Меню

Метод эквивалентного источника напряжения в цепи с источником тока



Метод эквивалентного источника напряжения

date image2014-02-12
views image5010

facebook icon vkontakte icon twitter icon odnoklasniki icon

(теорема Гельмгольца-Тевенена)

Метод основан на теореме об эквивалентном источнике, когда активный двухполюсник по отношению к рассматриваемой ветви может быть заменен эквивалентным источником напряжения, ЭДС которого равна напряжению холостого хода на зажимах этой ветви, а его внутреннее сопротивление равно входному сопротивлению двухполюсника.

Рассмотрим электрическую цепь.

Ищем ток I1.

Представим исходную схему в следующем виде:

Для выделенной структуры составим уравнение по методу контурных токов и найдем ток I3:

Теперь можем найти напряжение холостого хода между зажимами А и В:

Входное сопротивление к зажимам А, В найдем согласно схеме:

Находим ток I1:

Ищем ток I3.

Представим исходную схему в виде:

Для данной схемы уравнение по методу контурных токов будет иметь вид:

Входное сопротивление к зажимам А, В найдем согласно схеме:

Находим ток I3:

Рассмотрим электрическую цепь, в которой активный двухполюсник подключен к ветви с последовательно включенными сопротивлениями и амперметром.

Из опыта известны два показания амперметра: тока IA1, когда оба ключа разомкнуты и тока IA2, когда ключ K1 замкнут, а ключ K2 разомкнут.

Требуется вычислить показания амперметра при разомкнутом ключе K1 и замкнутом ключе K2 (см. рисунок).

Составляем уравнения для всех трех режимов:

где — напряжение холостого хода на зажимах исследуемой ветви.

Тогда из первого уравнения .

Из второго уравнения находим входное сопротивление двухполюсника.

После чего находим ток IА3.

Источник

Теорема об эквивалентном источнике тока

Ток в любой ветви «a-b» линейной электрической цепи не изменится, если электрическую цепь, к которой подключена данная ветвь, заменить эквивалентным источником тока. Ток этого источника должен быть равен току между зажимами a-b закороченными накоротко, а внутренняя проводимость источника тока должна равняться входной проводимости пассивной электрической цепи со стороны зажимов «a» и «b» при разомкнутой ветви «ab».

Рис.34 иллюстрирует эту теорему.

Действительно, из условия эквивалентности источников тока и напряжения следует: источник напряжения э.д.с. которого равна Uxx, а внутренне сопротивление равно r может быть заменен источником тока:

Jэкв., определенное по формуле (43), является током короткого замыкания, т.е. током, проходящим между зажимами «a-b», замкнутыми накоротко.

Искомый ток ветви «k» равен:

Методы решения задач, основанные на теоремах об эквивалентном источнике напряжения и об эквивалентном источнике тока, называются соответственно методом эквивалентного генератора и методом эквивалентного источника тока.

Эти методы используются в тех случаях, когда по условию задачи требуется рассчитать ток только одной ветви электрической цепи.

Порядок расчета задачи методом эквивалентного генератора:

1) разрывают выделенную ветвь схемы и путем расчета оставшейся части схемы одним из методов определяют Uxx на зажимах разомкнутой ветви;

2) определяют r (внутренне сопротивление эквивалентного источника) по отношению к зажимам выделенной ветви методом эквивалентных преобразований.

При этом обязательно изображается пассивная схема, где источники э.д.с. заменяются их внутренними сопротивлениями (если э.д.с. — идеальная, то участок ее подключения изображается короткозамкнутым), источники тока заменяются их внутренними проводимостями (ветви с идеальными источниками тока разрываются);

3) Определяют ток выделенной ветви по закону Ома:

Параметры эквивалентного генератора для реальной цепи могут быть получены на основе опытов холостого хода и короткого замыкания. Из опыта x.x. определяют Uxx, а из опыта к.з. – Ik.з. Внутреннее сопротивление источника: .

Пример: В цепи, изображенной на рис.1 измерено напряжение между зажимами a-b вольтметром с весьма большим сопротивлением: Uab=60B. Затем между зажимами a-b включили амперметр, сопротивлением которого можно пренебречь, ток, показанный амперметром I=1,5A. Сколько покажет вольтметр с сопротивлением RV=760(Ом), если его включить между зажимами a-b?

Читайте также:  Какие материалы хорошо проводят электрический ток

Решение: Решим задачу методом эквивалентного генератора. Генератором будем считать цепь, очерченную пунктиром. Пусть это будет генератор напряжения. Э.д.с. этого генератора, равная напряжению холостого хода, измерена вольтметром с большим внутренним сопротивлением. Следовательно Eэкв.=60B. Ток короткого замыкания показал амперметр: Iк.з.=1,5A. Но ток короткого замыкания ограничен только внутренним сопротивлением генератора. Следовательно, его внутренне сопротивление:

Если теперь к зажимам a-b подключить сопротивление RV=760(Ом), ток через это сопротивление будет равен:

А падение напряжения на этом сопротивлении:

Это напряжение покажет второй вольтметр.

Решим задачу, выбрав в качестве эквивалентного генератора генератор тока:

Параметрами генератора тока являются его задающий ток Jэкв. И внутренняя проводимость G. Задающий ток может быть измерен или определен как ток короткого замыкания: Jэкв.=Jк.з.=1,5(A).

Внутренняя проводимость может быть определена из опыта холостого хода, т.к. в этом опыте ток генератора замыкается только через G:

Эквивалентная проводимость цепи при подключенном вольтметре равна:

Напряжение между зажимами генератора при подключении второго вольтметра:

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Метод эквивалентного генератора (эквивалентного источника). Применение математической программной среды MathCAD для расчета линейных цепей постоянного тока (главы 6-10 учебного пособия «Теоретические основы электротехники в примерах и задачах»)

Страницы работы

Содержание работы

6. МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА

(ЭКВИВАЛЕНТНОГО ИСТОЧНИКА)

Целесообразность использования данного метода становится очевидной, в случае если расчет электрической цепи ограничен в определении тока только одной ветви. В этом случае вся цепь относительно ветви с интересующим током заменяется эквивалентной схемой. Таким образом, основной расчет сводится к определению двух параметров эквивалентной схемы – ЭДС и сопротивления эквивалентного генератора.

Для схемы цепи (рис. 6.1) методом эквивалентного генератора найти ток ветви с сопротивлением , если , , , , , , .

Рис. 6.1. Рис. 6.2.

1. Выделим ветвь с сопротивлением и обозначим ток (рис.6.1) .

2. Всю цепь, рис. 6.1, относительно ветви с сопротивлением , представим эквивалентным генератором с источником ЭДС равным и сопротивлением (рис. 6.2).

Согласно схеме (рис. 6.2) интересующий ток в ветви определиться как

т.е. решение задачи сводится к определению двух параметров эквивалентного генератора и .

3. Найдем ЭДС генератора. По определению равно напряжению между узловыми точками 1 и 2 разомкнутой ветви с сопротивлением (рис. 6.3).

Рис. 6.3. Рис. 6.4.

Для этого в схеме (рис. 6.3) определим токи и . На основании законов Кирхгофа получим систему:

Из системы найдем

На основании второго закона Кирхгофа для указанного в схеме (рис. 6.3) направления обхода контура получим

4. Найдем сопротивление генератора. По определению равно входному сопротивлению между узловыми точками 1 и 2 разомкнутой ветви с (рис. 6.3). Расчет сопротивления производим при закороченных источниках ЭДС , и разомкнутом источнике тока , рис. 6.4.

5. Окончательно определяем ток :

Определить методом эквивалентного генератора ток в ветви с источником ЭДС (рис. 6.5). Дано: , , , , , , .

Рис. 6.5. Рис. 6.6.

1. Обозначим ток в ветви с источником ЭДС (рис. 6.5).

2. Применив теорему об эквивалентном генераторе, ток в ветви, имеющей нулевое сопротивление согласно схеме (рис. 6.6):

3. Найдем ЭДС генератора. Разомкнем ветвь с источником (рис.6.7) и найдем напряжение между точками 1 и 2.

Предварительно выполним расчет токов и в схеме (рис. 6.7).

Читайте также:  Прибор измеряющий ток аккумуляторной батареи 1

Рис. 6.7. Рис. 6.8.

Ток в неразветвленной части схемы

Токи и в разветвленной части схемы:

На основании второго закона Кирхгофа для обозначенного на схеме (рис. 6.7) контура запишем:

4. Найдем сопротивление генератора , которое равно входному сопротивлению между точками 1 и 2 (рис. 6.8) (при замкнутых источниках ЭДС , ).

Преобразуем треугольник сопротивлений , и (рис.6.8) в эквивалентную звезду (рис. 6.9).

Величины сопротивлений эквивалентной звезды (рис. 6.9):

Согласно выполненным преобразованиям окончательно получим (рис. 6.9):

5. Ток в ветви с источником определится как

Задачи для самостоятельного решения

Задача 6.3. Методом эквивалентного генератора для схемы (рис. 6.10) определить ток в ветви с сопротивлением . Дано , , , , , .

Рис. 6.10. Рис. 6.11.

Задача 6.4. Для цепи (рис. 6.11) методом эквивалентного генератора определить ток в ветви с сопротивление , если , , , , .

Задача 6.5. Определить обозначенный в схеме (рис. 6.12) ток по методу эквивалентного генератора, если , , , , , , , .

Задача 6.6. Для схемы (рис. 6.13) методом эквивалентного генератора определить обозначенный в ветви ток, если , , , , , .

Рис. 6.12. Рис. 6.13.

Задача 6.6. Рассчитать обозначенный в схеме (рис. 6.14) ток, используя метод эквивалентного генератора, если , , , , , .

Задача 6.4. Для цепи (рис. 6.15) методом эквивалентного генератора определить ток в ветви с сопротивление , если , , , , , , , , .

Рис. 6.14. Рис. 6.15.

7. ПРИМЕНЕНИЕ ЭКВИВАЛЕНТНЫХ ПРЕОБРАЗОВАНИЙ ПРИ РАСЧЕТАХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Расчет сложных электрических цепей можно упростить путем различных эквивалентных преобразований активных участков схем содержащих ветви с идеальными источниками ЭДС и тока. В частях схемы не затронутых преобразованиями должно выполняться условие неизменности напряжений и токов ветвей. Упрощение расчета сводится, как правило, к уменьшению числа ветвей или узлов схемы и, в конечном счете, к сокращению расчетных уравнений.

Для цепи (рис.7.1) требуется определить показание вольтметра, если , , , , . Внутреннее сопротивление вольтметра принять .

Рис. 7.1. Рис. 7.2.

1. Преобразуем источники тока и (рис. 7.1) в эквивалентные источники ЭДС , (рис. 7.2).

2. Значения ЭДС эквивалентных источников:

3. Ток, протекающий в контуре (рис. 7.2) найдем на основании второго закона Кирхгофа

4. Показание вольтметра установленного в схеме будет соответствовать напряжению на сопротивлении :

Методом узловых потенциалов определить токи в ветвях с сопротивлениями и схемы (рис. 7.3) , если , , , , , , .

Рис. 7.3. Рис. 7.4. Рис. 7.5.

1. Чтобы уменьшить число узлов расчетной схемы и упростить расчет преобразуем источник тока в эквивалентные источники ЭДС.

Включая в узле 3 два равных и противоположно направленных источника тока , получим эквивалентную схему (рис. 7.4).

После преобразования источников тока в эквивалентные источники ЭДС получим эквивалентную схеме (рис.7.3) схему представленную на рис. 7.5.

2. Значения ЭДС эквивалентных источников:

3. Расчет токов преобразованной схемы (рис. 7.5) выполним методом двух узлов. Потенциал узловой точки 1 принимаем равным нулю ( ). Напряжение между узлами 3 и 1 найдем как

4. Интересующие в схеме токи

Определить показание амперметра для схемы рис. 7.6, если , , , , , , , , , .

Рис. 7.6. Рис. 7.7.

1. Для упрощения расчета воспользуемся преобразованиями активных участков схем с параллельными ветвями одной эквивалентной.

2. Эквивалентная ЭДС и эквивалентное сопротивление двух параллельных ветвей левой части схемы (рис. 7.6):

Источник

Метод эквивалентного генератора (источника)

Прежде, чем приступать к расчету методом эквивалентного генератора, необходимо знать, что, строго говоря, существуют две разновидности этого метода — Метод эквивалентного генератора напряжения и Метод эквивалетного генератора тока

Оба метода работают очень похоже. Во-первых, применяются только для расчета тока в одной ветви. Во-вторых, вся остальная цепь, относительно нужного участка заменятся на один элемент — источник напряжения или источник тока, каждый — со своим внутренним сопротивлением.

Читайте также:  Стреляет в ступню как током что это

Рассмотрим оба этих метода подробнее

Метод эквивалентного генератора напряжения

Иногда в разной литературе называется «Теорема Тевенена», «Теорема Тевенина» и даже «Теорема Тевенена-Гельмгольца». По сути, это все одно и то же

Исходя из названия, очевидно, что мы используем источник напряжения. Значит, нам необходимо определить ЭДС этого источника и его внутренее сопротивление.

С внутренним сопротивлением все очень просто. Нам нужно именно сопротивление относительно того участка, ток в котором мы рассчитываем. Для этого все источники ЭДС заменятся закоротками, так как у них внутренее сопротивление равно нулю. Источники тока заменяются разрывом, так как их внутреннее сопротивление бесконечно.

Предположим, есть вот такая цепь:

Нам нужно методом эквивалентного генератора определить ток через R3. Рассчитывая внутренее сопротивление генератора. закорачиваем источники ЭДС и разрываем источник тока. Получаем схему:

Очевидно, общее сопротивлелние такой схемы Rэкв = R1+R2

Теперь необходимо рассчитать напряжение холостого хода генератора. Звучит сурово, но это просто напряжение на нужном нам участке цепи с убранной нагрузкой (в нашем случае — R3):

Для этого можно возспользоываться абсолютно любым, известным вам способом — методом контурных токов, методом узловых потенциалов или непосредственным применением законов Кирхгофа.

После того, как напряжение холостого хода найдено, можно переходить к последнему этапу расчета — вычислению требуемого тока. Для этого, фактически, просто используется закон Ома для полной цепи:

Здесь Uхх — напряжение холостого хода генератора, Rэкв — его внутреннее сопротивление, Rн — сопротивление нагрузки. Для нашего случая:

Метод эквивалентного генератора тока

Иногда называется Теорема Нортона. Если вы разобрались с эквивалетным генератором напряжения, то здесь тоже все будет просто

Первый этап — вычисление внутреннего сопротивления генератора — ничем не отличается от того, что мы рассматривали выше. Так же разрываем нужную нам ветку и относительно нее находим сопротивление цепи, закорачивая ЭДС и разрывая источники тока.

Следующий шаг — определение тока короткого замыкания. Для этого участок, который мы рассматриваем, закорачивается и определяется ток через него любым удобным способом:

Вот и все, можно определять нужный ток:

Как и ранее, здесь Rэкв — внутренее сопротивление генератора, Rн — сопротивление нагрузки, Iкз — ток короткого замыкания генератора.

Для нашего случая:

Кстати, внимательный читатель лекго узнает в последних формулах обыкновенный делитель тока

Подведем итоги, записав пошаговый алгоритм использования метода эквивалентного генератора:

  • Определяем внутренее сопротивление генератора относительно участка цепи, где необходимо определить ток. Для этого источники ЭДС закорачиваются, а источники тока — разрываются
  • Для эквивалентного генератора напряжения рассчитываем напряжение холостого хода, то есть напряжение на том участке, который рассматриваем. Для эквивалентного генератора тока находим ток короткого замыкания, закоротив исследуемый участок. В обоих случаях можно применять любой известный метод.
  • Находим искомый ток по соответствующей формуле

    Разобравшись с принципом действия, вы теперь сможете с лучшим пониманием рассмотреть наш пример решения методом эквивалентного генератора

    И последнее — указанные методы абсолютно так же работают не только с постоянным током, но и для цепей переменного тока. Разумеется, там нужно использовать комплексные значения токов, напряжений и сопротивлений.

    Источник