Меню

Магнитный поток проводника с током формула



Поток вектора магнитной индукции

Магнитный поток Φ через площадку S (поток вектора магнитной индукции) – это скалярная величина:

Φ = B S cos α = B n S = B → S → с углом между n → и B → , обозначаемым α , n → является нормалью к площадке S .

Формула магнитного потока

Φ равняется количеству линий магнитной индукции, пересекающих площадку S , как показано на рисунке 1 . Поток магнитной индукции по формуле принимает положительные и отрицательные значения. Его знак зависит от выбора положительного направления нормали к площадке S . Зачастую положительное направление нормали связано с направлением обхода контура током. За такое направление берут поступательное перемещение правого винта во время его вращения по току.

Формула магнитного потока

В чем измеряется магнитный поток

В случае неоднородности магнитного поля S не будет плоской, а плоскость может быть разбита на элементарные площадки d S , рассматриваемые в качестве плоских, поле которых также считается однородным. Определение магнитного потока d Φ производится через эту поверхность. Запись примет вид:

d Φ = B d S cos α = B → d S → .

Нахождение полного потока через поверхность S :

Φ = ∫ S B d S cos α = ∫ S B → d S → .

Основной единицей измерения магнитного потока в системе СИ считаются веберы ( В б ) . 1 В б = 1 Т л 1 м 2 .

Связь магнитного потока и работы сил магнитного поля

Элементарная работа δ A , совершаемая силами магнитного поля, выражается через элементарное изменение потока вектора магнитной индукции d Φ :

Если проводник с током совершает конечное перемещение, сила тока постоянна, то работа сил поля равняется:

A = I Φ 2 — Φ 1 с Φ 1 , обозначаемым потоком через контур в начале перемещения, Φ 2 является потоком через контур в конце перемещения.

Теорема Гаусса для магнитного поля

Значение суммарного магнитного потока через замкнутую поверхность S равняется нулю:

Выражение ∮ B → d S → = 0 является справедливым для любых магнитных полей. Данное уравнение считается аналогом теоремы Остроградского-Гаусса в электростатике в вакууме:

Запись ∮ B → d S → = 0 говорит о том, что источник магнитного поля – это не магнитные заряды, а электрические токи.

Дан бесконечно длинный прямой проводник с током I , недалеко от которого имеется квадратная рамка. По ней проходит ток с силой I ‘ . Сторона рамки равна a . Она располагается в одной плоскости с проводом, как показано на рисунке 2 . Значение расстояния от ближайшей стороны рамки до проводника равняется b . Найти работу магнитной силы при удалении рамки из поля. Считать токи постоянными.

Теорема Гаусса для магнитного поля

Решение

Индукция магнитного поля длинного проводника с током в части, где расположена квадратная рамка, направляется на нас.

Следует учитывать нахождение рамки с током в неоднородном поле, что означает убывание магнитной индукции при удалении от провода.

За основу возьмем формулу магнитного потока и работы, которая их связывает:

A = I ‘ Φ 2 — Φ 1 ( 1 . 1 ) , где I ‘ принимают за силу тока в рамке, Φ 1 – за поток через квадратную рамку при расстоянии от ее стороны к проводу равняющимся b . Φ 2 = 0 . Это объясняется тем, что конечное положение рамки вне магнитного поля, как дано по условию. Отсюда следует, запись формулы ( 1 . 1 ) изменится:

A = — I ‘ Φ 1 ( 1 . 2 ) .

Перейдем к нормали n → и выберем ее направление к квадратному контуру относительно нас, используя правило правого винта. Отсюда следует, что для всех элементов поверхности, ограниченной при помощи контура квадратной рамки, угол между нормалью n → и вектором B → равняется π . Запись формулы потока через поверхность рамки на расстоянии х от провода примет вид:

d Φ = — B d S = — B · a · d x = — μ 0 2 π I l d x x ( 1 . 3 ) , значение индукции магнитного поля бесконечно длинного проводника с током силы I будет:

B = μ 0 2 π x I l ( 1 . 4 ) .

Отсюда следует, что для нахождения всего потока из ( 1 . 3 ) потребуется:

Φ 1 = ∫ S — μ 0 2 π I l d x x = — μ 0 2 π I l ∫ b b + a d x x = — μ 0 2 π I l · ln b + a b ( 1 . 5 ) .

Произведем подстановку формулы ( 1 . 5 ) в ( 1 . 2 ) . Искомая работа равняется:

A = I ‘ μ 0 2 π I l · ln b + a b .

Ответ: A = μ 0 2 π I I ‘ l · ln b + a b .

Найти силу, действующую на рамку, из предыдущего примера.

Решение

Для нахождения искомой силы, действующей на квадратную рамку с током в поле длинного провода, предположим, что под воздействием магнитной силы рамка смещается на незначительное расстояние d x . Это говорит о совершении силой работы, равной:

δ A = F d x ( 2 . 1 ) .

Элементарная работа δ A может быть выражена как:

δ A = I ‘ d Φ ( 2 . 2 ) .

Произведем то же с силой, применяя формулы ( 2 . 1 ) , ( 2 . 2 ) . Получаем:

F d x = I ‘ d Φ → F = I ‘ d Φ d x ( 2 . 3 ) .

Используем выражение, которое было получено в примере 1 :

d Φ = — μ 0 2 π I l d x x → d Φ d x = — μ 0 2 π I l x ( 2 . 4 ) .

Произведем подстановку d Φ d x в ( 2 . 3 ) . Имеем:

F = I ‘ μ 0 2 π I l x ( 2 . 5 ) .

Каждый элемент контура квадратной рамки находится под воздействием сил (силы Ампера). Отсюда следует, что на рамку действует 4 силы, причем на стороны A B и D C равные по модулю и противоположные по направлению. Выражение принимает вид:

F A B → + F D C → = 0 ( 2 . 6 ) , то есть их сумма равняется нулю. Тогда значение результирующей силы, приложенной к контуру, запишется:

F → = F A D → + F B C → ( 2 . 6 ) .

Используя правило левой руки, получаем направление этих сил вдоль одной прямой в противоположные стороны:

F = F A D — F B C ( 2 . 7 ) .

Произведем поиск силы F A D , действующей на сторону A D , применив формулу ( 2 . 5 ) , где x = b :

F A D = I ‘ м 0 2 π I l b ( 2 . 8 ) .

Значение F B C будет:

F B C = I ‘ μ 0 2 π I l b + a ( 2 . 9 ) .

Для нахождения искомой силы:

F = I ‘ μ 0 2 π I l b — I ‘ μ 0 2 π I l b + a = I I ‘ μ 0 l 2 π 1 b — 1 b + a .

Ответ: F = I I ‘ μ 0 l 2 π 1 b — 1 b + a . Магнитные силы выталкивают рамку с током до тех пор, пока она находится в первоначальной ориентации относительно поля провода.

Источник

Закон электромагнитной индукции

О чем эта статья:

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

магнитный поток

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

пример потока

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

пример потока рис2

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Магнитный поток

формула

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

Читайте также:  Конденсатор включен в цепь переменного тока стандартной частоты с напряжением 220

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Ученики Skysmart не боятся сложных понятий по физике и чувствуют себя уверенее на контрольных в школе. А еще — не могут оторваться от домашки: захватывает не хуже, чем тик-ток.

Запишите ребенка на вводное занятие: покажем, как все проходит на интерактивной платформе и вдохновим на учебу!

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

опыт

Вот, что показали эти опыты:

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

закон Фарадея

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

закон Фарадея для контура

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Закон Ома

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

ЭДС индукции

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Правило Ленца

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Источник

Формула магнитного потока

Однородное магнитное поле (МП), существующее в некотором объёме, называется так, потому что оно одинаково во всех его точках. Если рассмотреть определённую плоскость, расположенную под прямым углом к магнитным линиям поля, то количество линий, пронизывающих её, можно вычислить. Поток магнитной индукции, формула которого выведена немецким физиком Вильгельмом Вебером, является искомой величиной.

Магнитный поток

Что такое магнитный поток

Проводя опыты и работая в сфере магнитных явлений, Вебер дал определение магнитному потоку. Он охарактеризовал его, как меру силы и протяжённости МП. Это одна из физических величин, которую можно найти, зная модуль вектора магнитной индукции В→ (ВМИ). Знать также нужно площадь пересекаемой поверхности и синус угла между ВМИ и нормалью к плоскости.

Единицы измерения

Магнитный поток обозначают буквой Φ, измеряется в веберах (Вб). Единица названа по фамилии учёного. Так, 1 Вб характеризует магнитный поток Φ, создаваемый магнитным полем, имеющим индукцию в одну теслу (1 Тл), пронизывающий плоскость площадью в один квадратный метр (1 м²), с учётом того, что эта поверхность расположена под прямым углом к ВМИ (В→).

Читайте также:  Генератор постоянного тока с регулятором напряжения

Измерительные приборы

Магнитные потоки, определимые с помощью специальных приборов – флюксметров, измеряются и в лабораторных, и в полевых условиях. Приборы ещё называют веберметрами. Особенностью такого измерительного аппарата магнитоэлектрической системы (МЭС) является то, что ток подводится к перемещающейся бескаркасной рамке через спирали, не имеющие момента противодействия (безмоментные).

Внимание! В тот момент, когда ток отсутствует, указатель прибора не имеет фиксированного положения в пределах шкалы.

Схема применения и устройства флюксметра

Прибор состоит из следующих деталей, отмеченных на рис. выше:

  • испытуемый постоянный магнит – 1;
  • рамка измерительная – 2;
  • рамка прибора – 3;
  • магнит прибора – 4;
  • рамка корректирующего устройства – 5;
  • головка регулировки корректирующей рамки – 6;
  • переключатель «работа – коррекция» – 7.

Флюксметр не может измерять слабые МП из-за низкой чувствительности.

Теорема Гаусса для магнитной индукции

Великий немецкий учёный Карл Гаусс, который отличился в математике, физике и астрономии, вывел закон (теорему) в области магнетизма. Он доказал, что, в отличие от электрического поля, создаваемого электрическими зарядами, МП не создаётся зарядами магнитными. Их попросту не существует в классической электродинамике.

Информация.Теорема, которую вывел Гаусс, принадлежит к главным законам электродинамики и является частью системы уравнений Максвелла. Она описывает соотношение между потоком напряжённости электрополя, пронизывающего замкнутую произвольную поверхность, и суммой зарядов, помещающихся в очерченном этой поверхностью объёме. Сумма выражена в алгебраической форме.

В отношении магнитной индукции поток В→, проходящий через замкнутую поверхность S, имеет нулевое значение.

Поток вектора магнитной индукции

Квантование магнитного потока

В 1961 году практически было установлено, что, если направить магнитный поток через закольцованный сверхпроводник, по которому протекает электричество, то величина Φ будет кратной кванту потока Φ0 = h/2e = 2.067833758*10-15Вб. Это значение в системе СИ.

Такой эксперимент выполнили американцы Дивер и Фейрбенк. Они выполнили квантование, используя трубку полой конструкции, пропуская по ней круговые токи сверхпроводящей природы. Их результат квантовой размерности оказался в два раза меньше. Это было обусловлено тем, что электроны в сверхпроводящей ситуации разбивались на пары. Частицы образовывали двойки с зарядом 2е. Именно движение этих пар составляет природу сверхпроводящего тока.

К сведению. Сверхпроводники – это материалы, у которых при понижении температуры до определённого значения резко падает сопротивление. Оно практически равно нулю, тогда можно говорить о сверхпроводящих свойствах. Металлы, которые являются отличными проводниками, – золото, серебро, платина, не приобретают сверхпроводящих способностей в таких условиях.

Квантование магнитного потока

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Важно! В зависимости от формы изменяется месторасположение полюсов, соответственно, и направление магнитных линий у поля.

Направление линий МП в зависимости от формы магнита

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Электромагниты

Следующей разновидностью устройства, предназначенного для создания МП, является электромагнит. При протекании через его обмотку электрического тока сердечник становится магнитом. Следственно, электромагнит состоит из следующих частей:

  • сердечник (магнитопровод);
  • обмотка.

Это своеобразная катушка индуктивности, называемая соленоидом.

Сердечник может быть выполнен из ферримагнитного материала или листового набора электротехнической стали.

Обмотка намотана проводом из алюминия или меди, покрытого изоляцией.

Электромагниты (ЭМ) можно классифицировать по следующим параметрам:

  • магниты постоянного тока – нейтральные;
  • магниты постоянного тока – поляризованные;
  • устройства переменного тока.

Нейтральные ЭМ – создание магнитного потока происходит так, что величина притяжения увеличивается с повышением силы тока и не подчиняется направлению движения электронов.

Поляризованные ЭМ в своём составе содержат:

  • рабочую обмотку – для создания рабочего Φ;
  • постоянный магнит – для наведения поляризующего Φ.

Обмотки ЭМ переменного тока питаются синусоидальным током, поэтому их Φ меняется по периодическому закону.

Внешний вид простейшего ЭМ

Электромагнитная индукция

Майкл Фарадей открыл явление, определённое как электромагнитная индукция. В 1831 году было замечено, что, если изменять магнитный поток Φ, который пронизывает контур, выполненный из замкнутого проводника, то в нём индуцируется электроток.

Внимание! Величина электродвижущей силы (ЭДС), возникающей при этом, не зависит от причины изменения Φ, а пропорционально связана с изменением его скорости через поверхность в рамках контура.

Электромагнитная индукция

Правило правой руки

Определить, в каком направлении будет двигаться индукционный ток, помогает «правило правой руки». Расшифровка такого метода, придуманного для запоминания, состоит в следующем:

  • правая рука помещается в МП так, чтобы ладонь располагалась под углом 90° к магнитным силовым линиям;
  • большой палец направляется в сторону движения проводника.

Индукционный ток движется туда, куда смотрят четыре пальца руки.

Правило правой руки

Магнитный поток: формула

Определение величины Φ возможно с помощью математического вычисления. Формула магнитного потока имеет вид:

где:

  • B – вектор магнитной индукции (ВМИ);
  • S – площадь контура;
  • cos α – угол между ВМИ и перпендикуляром (нормалью) к пересекаемой поверхности.

Здесь, В – это модуль вектора магнитной индукции.

Расшифровка формулы для определения значения Φ

Формула скорости изменения магнитного потока

По скорости изменений магнитных потоков через контур определяют величину ЭДС, индуцируемой в контуре. Сама скорость Ei будет определяться по формуле:

где:

  • ∆ Φ = Φ2 – Φ1 – изменение потока (Вб);
  • ∆t – изменение времени (с).

Единица измерения скорости – Вб/с.

Открытие Фарадеем закона электромагнитной индукции позволило использовать работу магнитного потока для создания электрических машин: генераторов и двигателей, как постоянного, так и переменного тока. В них, в зависимости от конструкции, или постоянный магнит изменяет своё положение относительно рамки, или рамка вращается в МП. Так или иначе, возникает ЭДС, её значение зависит от Φ.

Видео

Источник

Магнитный поток — определение, формулы и расчеты индукции

Наблюдение за спектрами

В соответствии с плотностью линий магнитного поля (МП) можно увидеть величину вектора индукции, а согласно направленности силовых рядов — его течение. Наблюдение за спектрами постоянного тока и катушки на самом деле показывает, что при удалении проводника индукция МП уменьшается и довольно быстро.

Читайте также:  Как построить векторную диаграмму токов при параллельном соединении

Магнитный фон называется:

  1. С различным выведением в разных точках — гетерогенным. Неоднородный фон — это часть прямолинейного и радиального тока, вне соленоида, неизменённого магнита и т. д.
  2. С индукцией во всех точках — однородным полем. Графически такой МФ представлен силовыми линиями, которые считаются равноотстоящими параллельными частями. Этот случай является фоном изнутри длинного соленоида, а также полем между близкими соседними плоскими наконечниками электромагнита.

Произведение индукции поля, проникающего в контур от его области, называется потоком МИ или элементарным МП. Определение было дано и изучено британским физиком Фарадеем. Он отметил, что эта концепция на самом деле позволяет глубже рассмотреть совместный характер магнитных и электрических явлений.

Обозначая поток буквой f, площадью контура S и углом между направлением вектора индукции B и нормальной частью n к области α, можно написать магнитный поток формулой:

МП является скалярным размером. Например, поскольку плотность силовых рядов случайного магнитного поля равна его индукции, он уравнивается всему количеству линий, которые проникают в цепь. С изменением поля поток, который пронизывает контур, также меняется.

Единица измерения магнитного потока — вебер. Определение СИ струи считается линия, площадь которой 1 м², оказавшаяся на равномерном фоне с индукцией 1 Вт / м2 и перпендикулярная вектору. Это устройство будет обозначаться:

1 Вт = 1 Вт / м2 — 1 м².

Особенности течения

Скорость изменения магнитного потока генерирует электронный фон, имеющий замкнутые блоки питания (вихревое поле). Этот фон рассматривается в проводнике как циркуляция внешних сил. Это явление называется электрической индукцией, а мощность, которую можно определить, генерируемая в этом случае, является индуцированной ЭДС поверхности.

Поток подчёркивает вероятность характеристики всего магнита или видов других источников МП. Если индукция выдвигает на первый план вероятность, характерную её эффекту в любой отдельной точке, поток будет целым. Это вторая по значимости особенность поля. Если МИ функционирует как силовая часть МП, поток считается её энергетической линией.

Возвращаясь к экспериментам, можно сказать, что фактически любая электромагнитная катушка может рассматриваться как 1 закрытая. Это схема, по которой будет течь магнитный поток вектора индукции, тогда ток МИ электронов будет замечен при потокосцеплении.

Таким образом, непосредственно под действием струи в замкнутом проводнике образуется электронный фон. И в течение этого времени он будет генерировать ток.

Магнитная индукция

Согласно прогрессивным научным представлениям об электрических явлениях, МП неразрывно связан с током и не может присутствовать без него. Невозможно предположить электроток без МП. В том числе в случае неизменного магнита связывают этот фон с молекулярными линиями.

Если в место, где находится МП, поставить иглу, она стремится заимствовать определённое состояние, которое фактически показывает ориентационные качества МП. Скоординированное направление в этой точке места должно учитывать пункт назначения, где установлена ось, — это свободноподвешенная бесконечно небольшая магнитная стрелка, середина которой выровнена с точкой начального места. При этом из 2 возможных направлений вдоль оси стрелки МП символически присваивается назначение от южного конца на север.

Можно получить более яркое представление о направленности поля, если имеется ряд линий, где оси всех стрелок будут относительно касательными. Эти части называются магнитными магистралями.

Набор рядов упоминается как МП. Если бесконечно уменьшать площадь контура, притягивая его к точке, можно прийти к выражению для бесконечно малой стадии d, T активно в контуре маленькой области s, где угол P имеет конкретное значение между нормальностью к плоскости и небольшого контура. В этом случае направлением поля будет точка места, где расположено малое очертание.

Удар на плоскую цепь с током

В таких условиях коэффициент B принимается как характеристика интенсивности МП в этой точке места и называется индукцией МП. Она считается величиной, объединяющей назначение вектора МИ с направлением магнитного поля в этой точке места.

МП, характеризующийся на некоторых участках одинаковым значением вектора МИ, называется равномерным МП. Индукция в международной системе (СИ) измеряется в единицах Тесла (TL). МИ однородного МП составляет 1 т, если она воздействует на плоскую электронную последовательность площадью 5 ‘= 1 м и током 7 = 1 А, расположенную так, что магнитные доли лежат в плоскости цепи p = 0,5 n sin p = 1 с коэффициентом t = 1 Нм.

Область места любой части, что связана с конкретным вектором, называется полем. Понятие строк широко используется для визуального представления ВП. В случае с линейным полем можно увидеть линию, так как сам вектор ориентирован тангенциально в любой точке. Трубчатая линия представляет собой область узла, ограниченную обилием соседних рядов, проделанных сквозь закрытое очертание. Представление векторного поля часто используется при описании различных взаимодействий тела. В частности, в отображении МП упоминается фон вектора магнитной индукции, определяющий в нём части и трубки МИ.

Электрическая зависимость

Британский физик Майкл Фарадей не сомневался в единственной природе явлений магнетизма в своей теореме. Изменяющийся во времени фон создаёт электронный и магнитный вид. В 1831 году Фарадей обнаружил появление индукции, которая легла в основу устройства для генераторов, преобразующих механическую энергию в электронную. А в 1835 г. немецкий математик Карл Гаусс определил аксиому, описывающую обозначение и зависимость напряжённости поля от величины заряда.

Появление электрической индукции замечено в появлении тока в проводящей цепи, которая либо лежит на изменяющемся во времени фоне, либо движется на непременном участке таким образом, что фактически число магнитных витков проникает в контуры трансформаций.

Для своих многочисленных экспериментов Фарадей воспользовался двумя катушками, магнитом, переключателем постоянного тока и гальванометром. Электронный поток мог зависеть и намагничивать кусок железа.

В результате экспериментов Фарадея были заложены основные особенности возникновения электрической индукции, и ток появляется:

  • в одной из катушек во время замыкания или размыкания электронной цепи внутри другой части;
  • когда энергия протекает в одном из элементов с поддержкой реостата;
  • при перемещении катушек относительно друг друга;
  • когда неизменный магнит движется относительно.

В замкнутом проводящем контуре ток появляется, когда число линий магнитной индукции изменяется, создавая плоскость, ограниченную цепью. И чем раньше перевести количество рядов МИ, тем больше генерируется индукционный ток в рамке. Это является основной причиной конфигурации численности последовательностей индукции.

Явление позволяет содержать и изменять число линий МИ, делая плоскость площадки, ограниченной неподвижной проводящей цепью, из-за конфигурации тока в катушке, расположенной рядом. Происходит максимальное изменение количества последовательностей МИ из-за смещения схемы на неоднородном фоне, плотность линий которого может изменяться на месте.

Источник