в статье про применение и назначение трансформаторов тока.

Еще существуют лабораторные трансформаторы тока, о которых я не упомянул в вышесказанной статье. Эти лабораторные ТТ имеют высокий класс точности и имеют несколько коэффициентов трансформации.

Так выглядит лабораторный трансформатор тока УТТ-6м1, установленный на моем рабочем стенде для проверки релейной защиты. Также мы его используем для измерения тока в первичной цепи при прогрузке автоматических выключателей более 100 (А).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Сейчас я подробно на нем останавливаться не буду. Расскажу о нем в отдельной статье. Кому интересно, то можете подписываться на статьи (в правой колонке сайта) и получать уведомление на почту о выходе новой статьи на сайте.

Классификация трансформаторов тока по месту установки

По месту установки трансформаторов тока их можно классифицировать следующим образом:

Наружные трансформаторы тока могут устанавливаться на открытом воздухе, т.е. это может быть открытое распределительное устройство (ОРУ). Категория размещения электрооборудования в данном случае является I и регламентируется ГОСТ 15150-69.

На фотографии ниже показаны трансформаторы тока наружной установки, установленные на стороне 110 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Внутренние трансформаторы тока могут быть установлены только в закрытых помещениях. Это может быть закрытое распределительное устройство (ЗРУ), так и комплектное распределительное устройство (КРУ), а также все помещения закрытого типа, регламентируемого ГОСТом 15150-69.

Пример внутренней установки трансформаторов тока смотрите на фотографиях ниже.

Вот установка высоковольтного трансформатора тока ТПШЛ-10 в ЗРУ-110 (кВ). Этот трансформатор стоит в цепи короткозамыкателя.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

На фотографии ниже показан пример установки высоковольтных трансформаторов тока ТПЛ-10 в кабельном отсеке ячейки КРУ напряжением 10 (кВ).

transformatory_toka_трансформаторы_тока

Это трансформаторы ТПФМ-10 на одной из распределительных подстанций 10 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_11

А это несколько примеров низковольтных трансформаторов тока внутренней установки: КЛ-0,66 и ТТИ-А.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_25

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_26

Встроенные трансформаторы тока встраиваются в силовые трансформаторы, выключатели, генераторы и другие электрические машины. В качестве внутренней среды электрооборудования применяется трансформаторное масло или газ.

Пример встроенных ТТ Вы можете посмотреть на фотографии ниже. Эти трансформаторы тока ТВТ встроены в бак силового трансформатора 110/10 (кВ) мощностью 40 (МВА). Они установлены на стороне 110 (кВ) и основная цель их установки — это осуществление дифференциальной защиты трансформатора.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Переносные ТТ применяются для лабораторных электрических измерений и испытаний электрооборудования. Примером переносного трансформатора тока является лабораторный трансформатор тока, о котором я говорил в самом начале статьи.

Специальные ТТ предназначаются и устанавливаются в специальных электроустановках шахт, морских судов, электровозов. Сюда можно отнести трансформаторы тока, установленные в силовой цепи питания электрических печей высокой частоты. Мне лично не приходилось их видеть своими глазами.

Разделение ТТ по способу установки

По способу установки трансформаторов тока их можно классифицировать следующим образом:

Проходные ТТ применяют тогда, когда необходимо их установить в проеме стены или металлической поверхности (основания). Чаще всего они применяются в качестве вводов, а также на старых подстанциях с бетонным распределительным устройством (БРУ), по особенностям конструкций бетонных перегородок. Проходные трансформаторы тока играют роль проходного изолятора.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Как видно по фотографиям, проходные трансформаторы тока легко узнать по особенностям расположения выводов первичной обмотки. Один вывод всегда расположен вверху, другой — внизу.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Опорные трансформаторы тока применяют и устанавливают на ровную опорную плоскость.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Отличительной особенностью опорных трансформаторов тока является то, что вывода первичной обмотки располагаются либо все вверху, либо один вывод слева, другой — справа.

Классификация трансформаторов тока по коэффициенту трансформации

В чем же заключается классификация трансформаторов тока по коэффициенту трансформации?

Трансформаторы тока бывают:

Трансформаторы тока с одним коэффициентом трансформации имеют на протяжении всего срока их службы и эксплуатации один постоянный коэффициент, который никаким образом изменить нельзя. Они и нашли самое широкое применение.

parametry_transformatora_toka_параметры_трансформатора_тока

У трансформаторов тока с несколькими коэффициентами трансформации можно изменить этот коэффициент путем несложных манипуляций. Например, изменить число витков обмоток, как первичной, так и вторичной.

Опять же в пример Вам привожу свой лабораторный трансформатор тока УТТ-6м1.

Классификация трансформаторов тока по первичной обмотке

По конструкции первичной обмотки, трансформаторы тока можно разделить следующим образом:

Об этом мы поговорим с Вами в отдельной статье про одновитковые и многовитковые трансформаторы тока, т.к. материала по этой теме очень много.

Разделение ТТ по типу изоляции

Суть этого разделения заключается в способах изоляции обмоток трансформатора тока (первичной и вторичной). Существует следующие способы изоляции обмоток между собой:

  • твердая изоляция
  • вязкая изоляция
  • смешанная изоляция
  • газовая изоляция

Под твердой изоляцией подразумевается использование фарфора, полимерных материалов, бакелита, капрона и эпоксидной изоляции (смолы).

Вязкая изоляция состоит из компаундов различных составов.

Под смешанной изоляцией понимают бумажно-масляную изоляцию.

В качестве газовой изоляции применяется воздух или элегаз.

Классификация ТТ по методу преобразования

Классификация трансформаторов тока по методу преобразования заключается в самом принципе преобразования переменного электрического тока.

Различают следующие методы преобразования:

Классификация трансформаторов тока по классу напряжения

Ну вот мы и добрались до класса напряжения. И конечно же трансформаторы тока тоже по ним делятся. Деление происходит очень легко и просто:

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_3

Разницу по классу напряжения трансформаторов тока видно не вооруженным глазом.

Выводы

Из опыта эксплуатации и технического обслуживания трансформаторов тока на подстанциях своего предприятия скажу, что чаще всего трансформаторы тока с классом напряжения от 3-10 (кВ) выполняются проходными, реже опорными. Все они предназначены для внутренней установки и имеют один коэффициент трансформации. Также у них используется 2 вторичные обмотки, одна из которых используется для цепей измерения и учета электроэнергии, а другая — для релейной защиты.

Источник

Типы трансформаторов тока.

Измерительные трансформаторы тока

Общие сведения.

Измерительные ТТ предназначены для уменьшения первичных токов до значений, наиболее удобных для подключения измерительных приборов, реле защиты и устройств автоматики. В установках высокого напряжения ТТ также служат для изоляции измерительных приборов и реле от цепей высокого напряжения, что позволяет унифицировать конструкции вторичных приборов и обеспечивает безопасность эксплуатации.

ТТ характеризуются номинальным первичным током I (стандартная шкала номинальных первичных токов включает токи 1…4000 А) и номинальным вторичным током I, который принят равным 5 или 1 А. Для получения величины первичного тока показания амперметров умножаются на коэффициент трансформации ТТ (Ктт = I/I).

— по роду тока — переменного и постоянного;

— по числу витков первичной обмотки – одновитковые и многовитковые;

— по классу точности (по допускаемым значениям погрешностей) 0,2; 0,5; 1; 3; 5; 10;

— по месту установки – шинные, проходные, встроенные, камерные;

— по материалу изоляции обмоток – фарфоровая, литая эпоксидная, бумажномаслянная;

— по роду установки – для внутренней и наружной.

С помощью измерительных трансформаторов: тока – ТТ, напряжения – ТН в отличие от силовых трансформаторов, преобразующих мощность (P = U×I – одновременно ток и напряжение) стремятся трансформировать в отдельности ток (ТТ) и напряжение (ТН), хотя последнее достаточно сложно реализовать с помощью электромагнитных устройств. Отличительными особенностями ТТ и ТН является количество витков первичное обмотки: минимальное у ТТ для избежания падения напряжения в первичной обмотке – иначе будет трансформироваться и напряжение; максимальное – у ТН для создания наибольшего сопротивления первичной обмотки – иначе будет трансформироваться и ток. Режим работы вторичных обмоток: у ТТ – режим, близкий к КЗ, для минимизации вторичного напряжения при значительном токе; у ТН – режим, близкий к холостому ходу, для минимизации вторичного тока при стабильном напряжении.

Первичная обмотка ТТ включается в сеть последовательно (врезается в токопровод), а ТН – параллельно. В таком же порядке подключаются измерительные приборы и реле к выводам вторичной обмотки ТТ и ТН.

Типы трансформаторов тока.

Обозначение типа ТТ: “T” — токовый трансформатор, “К” — для КРУ (ТПЛК, ТЛК, ТШКЛ), “П” — проходной или для крепления на пакете плоских шин (ТШЛП), “Ш” – шинный, “O”- одновитковый (стержневой) или опорный (ТОЛ), “Ф” – с фарфоровой изоляцией, “Л” – с литой изоляцией, “B”- встроенный (ТВ, ТВГ), или втулочный, или с воздушной изоляцией (ТШВ), “У”- У-образная первичная обмотка, или усиленный, или для районов с умеренным климатом (если У стоит после цифры), “Н” – для наружной установки, “З” – с обмотками звеньевого типа, “Р” – с рымовидными обмотками или с разъемным магнитопроводом, “М” – маслонаполненный, или модернизированный, “Г” – генераторный, “С” – специальный, “T” – для встраивания в силовые трансформаторы или автотрансформаторы.

Буквы после первой “Т” в специальных ТТ обозначают: “НП” – нулевая последовательность (для контроля изоляции в сетях с изолированной и компенсированной нейтралью), “З” – для защиты от замыканий на землю в сетях с глухозаземленной нейтралью.

Дополнительные цифробуквенные обозначения:

Первое число – класс напряжения (КВ); вторая буква А или В – категории внешней изоляции по длине пути утечки; третья цифра 1 — для работы на открытом воздухе, 2 – для работы в помещениях со свободным доступом наружного воздуха, 3 – для работы в закрытых помещениях с естественной вентиляцией; третья цифра римская 1 или 4 – обозначение габарита или конструктивного варианта. Во встроенных ТТ после римских цифр приводится коэффициент трансформации в виде обыкновенной дроби.

Конструкции ТТ.

Распределительные устройства (РУ) до 35 кВ выполняются как правило закрытыми и в этих РУ используются ТТ для внутренней установки. В РУ напряжением 35 кВ и выше применяются ТТ наружной установки. ТТ внутренней и наружной установок отличаются выполнением внешней изоляции.

Обычный ТТ состоит из магнитопровода, первичной и вторичной обмоток.

В каждую фазу трехфазной сети устанавливает отдельный ТТ. В зависимости от числа витков первичной обмотки различают одновитковые и многовитковые ТТ.

Одновитковые ТТ.

Получили применение три характерные конструкции одновитковых ТТ: стержневые, шинные и встроенные. Стержневые ТТ изготавливают для номинальных напряжений до 35 кВ и первичных токов 400…1500 А. Шинные ТТ используют при напряжениях до 20 кВ и первичных токах до 24000 А. Встроенные ТТ устанавливают на вводах 35 кВ и выше масляных баковых выключателей и силовых трансформаторов.

Стержневые ТТ типа ТПОФ (токовый проходной, одновитковый, с фарфоровой изоляцией) и ТПОЛ (то же, но при с литой изоляцией) используется как проходные изоляторы при переходе цепи из одного помещения в другое (рис.1а).

Применение литой эпоксидной изоляции позволяет значительно упростить конструкцию и технологию произв-ства. На рис. 1.б показан разрез трансформатора ТПОЛ-10.первичной обмоткой служит прямолинейный стержень 1 с зажимами на концах. На стержень поверх изоляции надеты два кольцевых магнитопровода 2 со вторичными обмотками, независимыми друг от друга. Магнитопроводы вместе с первичной и вторичными обмотками залиты эпоксидным компаундом и образуют монолитный блок 3 в виде проходного изолятора. Блок снабжен фланцем 4 из силумина с отверстиями для крепежных болтов. Зажимы вторичных обмоток 5 расположены на боковом приливе изоляционного блока.

Читайте также:  Почему при постоянном токе не возникает эдс

В шинных ТТ в качестве первичной обмотки используют токопроводящую шину или пакет шин соответствующего присоединения. Магнитопровод, имеющий специальный проем для пропуска шин, вместе со вторичными обмотками изолируется фарфором (ТПШФ-рис.2а) или заливается эпоксидным компаундом (ТШЛ).

Магнитопроводы 1 и 2 со вторичными обмотками (рис.2.б) трансформатора типа ТШЛ-20 (токовый, шинный с литой изоляцией для напряжения 20 кВ) залиты эпоксидным компаундом и образуют изоляционный блок 3. Блок соединяется с основанием 4, имеющим приливы 5 для крепления трансформатора. Проходное отверстие с размерами 200´200…250´250 мм 2 рассчитано на установку двух шин корытообразного сечения. Зажимы 6 вторичных обмоток расположены над блоком.

Первичной обмоткой встроенных ТТ является токоведущий ввод выключателя или силового трансформатора. Внешней изоляцией магнитопровода со вторичными обмотками служит изоляция самих вводов названных аппаратов. Поэтому, применение встроенных ТТ дает большой экономический эффект.

Вторичные обмотки встроенных ТТ выполняют с ответвлениями, позволяющими подобрать витков и, следовательно, коэффициент трансформации в соответствии с рабочим током цепи. Вторичная обмотка токового трансформатора типа ТВ-35, встроенного в масляный выключатель МКП-35 (рис.3), имеет пять выводов и обеспечивает четыре различных коэффициента трансформации, приведенные в таблице.

На вводах аппаратов, как правило, устанавливаются несколько магнитопроводов, вторичные обмотки которых можно соединить последовательно и параллельною при последовательном соединении вторичных обмоток коэффициент трансформации не изменяется, так как пропорционально изменяется число первичных и вторичных витков. Вторичный ток сохраняется, а вторичная ЭДС удваивается, что дает возможность увеличить в два раза вторичную мощность. Для встроенных ТТ это важно, так как они удалены от реле и измерительных приборов и поэтому сопротивление соединяющих проводов достаточно велико. При первичных токах до 100 А вторичные обмотки соединяются параллельно, что позволяет изменить коэффициент трансформации и удвоить величину вторичного тока. Вторичные обмотки имеют также отпайки, которые также позволяют небольшом диапазоне регулировать коэффициент трансформации. При уменьшении числа витков вторичной обмотки снижается коэффициент трансформации, что вызывает рост вторичного тока.

Погрешности встроенных ТТ больше погрешностей стержневых и шинных трансформаторов, так как из-за значительного диаметра кольцевого магнитопровода, определяемого диаметром вода, длинна его и, следовательно, сопротивление магнитной цепи оказываются весьма большими. Также на величине сопротивления магнитной цепи сказывается воздушный зазор между магнитопроводом и токоведущим стержнем.

Многовитковые ТТ.

при малых первичных токах (до 400 А) для получения достоверной информации о величине тока приходится применять многовитковую первичную обмотку. Наличие нескольких витков в первичной обмотке усложняет конструкцию трансформатора, так как при этом возникают дополнительные трудности в обеспечении надежной изоляции и механической прочности.

Для напряжений 6-10 кВ изготавливают катушечные и петлевые ТТ с эпоксидной изоляцией. Трансформатор типа ТКЛ-3 (токовый, катушечный с литой изоляцией на напряжение 3 кВ) рассчитан на первичный ток 5. 600 А и имеет один сердечник. Первичная и вторичная обмотки этого ТТ выполнены в виде катушек, концентрически расположенных на сердечнике (рис.4).

Петлевой ТТ типа ТПЛ-10 предназначен для напряжения 10 кВ и отличается от трансформатора ТКЛ конструкцией первичной обмотки. Первичная обмотка трансформатора ТПЛ выполнена в форме петли (рис.5). Петлевые трансформаторы типа ТПФМ (модернизированный) имеет фарфоровую изоляцию (рис.6).

Технологичные и более прочные трансформаторы с литой изоляцией постепенно вытесняют аппараты с фарфоровой изоляцией.

Многовитковые ТТ для напряжения 35-330 кВ наружной установки изготавливают в фарфоровом кожухе с масляным заполнением. На рис.7 показаны общий вид (а) и разрез (б) трансформатора ТФН (токовый, фарфоровая изоляция, наружная установка). Кольцевые магнитопроводы 12 выполнены из ленточной стали, на которые навиваются вторичные обмотки. Первичная обмотка 11 из многожильного провода проходит через отверстия магнитопроводов и концы ее выводятся наверх. Такую своеобразную конструкцию обмоток называют звеньевой или восьмерочной. Первичная обмотка состоит из двух секций, которые с помощью переключателя могут быть соединены последовательно или параллельно, что вызывает соответственно рост вторичной мощности или изменение коэффициента трансформации. Изоляция первичной обмотки, а также магнитопроводов со вторичными обмотками выполнена из кабельной бумаги. Обмотки и магнитопроводы помещаются в фарфоровый кожух 13, заполненный маслом.

При напряжениях сети выше 330 кВ используются каскадные ТТ, состоящие из двух ступеней – верхней 1 и нижней 2 (рис.8), каждая из которых является конструктивно самостоятельным элементом, аналогичным ТТ типа ТФН, и рассчитана на половину номинального напряжения. Ко вторичной обмотке верхней ступени присоединяется первичная обмотка трансформатора нижней ступени, имеющего 4-5 вторичных обмоток. Таким образом, в каскадном ТТ применены две последовательные трансформации, что приводит к некоторому увеличению погрешностей.

С ростом номинального напряжения стоимость ТТ. возрастает примерно пропорционально квадрату напряжения, в основном за счет изоляции стоимость двухступенчатого трансформатора приблизительно в 2 раза меньше, чем одноступенчатого.

В связи с повышением номинального напряжения до 1150 кВ и выше представляется целесообразным представляется целесообразным переход на ТТ с оптико- электронной системой. В этих датчиках тока вторичная обмотка не имеет непосредственного контакта с первичной, а передача информации производится через оптический канал. Однако вследствие сложности такие системы не получили пока широкого применения.

Дата добавления: 2016-06-22 ; просмотров: 13134 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Все о трансформаторах тока. Классификация, конструкция, принцип действия

трансформатор тока

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

  1. Конструкция и принцип действия трансформатора тока
  2. Классификация трансформаторов тока
  3. Трансформаторы тока разных производителей
  4. Трансформаторы тока ТОЛ-НТЗ-10-01
  5. Расположение вторичных выводов:
  6. Требования к надежности
  7. Пример условного обозначения опорного трансформатора тока с литой изоляцией
  8. Опорные трансформаторы тока TОП-0,66
  9. Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Трансформаторы тока

Орлов Анатолий Владимирович

Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:
    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:
    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:
    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:
    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

ТОЛ-НТЗ-10-01Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:

  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

ТОЛ-НТЗ-10-01 1

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.

Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

TОП-066Опорные трансформаторы тока TОП-0,66

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

TОП-066 1

presentation

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Источник