- Закон электромагнитной индукции
- Магнитный поток
- Электромагнитная индукция
- Закон электромагнитной индукции
- Правило Ленца
- Магнитный поток
- Что такое магнитный поток
- В чем измеряется, обозначение и размерность
- От чего зависит величина основного магнитного потока
- Чему равен магнитный поток, как найти
- Скорость изменения магнитного потока через контур
- Какой формулой определяется величина магнитного потока
- Связь магнитного потока и работы сил магнитного поля
- Явление электромагнитной индукции
- Явление электромагнитной индукции
- Магнитный поток
- Закон электромагнитной индукции Фарадея
- Векторная форма
- Потенциальная форма
- Правило Ленца
- Взаимодействие магнита с контуром
- Вихревое электрическое поле
- Индуктивность
- Самоиндукция
- Энергия магнитного поля
- Основные формулы
- Видео
- Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца
Закон электромагнитной индукции
О чем эта статья:
Магнитный поток
Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.
Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.
Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.
Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).
Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.
Магнитным потоком через площадь S контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции B, площади поверхности S, пронизываемой данным потоком, и косинуса угла α между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):
Магнитный поток
Ф — магнитный поток [Вб]
B — магнитная индукция [Тл]
S — площадь пронизываемой поверхности [м^2]
n — вектор нормали (перпендикуляр к поверхности) [-]
Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.
В зависимости от угла α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.
Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).
В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.
Ученики Skysmart не боятся сложных понятий по физике и чувствуют себя уверенее на контрольных в школе. А еще — не могут оторваться от домашки: захватывает не хуже, чем тик-ток.
Запишите ребенка на вводное занятие: покажем, как все проходит на интерактивной платформе и вдохновим на учебу!
Электромагнитная индукция
Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было открыто М. Фарадеем.
Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.
Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.
При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.
Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки
Вот, что показали эти опыты:
Почему возникает индукционный ток?
Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.
Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.
Закон электромагнитной индукции
Закон электромагнитной индукции (закон Фарадея) звучит так:
ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.
Математически его можно описать формулой:
Закон Фарадея
Ɛi — ЭДС индукции [В]
ΔФ/Δt — скорость изменения магнитного потока [Вб/с]
Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.
Если контур состоит из N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.
Закон Фарадея для контура из N витков
Ɛi — ЭДС индукции [В]
ΔФ/Δt — скорость изменения магнитного потока [Вб/с]
N — количество витков [-]
Сила индукционного тока в замкнутом проводящем контуре с сопротивлением R:
Закон Ома для проводящего контура
Ɛi — ЭДС индукции [В]
I — сила индукционного тока [А]
R — сопротивление контура [Ом]
Если проводник длиной l будет двигаться со скоростью v в постоянном однородном магнитном поле с индукцией B ЭДС электромагнитной индукции равна:
ЭДС индукции для движущегося проводника
Ɛi — ЭДС индукции [В]
B — магнитная индукция [Тл]
v — скорость проводника [м/с]
l — длина проводника [м]
Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:
- вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
- вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:
- в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
- в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Правило Ленца
Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.
Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.
Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.
Источник
Магнитный поток
- Что такое магнитный поток
- В чем измеряется, обозначение и размерность
- От чего зависит величина основного магнитного потока
- Чему равен магнитный поток, как найти
- Скорость изменения магнитного потока через контур
- Какой формулой определяется величина магнитного потока
- Связь магнитного потока и работы сил магнитного поля
Что такое магнитный поток
Магнитный поток — величина, характеризующая число магнитных силовых линий поля, проходящих через замкнутый контур.
Майкл Фарадей опытным путем пришел к выводу, что при любом соприкосновении проводника и магнитных линий по проводнику проходит заряд \(\triangle Q\) . Этот заряд прямо пропорционален количеству \( \triangle Ф\) пересеченных линий и обратно пропорционален сопротивлению R контура. Пересечение линий вызывается или движением проводника, или изменением поля.
Позже, представляя замкнутый контур, в котором действует ЭДС индукции, Джеймс Клерк Максвелл подсчитывал количество силовых линий \(\triangle Ф\) , пересекаемых контуром за время \(\triangle t\) . Ф он при этом отождествлял с магнитным потоком сквозь всю поверхность.
В чем измеряется, обозначение и размерность
Единица измерения — вебер, сокращенно Вб. Он обозначается буквой Ф.
Размерность — выражение, демонстрирующее связь физической величины с другими величинами данной системы, разложение ее на сомножители из других величин.
Размерность магнитного потока — \(В \times с = кг \times м^ <2>\times с^ <-2>\times А^<-1>.\)
От чего зависит величина основного магнитного потока
Его можно изменить следующими способами:
- изменив площадь контура;
- изменив угол его наклона;
- изменив магнитное напряжение.
Чему равен магнитный поток, как найти
Магнитный поток в случае однородного магнитного поля равен произведению модуля индукции В этого поля, площади S плоской поверхности, через которую вычисляется поток, и косинуса угла \(\varphi\) между направлением индукции В и нормали к данной поверхности.
Нормаль — перпендикуляр к плоскости контура.
Также поток можно вычислить через индуктивность, которая пропорциональна отношению полного, или суммарного потока к силе тока.
Обозначение суммарного потока — буква \( \psi\) . Он равен сумме потоков, проходящих через всю поверхность. И в простом случае, где рассматриваются одинаковые потоки, проходящие через одинаковые витки катушки, и в случаях, когда поверхность имеет очень сложную форму, эта пропорциональность сохраняется.
Скорость изменения магнитного потока через контур
Закон электромагнитной индукции Фарадея в интегральном виде выглядит следующим образом:
\(\;\underset С<\oint\;>\;(\overrightarrow<Е\;>\times\;d\overrightarrow l) = — \frac<1>
Интеграл в левой части уравнения — циркуляция вектора \(\overrightarrow<Е\;>\) по замкнутому контуру С, это отражает знак интеграла, записанный с кругом. В правой части — скорость изменения потока Ф, который вычисляется как интеграл по поверхности S, «натянутой» на С.
Интеграл — целое, определяемое как сумма его бесконечно малых частей.
Если считать изменение потока в замкнутом контуре равномерным, то закон Фарадея примет следующий вид:
Какой формулой определяется величина магнитного потока
Математически величину Ф описывают двумя формулами:
\(Ф\;=\;\sum_<\triangle S>\;\;B\triangle S = B \times S \times \cos\varphi. \)
Связь магнитного потока и работы сил магнитного поля
Герман Гельмгольц первым связал закон Фарадея и закон сохранения энергии. Возьмем проводник с током I, находящийся внутри однородного магнитного поля, которое перпендикулярно плоскости контура, и перемещающийся в нем. Под влиянием силы Ампера F проводник перемещается на отрезок dx. Сила F производит работу dA = IdФ.
Работу источника тока можно измерить, сложив работу на джоулеву теплоту и работу по перемещению проводника внутри поля:
Источник
Явление электромагнитной индукции
Явление электромагнитной индукции – это то, что заставляет работать электрические двигатели, позволяет генераторам вырабатывать электричество. Именно его открытие в начале XIX века привело к активному развитию таких отраслей, как энергетика, станкостроение, транспорт. Также данное явление широко применяется в медицине, радиовещании, при производстве расходомеров – счетчиков учета электроэнергии.
О том, в чем суть этого явления, когда и кто его открыл, что такое индуктивность и самоиндукция, какой энергией характеризуется совокупность магнитных силовых линий, будет рассказано в этой статье.
Явление электромагнитной индукции
Классическое определение этого явления гласит, что оно представляет собой появление упорядоченного движения заряженных частиц в замкнутом проводящем ток контуре (проводнике) при изменении проходящей через него, создаваемой постоянным магнитом совокупности силовых магнитных линий.
На заметку. Впервые обнаружить описываемое в статье явление экспериментальным путем получилось в 1831 году у известного ученого-физика Майкла Фарадея. Для своих опытов он использовал железное кольцо с намотанными с двух противоположных сторон витками медного провода, которые были соединены с гальваническим элементом и магнитной стрелкой. При подключении к первой обмотке гальванического элемента стрелка некоторое время двигалась, после чего останавливалась, после его отключения – плавно возвращалась в первоначальное положение. Подобные движения стрелки позволили предположить, что упорядоченное движение носителей электрических зарядов может возникать под воздействием совокупности силовых магнитных линий, источником которых служит первая обмотка.
Магнитный поток
Данное явление представляет собой совокупность силовых линий, проходящих через определённое сечение проводника или замкнутого токопроводящего контура.
Рассчитывается модуль этой величины Ф по следующей формуле:
Ф= B×S×Cos α, где:
- В – модуль вектора создаваемой силовыми линиями индукции;
- S – площадь поверхности, через которую проходит поток силовых линий;
- α – угол между векторами силовых линий индукции и нормали (т.е. перпендикуляром к пронизываемой силовыми магнитными линиями плоскости).
Измеряется данная величина в Веберах (Вб).
Закон электромагнитной индукции Фарадея
Данный фундаментальный закон имеет следующую формулировку: при любых изменениях магнитного потока, проходящего через проводящий контур, происходит возникновение электродвижущей силы (сокращенно ЭДС), значение которой прямо пропорционально скорости, с которой изменяется магнитный поток.
Отображением данной закономерности является следующая формула:
Ɛi = – ΔФ/Δt, где:
- Ɛi – появляющаяся в токопроводящем контуре электродвижущая сила индукции;
- ΔФ/Δt – скорость, с которой изменяется проходящий через замкнутый контур магнитный поток.
Таким образом, сила индукционного тока, образующегося в токопроводящем замкнутом контуре при воздействии на него электродвижущей силы, будет зависеть от того, с какой скоростью изменяется проходящий через него поток силовых линий магнита.
Векторная форма
В векторной форме этот закон выражается следующей формулой:
Согласно этой записи, напряжённость (E) электрического поля индукционного тока возрастает при увеличении скорости изменения потока B с силовыми линиями, пересекающими замкнутый контур.
Потенциальная форма
При помощи векторного потенциала закон электромагнитной индукции имеет следующую запись:
E =ΔA/Δt, где:
- Е – напряженность электрического поля, порождаемого индукционным током;
- ΔA/Δt – изменение векторного потенциала магнитного поля, проходящего через замкнутый контур, являющийся частью замкнутой цепи проводника.
Правило Ленца
Как гласит данное правило, на направление индукционного тока влияют вызвавшие его причины (факторы). Если значение Ф возрастает, то порождаемый им ток препятствует его увеличению. Если значение Ф убывает, происходит обратное: индукционный ток меняет направление, начиная препятствовать уменьшению плотности проходящих через контур силовых линий магнитного поля. Поэтому в формуле закона Фарадея содержится знак « минус».
Взаимодействие магнита с контуром
В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.
Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.
На заметку. В случае с незамкнутым (открытым) контуром: металлическим или алюминиевым кольцом, имеющим прорезь; катушкой, витки которой не замкнуты через амперметр, источник питания, данная закономерность, как и правило Ленца, не работает.
Вихревое электрическое поле
Изменяющееся во времени и пространстве магнитное поле является источником появления вихревого имеющего замкнутые силовые линии электрического поля. Его воздействие объясняет упорядоченное перемещение единичных зарядов в проводнике, находящемся в (статичном) неподвижном состоянии.
Направление силовых линий электрического поля подчиняется правилу Ленца и правилу «буравчика».
Индуктивность
Проходя по контуру, электрический ток способствует образование вокруг него совокупности магнитных силовых линий. Согласно формуле Ф = L×I, создаваемый магнитом поток Ф пропорционально зависит от силы тока I.
Таким образом, под индуктивностью L понимают коэффициент соотношения магнитного потока Ф и силы тока I, протекающего по контуру. Рассчитывают данную величину по следующей формуле:
Единицей измерения этой физической величины является Генри (Гн). 1 Гн – это индуктивность, образующаяся в замкнутом контуре, в котором сила тока изменяется на 1 Ампер, а величина напряжения в нем составляет 1 Вольт.
Самоиндукция
При изменениях значения силы тока в проводнике либо токопроводящей катушке происходит изменение магнитного потока, пронизывающего его. В результате в проводнике появляется электродвижущая сила самоиндукции, значение которой определяется по следующей формуле:
ƐiS = – ΔФ/Δt= –L(ΔI/Δt).
Энергия магнитного поля
Совокупность магнитных силовых линий имеет определенный запас энергии. Так как данное явление в контуре обусловлено протеканием по нему электрического тока, то и количество такой энергии зависит от величины затрат источников (генераторов, гальванических элементов) на создание тока. Рассчитывается эта величина (Wмаг.п) по следующей математической формуле:
На заметку. С практической точки зрения, значение данной величины оказывает влияние на мощность электрических агрегатов: электродвигателей, генераторов. Чем больше мощность силовых линий, образуемых обмотками или постоянными магнитами статора и ротора, тем выше крутящий момент и мощность двигателя, больше его КПД.
Основные формулы
Основные формулы для явления магнитной индукции указаны на рисунке ниже.
Поняв, в чем заключается суть явления электромагнитной индукции, можно разобраться в том, как работают электродвигатели, генераторы. Эти знания, помимо большой теоретической ценности, имеет достаточно полезное практическое применение, позволяя самостоятельно находить, в ряде случаев и устранять, неисправности агрегатов, не прибегая к дорогостоящим услугам специалистов.
Видео
Более подробно и наглядно об описанном в данной статье явлении можно узнать в следующем видео.
Источник
Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца
Электрические и магнитные поля порождаются одними и теми же источниками – электрическими зарядами, поэтому можно предположить, что между этими полями существует определенная связь. Это предположение нашло экспериментальное подтверждение в 1831 г. в опытах выдающегося английского физика М.Фарадея. Он открыл явление электромагнитной индукции.
Явление электромагнитной индукции лежит в основе работы индукционных генераторов электрического тока, на которые приходится вся вырабатываемая в мире электроэнергия.
- Магнитный поток
Замкнутый контур, помещенный в однородное магнитное поле
Количественной характеристикой процесса изменения магнитного поля через замкнутый контур является физическая величина называемая магнитным потоком. Магнитным потоком (Ф) через замкнутый контур площадью (S) называют физическую величину, равную произведению модуля вектора магнитной индукции (В) на площадь контура (S) и на косинус угла между вектором В и нормалью к поверхности: Φ = BS cos α. Единица магнитного потока Ф — вебер (Вб): 1 Вб = 1 Тл · 1 м 2 .
Если вектор магнитной индукции перпендикулярен площади контура, то магнитный поток максимальный.
Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.
- Закон электромагнитной индукции
Опытным путем был установлен закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: Эта формула носит название закона Фарадея.
Классической демонстрацией основного закона электромагнитной индукции является первый опыт Фарадея. В нем, чем быстрее перемещать магнит через витки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.
- Правило Ленца
Зависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 г. опытным путем установил русский физик Э.Х.Ленц. Согласно правилу Ленца , возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей. Правило Ленца отражает тот экспериментальный факт, что всегда имеют противоположные знаки (знак «минус» в формуле Фарадея).
Ленцем был сконструирован прибор, представляющий собой два алюминиевых кольца, сплошное и разрезанное, укрепленные на алюминиевой перекладине. Они могли вращаться вокруг оси, как коромысло. При внесении магнита в сплошное кольцо оно начинало «убегать» от магнита, поворачивая соответственно коромысло. При вынесении магнита из кольца оно стремилось «догнать» магнит. При движении же магнита внутри разрезанного кольца никакого движения не происходило. Ленц объяснял опыт тем, что магнитное поле индукционного тока стремилось компенсировать изменение внешнего магнитного потока.
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.
Источник