Меню

Модель электромагнита с полномостовым транзисторным усилителем постоянного тока



Усилители постоянного тока — назначение, виды, схемы и принцип действия

Усилители постоянного тока, как может показаться из названия, сами по себе ток не усиливают, то есть они не генерируют никакой дополнительной мощности. Данные электронные устройства служат для управления электрическими колебаниями в определенном диапазоне частот начиная с 0 Гц. Но посмотрев на форму сигналов на входе и выходе усилителя постоянного тока, можно однозначно сказать — на выходе имеется усиленный входной сигнал, однако источники энергии для входного и выходного сигналов — индивидуальные.

По принципу действия усилители постоянного тока подразделяются на усилители прямого усиления и усилители с преобразованием.

Усилители постоянного тока с преобразованием преобразуют ток постоянный — в переменный, затем он усиливается и выпрямляется. Это называется усилением сигнала с модуляцией и демодуляцией — МДМ.

Транзисторы

Схемы усилителей прямого усиления не содержат реактивных элементов, таких как катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты. Вместо этого существует непосредственная гальваническая связь выхода (коллектора или анода) усилительного элемента одного каскада с входом (базой или сеткой) очередного каскада. По этой причине усилитель прямого усиления способен пропускать (усиливать) даже постоянный ток. Такие схемы популярны и в акустике.

Усилитель постоянного тока в акустике

Однако непосредственная гальваническая связь хотя и передает очень точно между каскадами перепады напряжения и медленные изменения тока, такое решение сопряжено с нестабильностью работы усилителя, с затруднением установления режима работы усилительного элемента.

Когда напряжение источников питания немного изменяется, или изменяется режим работы усилительных элементов, либо немного плывут их параметры, — тут же наблюдаются медленные изменения токов в схеме, которые по гальванически связанным цепям попадают во входной сигнал и соответствующим образом искажают форму сигнала на выходе. Зачастую эти паразитные изменения на выходе схожи по размаху с рабочими изменениями, вызываемыми нормальным входным сигналом.

Дрейф нуля

Искажения выходного напряжения могут быть вызваны различными факторами. Прежде всего — внутренними процессами в элементах схемы. Нестабильное напряжение источников питания, нестабильные параметры пассивных и активных элементов схемы, особенно под действием перепадов температуры и т. д. Они могут быть вовсе не связаны с входным напряжением.

Изменения выходного напряжения вызванные данными факторами именуют дрейфом нуля усилителя. Максимальное изменение выходного напряжения в отсутствие входного сигнала усилителя (когда вход замкнут) за определенный временной промежуток, называется абсолютным дрейфом.

Напряжение дрейфа, приведенное ко входу равно отношению абсолютного дрейфа к коэффициенту усиления данного усилителя. Это напряжение определяет чувствительность усилителя, так как вносит ограничение в минимально различимый входной сигнал.

Чтобы усилитель работал нормально, напряжение дрейфа не должно быть больше заранее определенного минимального напряжения усиливаемого сигнала, который подается на его вход. В случае если дрейф выхода окажется того же порядка или будет превышать входной сигнал, искажения превысят допустимую норму для усилителя, и его рабочая точка окажется смещенной за пределы адекватной рабочей области характеристик усилителя («дрейф нуля»).

Для снижения дрейфа нуля прибегают к следующим приемам. Во-первых, все источники напряжения и тока, питающие каскады усилителя, делают стабилизированными. Во-вторых, используют глубокую отрицательную обратную связь. В-третьих, применяют схемы компенсации температурного дрейфа путем добавления нелинейных элементов, чьи параметры зависят от температуры. В-четвертых, используют балансирующие мостовые схемы. И наконец, постоянный ток преобразуют в переменный и затем усиливают переменный ток и выпрямляют.

При создании схемы усилителя постоянного тока очень важно согласовать потенциалы на входе усилителя, в точках сопряжения его каскадов, а также на нагрузочном выходе. Также необходимо обеспечить стабильность работы каскадов при различных режимах и даже в условиях плавающих параметров схемы.

Схема прямого усиления

Усилители постоянного тока бывают однотактными и двухтактными. Однотактные схемы прямого усиления предполагают непосредственную подачу выходного сигнала с одного элемента — на вход следующего. На вход следующего транзистора вместе с выходным сигналом от первого элемента (транзистора) подается коллекторное напряжение первого.

Читайте также:  Зависимость электрического тока потребляемой мощности

Тут должны быть согласованы потенциалы коллектора первого и базы второго транзистора, для чего коллекторное напряжение первого транзистора компенсируют при помощи резистора. Резистор добавляют также в цепь эмиттера второго транзистора, чтобы сместить его напряжение база-эмиттер. Потенциалы на коллекторах транзисторов следующих каскадов также должны быть высокими, что тоже достигается применением согласующих резисторов.

Параллельный балансный каскад

В двухтактном параллельном балансном каскаде резисторы коллекторных цепей и внутренние сопротивления транзисторов образуют собой четырехплечевой мост, на одну из диагоналей которого (между цепями коллектор-эмиттер) подается напряжение питания, а к другой (между коллекторами) — присоединяется нагрузка. Сигнал который требуется усилить прикладывается к базам двух транзисторов.

При равенстве коллекторных резисторов и полностью одинаковых транзисторах, разность потенциалов между коллекторами, в отсутствие входного сигнала, равна нулю. Если входной сигнал не равен нулю, то на коллекторах будут приращения потенциалов равные по модулю, но противоположные по знаку. На нагрузке между коллекторами появится переменный ток по форме повторяющий входной сигнал, но большей амплитуды.

Такие каскады часто применяются в качестве первичных каскадов многокаскадных усилителей либо в качестве выходных каскадов для получения симметричного напряжения и тока. Достоинство данных решений в том, что влияние температуры на оба плеча одинаково изменяет их характеристики и напряжение на выходе не плывет.

Источник

Электромагниты постоянного тока

Прежде чем рассматривать электромагниты постоянного тока, необходимо выяснить принцип их работы. Основой всех электромагнитов является соленоид, представляющий собой катушку с намотанными вплотную витками. Длина любого соленоида значительно превышает его диаметр.

Принцип действия

Простейший электромагнит получается в том случае, когда внутрь соленоида помещается стальной сердечник, а через витки пропускается электрический ток. В результате, происходит намагничивание сердечника, который приобретает свойства постоянного магнита. Таким образом, получается электромагнит, в котором стальной сердечник, при отсутствии электрического тока, полностью размагничивается.

Электромагниты постоянного тока

Магнитное поле, создаваемое электромагнитом, значительно выше поля соленоида. В данном случае, поле сердечника накладывается на поле соленоида и, в конечном итоге, совместное магнитное поле, полученное при воздействии электрического тока, существенно возрастает.

Данное изобретение широко используется в электротехнике в качестве электромагнитов постоянного тока. Основное применение эта конструкция нашла в исполнительных механизмах, чаще всего, в тормозных устройствах различных подъемных механизмов.

Устройство электромагнита постоянного тока

На практике, существуют электромагниты постоянного тока с магнитопроводящим корпусом, имеющем фланцы. В корпусе устанавливается катушка, внутри которой размещаются два якоря. Якорные полюса имеют форму усеченного конуса, позволяющую им взаимодействовать между собой. От катушки и фланцев якоря отделяются. Они оборудованы тягами, имеющими на концах шаровые соединения, обеспечивающие связь с внешними нагрузками.

В дополнение ко всему, электромагнит имеет два ограничителя, расположенные на якорях. Эти ограничители обеспечивают соприкосновение якорей между собой в определенной точке, при их движении навстречу друг другу. Дополнительное отделение якорей от катушки и фланцев производится при помощи специальных гильз, изготовленных из немагнитных материалов.

Дополнительные конструкции электромагнита

В большинстве конструкций совпадение якорей по осям обеспечивается с помощью центрирующего узла, представляющего собой вал из немагнитных материалов. Один конец данного вала жестко закрепляется в осевом отверстии первого якоря и имеет возможность перемещаться вдоль. Другой конец вала устанавливается в осевое отверстие второго якоря с применением подшипников скольжения.

Данная конструкция недостаточно надежна, поскольку существует возможность заклинивания свободного конца вала из-за попадания посторонних предметов. Эту проблему решают электромагниты постоянного тока, применяемые в центрирующем узле и обеспечивающие надежную работу вала при заклинивании одного из его концов.

Источник

Электромагнит постоянного тока

Выбор конструктивного типа и формы стопа. Определение основных размеров электромагнита, параметров катушки. Расчет винтовой пружины. Разработка ключевого усилителя мощности, источника питания постоянного тока. Анализ динамической характеристики системы.

  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Под электромагнитным механизмом (ЭММ) понимают устройство, работа которого основана на взаимодействии ферромагнитного подвижного элемента с магнитным полем, создаваемым намагничивающей обмоткой. ЭММ состоит из двух основных узлов: электромагнита (ЭМ) и исполнительного механизма (исполнительного органа, механизма нагрузки). ЭММ является преобразователем электромагнитной энергии ЭМ в механическую энергию исполнительного механизма.

Благодаря своим богатым функциональным возможностям ЭММ в настоящее время нашли широкое применение вообще и в особенности в приборных устройствах. Они отличаются не только большим разнообразием выполняемых функций, но и в еще большей степени разнообразием конструктивных решений.

Особенности приборных ЭММ заключаются в следующем. Во-первых, приборные ЭММ — маломощные механизмы. Во-вторых, к ним часто предъявляют высокие требования в отношении динамических характеристик (быстродействия). В-третьих, это преимущественно ЭММ постоянного тока. ЭММ постоянного тока в сравнении с ЭММ переменного тока имеют значительно меньшую потребляемую мощность, массу и габариты и способны развивать бульшие тяговые усилия. Даже в тех приборных устройствах, в которых имеется лишь питающая сеть переменного тока, выгоднее установить специальный выпрямитель, чем использовать ЭММ переменного тока. Такой выпрямитель легко может быть реализован на полупроводниковых элементах, учитывая, что ЭММ приборных устройств являются маломощными. И, наконец, в-четвертых, приборные ЭММ нередко отличаются особыми тяговыми характеристиками, что объясняет особенности их применения.

Наибольшую трудность при создании ЭММ представляет расчет и проектирование наиболее сложного и специфического узла ЭММ — его электромагнита.

Существующие в настоящее время ЭМ характеризуются большим разнообразием конструктивных форм магнитопроводов, расположения обмоток, способов их питания. Их классифицируют по следующим наиболее важным признакам:

по характеру движения якоря: с угловым и поступательным перемещением якоря;

по расположению якоря: с внутренним или с втягивающимся якорем (ЭМ соленоидного типа или втяжные) и с внешним якорем;

по виду тяговой характеристики (зависимость силы электромагнитного притяжения FЭ, действующей на якорь, от воздушного зазора д).

Втяжные ЭМ отличаются большим ходом якоря, малыми размерами и высоким быстродействием. Втяжные ЭМ со стопом создают бульшие усилия, чем без стопа. Это усилие резко растет по мере приближения якоря к стопу. На форму тяговой характеристики существенно влияют размер и форма стопа: конический стоп в сравнении с плоским позволяет увеличить начальное тяговое усилие; при увеличении высоты стопа седлообразная тяговая характеристика приближается к гиперболической.

В данном курсовом проекте будет рассчитываться втяжной электромагнит. Он является нейтральным ЭМ, так как для него характерно наличие одного магнитного потока, который создается управляющей обмоткой, расположенной на статоре. Обмотка управления питается от усилителя мощности работающего в ключевом режиме (на обмотку подаются прямоугольные импульсы, а информация содержится в длительности импульса).

Различают две основные задачи проектирования ЭМ — прямую и обратную. Прямая задача заключается в определении по заданным исходным данным типа ЭМ, его геометрических размеров и характеристик намагничивающей катушки, то есть это создание конструкции. Обратная задача выражается в проверочном расчете уже существующего или известного ЭМ с определением точных его магнитных характеристик и проектированием катушки. В нашем случае имеет место прямая задача.

Порядок проектирования ЭМ по заданным параметрам (прямая задача) обычно выполняется в два этапа: сначала производится проектный (предварительный) расчет, а затем поверочный (окончательный) расчет. На первом этапе: определяют недостающие и уточняют имеющиеся исходные данные; выбирают тип ЭМ; выбирают магнитные характеристики ЭМ (индукцию в воздушном зазоре, максимальную индукцию); определяют основные размеры и параметры ЭМ. На втором этапе по известным размерам ЭМ: рассчитывают магнитную цепь с определением намагничивающей силы, необходимой для срабатывания; рассчитывают размеры катушки; производят корректировку размеров ЭМ.

После выполнения этих двух этапов разрабатываются программы расчета статических и динамических характеристик, производится их анализ. Затем выбирают схему усилителя мощности и рассчитывают его. И в конце рассчитывается источник питания для ЭМ.

Выбор конструктивного типа и формы стопа

Оптимальную конструктивную форму ЭМ можно выбрать по конструктивному фактору (КФ). Каждой конструктивной форме ЭМ, спроектированного оптимально в смысле минимума массы, соответствует определенный диапазон значений КФ. Диапазоны значений КФ приведены в различных справочниках. Конструктивный фактор КФ дает возможность определить конструктивную форму только в первом приближении. Он не учитывает многие требования технического задания: температурные условия, режим работы и так далее.

где — величина рабочего зазора

— толщина немагнитной прокладки

(предотвращает залипание якоря на стопе)

Таким образом, исходя из табличных значений, имеем стоп конической формы с наклоном

Проектный расчет

Определение основных размеров электромагнита:

Источник

Усилители постоянного тока: принцип работы и устройство

рис. 2.35

Усилитель называют усилителем постоянного тока (УПТ), если он может усиливать постоянные и медленно изменяющиеся сигналы. Такой усилитель может использоваться и для усиления переменных сигналов.

Выше рассмотрены операционные усилители, являющиеся усилителями постоянного тока. Но внутреннее устройство операционных усилителей не рассматривалось.

Васильев Дмитрий Петрович

Полученные переменные сигналы могут быть усилены с помощью усилителей переменного тока, в которых гальванические связи разорваны с помощью конденсаторов или трансформаторов.

После усиления переменные сигналы должны быть преобразованы в постоянные или медленно изменяющиеся.

При построении УПТ с использованием гальванической связи между каскадами получают УПТ, которому присуще такое вредное явление, как дрейф нуля. Под дрейфом нуля понимают самопроизвольное изменение выходного напряжения при неизменном нулевом входном. Основными причинами дрейфа нуля усилителя являются:

  • изменение параметров элементов схемы, прежде всего транзисторов, за счет изменения температуры окружающей среды;
  • изменение питающих напряжений;
  • постоянное изменение параметров активных и пассивных элементов схемы, вызванное их старением.

Сигнал дрейфа нуля может быть соизмерим с полезным сигналом, поэтому при построении УПТ принимают меры по снижению дрейфа нуля.

Основными мерами снижения дрейфа являются:

  • жесткая стабилизация источников питания усилителей;
  • использование отрицательных обратных связей;
  • применение балансных компенсационных схем УПТ;
  • использование элементов с нелинейной зависимостью параметров от температуры для компенсации температурного дрейфа;
  • применение УПТ с промежуточным преобразованием и др.

Важным вопросом при построении УПТ является также согласование потенциалов соседних каскадов, согласование источника входного сигнала с УПТ, а также подключение нагрузки к УПТ таким образом, чтобы при нулевом входном напряжении, напряжение на нагрузке было также равно нулю.

Поэтому простейшие УПТ, состоящие из нескольких каскадов, включенных последовательно и соединенных гальванической (непосредственной) связью, даже при условии согласования потенциалов обладают рядом недостатков, главным из которых является дрейф нуля.

рис. 2.35

Таким образом, для устранения отмеченных выше недостатков УПТ строят в виде параллельно-балансных каскадов, представляющих собой сбалансированный мост, в одно плечо которого включена нагрузка, а в другое — источник питания. Схема такого УПТ приведена на рис. 2.35.

Коллекторные сопротивления RK1 и RK2, транзисторы Т1 и Т2, резистор Rэ образуют мост, к одной диагонали которого подключен источник питания ЕK, а в другую диагональ — между коллекторами транзисторов — включается нагрузка.

Источник