Меню

Кратность односекундного тока термической стойкости



Измерительные трансформаторы тока шинные, опорные, проходные, встроенные, нулевой последовательности, специальные ТТ; замена ТТ

Шинные, опорные, проходные, встроенные, нулевой последовательности, специальные ТТ; замена ТТ (ОАО «СЗТТ»)

Шинные ТТ (табл. 30—38). Шинный трансформатор тока серий ТНШ, ТНШЛ, ТШЛ, — это ТТ, первичной обмоткой которого служит одна или несколько параллельно включенных шин РУ. Трансформаторы тока предназначены для встраивания в комплектные распределительные устройства и служат для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления в установках переменного тока частотой 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Трансформаторы на токи 600—2000 А поставляются в корпусах из трудногорючих самозатухающих пластмасс.

Трансформаторы изготавливаются по ГОСТ 15150 в исполнении Т и У категории размещения 2.

Таблица 30. Технические характеристики ТТ типа ТНШ-0,66

Номинальное напряжение, кВ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,66

Наибольше рабочее напряжение, кВ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0,8

Номинальный ток, А

первичный. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5000, 25000

Номинальная частота переменного тока, Гц . . . . . . . . . . . . . . . . . . 50 или 60

Класс точности. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Р

Номинальная нагрузка вторичной обмотки при cosφ = 0,8, ВА. 50

Кратность трехсекундного тока термической стойкости . . . . . . . . . . . .2,2

Номинальная предельная кратность тока. 2

Масса, кг, для номинального первичного тока, А:

При отсутствии влияния соседних фаз и обратной шины «родной фазы» — погрешность трансформатора может соответствовать классу точности 0,5.

Таблица 31. Технические характеристики ТТ типа ТНШЛ-0,66 (на токи 150—500 А)

Номинальное напряжение, кВ

Наибольше рабочее напряжение, кВ

Номинальная частота, Гц

Номинальный ток, А:

150; 200; 300; 400; 500

Номинальная нагрузка вторичной обмотки, ВА при cosφ = 1

при cosφ = 0,8 и номинальном первичном токе, А:

Класс точности для номинального первичного тока, А:

0,2S; 0,5S; 0,5; 1; 10P

Кратность трехсекундного тока термической стойкости, не менее

Номинальная предельная кратность тока при номинальном пер-

При наибольшей номинальной нагрузке вторичной обмотки.

Таблица 32. Технические характеристики ТТ типа ТНШЛ-0,66 (на токи 600—10000 А)

Номинальное напряжение, кВ

Наибольшее рабочее напряжение, кВ

Номинальная частота, Гц

Номинальный ток, А:

600; 800; 1000; 1500; 2000;

3000; 4000; 5000; 8000; 10000

Номинальная нагрузка вторичной обмотки при cosφ = 0,8, ВА

Класс точности для номинального первичного тока, А:

Кратность трехсекундного тока термической стойкости,

не менее, при номинальном первичном токе, А:

Номинальная предельная кратность тока при номи-

Источник

Расчет трансформаторов тока 10 кВ.

Доброго времени суток. На этот раз, в рубрике «Советы и рекомендации» — Расчет трансформаторов тока 10 кВ.

Основными руководящими документами при устройстве учета электроэнергии являются: «Технические требования к системам учета электрической энергии» — утверждены постановление правительства РФ № 442 от 04.05.2012г. Правила устройства электроустановок издание 7. Расчет трансформаторов тока 10 кВ

Обычно, при устройстве коммерческого учета, сбытовая организация требует предоставить расчеты трансформаторов тока. В этой публикации мы разберем на примерах как выбираются трансформаторы тока (ТТ) для цепей коммерческого учета электроэнергии на стороне 10 киловольт. А также, как проверить, выбранные трансформаторы по условию термической и электродинамической стойкости. И наконец, рассмотрим принципиальную схему коммерческого учета на высокой стороне 10 киловольт. Итак, приступим.

Расчет трансформаторов тока 10 кВ в цепях учета электроэнергии.

Ниже приведен пример расчета трансформаторов тока учета для силового трансформатора 400 кВа.

Номинальный первичный электроток токового трансформатора по стороне 10000в. Расчет трансформаторов тока 10 кВ

Расчет трансформаторов тока 10 кВ

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика. Номинальный вторичный ток равен 5А.

Отношение вторичного тока к номинальному в процентах составит:

Согласно ПУЭ при минимальной нагрузке присоединения вторичный ток должен составлять не менее 5%. от номинального тока счетчика. Номинальный вторичный ток равен 5А.

Читайте также:  Электрический ток в вакууме 10 класс конспект урока

Отношение вторичного тока к номинальному в процентах составит:

Таким образом, трансформатор тока 30/5 полностью выполняет требования ПУЭ п.п 1.5.17.

Проверка выбранных трансформаторов тока по условию термической и электродинамической стойкости.

Для коммерческого учета 10000в выбраны трансформаторы ТЛО-10 30/5 и с односекундными токами термической стойкости 10кА и электродинамической стойкости 26 кА.

Проверка по условию термической стойкости:

При этой проверке должно соблюдаться следующее требование:

Для фидера №1.

Условия соблюдены. Расчет трансформаторов тока 10 кВ

Как видно, сложного здесь ничего нет, и с этой работой справится любой человек, который может обращаться с калькулятором. Не бойтесь браться за, как казалось бы, сложные дела. Сложными они кажутся только на первый взгляд. И если подумать и разобраться, то оказывается, в них нет ничего суперсложного. Беритесь, пробуйте, и все у Вас получится. Удачи…

Вам может быть интересно – «Что лучше ВВГ или NYM и в чем отличие?».

Коммерческий учет 10 кВ

Скачать изображения в формате PDF можно по ссылкам «План» «Схема».

Источник

Невский трансформаторный завод «Волхов»

Технический портал компании

Категории

  • 10 кВ
  • 20 кВ
  • 35 кВ
  • 6 кВ

Термическая и электродинамическая стойкость трансформаторов тока

Стойкость трансформаторов тока к токам короткого замыкания определяется следующими параметрами:

  • током термической стойкости Iт, кА или кратностью тока термической стойкости Кт
  • током электродинамической стойкости Iд, кА или кратностью тока электродинамической стойкости, Кд
  • временем протекания тока короткого замыкания, tк (1 или 3 с)

Ток термической стойкости

Ток термической стойкости Iт – наибольшее действующее значение тока короткого замыкания за промежуток времени, которое трансформатор тока выдерживает в течение этого промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания, и без повреждений, препятствующих его дальнейшей исправной работе.

Кратность тока термической стойкости Kт – отношение тока термической стойкости к действующему значению номинального первичного тока Iном.

Формула пересчета кратности тока термической стойкости через ток термической стойкости и номинальный первичный ток трансформатора?

Формулы пересчета трехсекундного тока термической стойкости через ток односекундной термической стойкости и обратно:

Допустимый односекундный ток термической стойкости трансформаторов ООО «НТЗ «Волхов» в зависимости от номинального первичного тока приведен ниже

Номинальный первичный ток, А Односекундный ток термической стойкости, кА
5 0,5 – 2
10 1 – 5
15 1,6 – 5
20 2 – 10
30 5 – 12,5
40 5 – 16
50 5 – 25
75, 80 10 – 31,5
100 10 – 50
150 16 – 50
200, 250 20 – 50
300 31,5 – 50
400 – 4000 40 – 50

Максимально допустимый ток термической стойкости может быть ограничен особенностями конструкции трансформатора, подробная информация указана в технических характеристиках на конкретное типоисполнение.

Ток электродинамической стойкости

Ток электродинамической стойкости Iд – наибольшее амплитудное значение тока короткого замыкания за все время его протекания, которое трансформатор тока выдерживает без повреждений, препятствующих его дальнейшей исправной работе.

Кратность тока электродинамической стойкости Kд – отношение тока электродинамической стойкости к амплитудному значению номинального первичного тока

?Формула пересчета кратности тока электродинамической стойкости через ток электродинамической стойкости и номинальный первичный ток трансформатора

Между значениями Iд и Iт должно соблюдаться соотношение

\[ I_д\geq1,8\cdot\sqrt 2\cdot I_т \]

Соответствие токов КЗ трансформаторов

Таблица соответствия токов термической стойкости, токов электродинамической стойкости для изделий ООО «НТЗ «Волхов» приведена ниже

Односекунд­ный ток тер­миче­ской стой­кости Iт(1с), кА Трехсекунд­ный ток тер­миче­ской стой­кости Iт(3с), кА Ток электро­ди­на­миче­ской стой­кости Iд, кА
0,5 0,31 1,3
1 0,62 2,5
1,6 1 4,1
2 1,25 5,1
5 3,15 12,7
10 6,25 25,5
12,5 8 31,8
16 10 40,7
20 12,5 50,9
25 16 63,6
31,5 20 80,2
40 25 101,8
50 31,5 127,3
Читайте также:  Опыт параллельные проводники с током

Особенности расчета трансформаторов с повышенным током термической стойкости

Увеличение значения односекундного тока термической стойкости (особенно на трансформаторах тока со значениями номинального первичного тока от 5 до 200 А) приводит к увеличению сечения первичной обмотки, что ведет за собой увеличение габаритных размеров трансформаторов или ограничение таких параметров, как:

  • количество вторичных обмоток
  • номинальная предельная кратность вторичных обмоток для защиты
  • номинальная мощность вторичных обмоток для защиты

Источник

Кратность односекундного тока термической стойкости

ГОСТ Р 52736-2007

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Короткие замыкания в электроустановках

МЕТОДЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОГО
И ТЕРМИЧЕСКОГО ДЕЙСТВИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ

Short-circuits in electrical installations.
Calculation methods of electrodynamics and thermal effects of short-circuit current

Дата введения 2008-07-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Филиалом ОАО «НТЦ электроэнергетики» — ВНИИЭ, Московским энергетическим институтом (Техническим университетом) (МЭИ (ТУ))

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 437 «Токи короткого замыкания»

Информация об изменениях к настоящему стандарту публикуется ежегодно в издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет методы расчета и проверки проводников и электрических аппаратов на электродинамическую и термическую стойкость при коротких замыканиях (КЗ).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 687-78 Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия

ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией. Технические условия

ГОСТ 18410-73 Кабели силовые с пропитанной бумажной изоляцией. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

термическое действие тока короткого замыкания в электроустановке: Изменение температуры элементов электроустановки под действием тока короткого замыкания.

электродинамическое действие тока короткого замыкания в электроустановке: Механическое действие электродинамических сил, обусловленных током короткого замыкания, на элементы электроустановки.

интеграл Джоуля: Условная величина, характеризующая тепловое действие тока короткого замыкания на рассматриваемый элемент электроустановки, численно равная интегралу от квадрата тока короткого замыкания по времени, в пределах от начального момента короткого замыкания до момента его отключения.

ток термической стойкости электрического аппарата при коротком замыкании (ток термической стойкости): Нормированный ток, термическое действие которого электрический аппарат способен выдержать при коротком замыкании в течение нормированного времени термической стойкости.

ток электродинамической стойкости электрического аппарата при коротком замыкании (ток электродинамической стойкости): Нормированный ток, электродинамическое действие которого электрический аппарат способен выдержать при коротком замыкании без повреждений, препятствующих его дальнейшей работе.

Читайте также:  Ток проходящий по обмотке длинного прямого соленоида увеличивается

4 Общие положения

4.1 Исходные положения

4.1.1 При проверке проводников и электрических аппаратов электроустановок на электродинамическую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т.е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а также расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на термическую стойкость проводников и электрических аппаратов, а также при проверке на невозгораемость кабелей).

4.1.2 Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним следует относить также ремонтные и послеаварийные режимы работы.

4.1.3 В качестве расчетного вида КЗ следует принимать:

— при проверке электрических аппаратов и жестких проводников с относящимися к ним поддерживающими и опорными конструкциями на электродинамическую стойкость — трехфазное КЗ;

— при проверке электрических аппаратов и проводников на термическую стойкость — трех- или однофазное КЗ, а на генераторном напряжении электростанций — трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию;

— при проверке гибких проводников по условию их допустимого сближения во время КЗ — двухфазное КЗ.

4.1.4 В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

Примечание — Исключения из этого требования допустимы лишь при учете вероятностных характеристик КЗ и должны быть обоснованы требованиями соответствующих ведомственных нормативных документов.

4.1.5 Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость — путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

4.1.6 При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

5 Электродинамическое действие тока короткого замыкания

5.1 Расчет электродинамических сил взаимодействия проводников

5.1.1 Электродинамические силы взаимодействия , Н, двух параллельных проводников с токами следует определять по формуле

где — постоянный параметр, Н/А ;

— мгновенные значения токов проводников, А;

— длина проводников, м;

— расстояние между осями проводников, м;

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным на рисунке 1.

Рисунок 1 — Диаграмма для определения коэффициента формы проводников прямоугольного сечения

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводников (шин) корытообразного сечения с высотой профиля 0,1 м и более следует принимать =1,0.

5.1.2 Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

5.1.3 Максимальную силу , Н, (эквивалентную равномерно распределенной по длине пролета нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, следует определять по формуле

где — длина пролета, м;

— ударный ток трехфазного КЗ, А;

— коэффициент, зависящий от взаимного расположения проводников.

Значения коэффициента для некоторых типов шинных конструкций (рисунок 2) указаны в таблице 1.

Рисунок 2 — Схемы взаимного расположения шинных конструкций

Источник