Меню

Конденсаторы ток 100 ампер



Калькулятор расчета емкости рабочего и пускового конденсаторов

Николай АфанасьевОпубликовал(а): Николай Афанасьев
Обновлено: 26.11.2019

При подключении асинхронного электродвигателя в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз на обмотках статора, чтобы сделать имитацию вращающегося магнитного поля (ВМП), которое заставляет вращаться вал ротора двигателя при подключению его в «родные» трехфазные сети переменного тока. Известная многим, кто знаком с электротехникой, способность конденсатора давать электрическому току «фору» на π/2=90° по сравнению с напряжением, оказывает хорошую услугу, так как это создает необходимый момент, заставляющий вращаться ротор в уже «не родных» сетях.

Калькулятор расчета рабочего и пускового конденсаторов

Калькулятор расчета рабочего и пускового конденсаторов

Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора. После калькулятора будут даны необходимые разъяснения по всем его пунктам.

Калькулятор расчета емкости рабочего и пускового конденсаторов

Для расчета использовались следующие зависимости:

Способ подключения обмоток и схема подключения рабочего и пускового конденсаторов Формула
Подключение «Звездой» Емкость рабочего конденсатора – Ср
00021 Cр=2800*I/U; I=P/(√3*U*η*cosϕ); Cр=2800*P/(/(√3*U²*η*cosϕ).
Подключение «Треугольником» Емкость рабочего конденсатора — Cp
00011 Cр=4800*P/(/(√3*U²*η*cosϕ).
Емкость пускового конденсатора при любом способе подключения Cп=2,5*Cр
Расшифровка обозначений в формулах: Cр – емкость рабочего конденсатора в микрофарадах (мкф); Cп – емкость пускового конденсатора в мкф; I – ток в амперах (А); U – напряжение сети в вольтах (В); η – КПД двигателя, выраженный в процентах, деленных на 100; cosϕ – коэффициент мощности.

Полученные из калькулятора данные можно использовать для подбора конденсаторов, но именно таких номиналов, как будет рассчитано, их вряд ли можно будет найти. Только в редких исключениях могут быть совпадения. Правила подбора такие:

  • Если есть «точное попадание» в номинал емкости, который существует у нужной серии конденсаторов, то можно выбирать именно такой.
  • Если нет «попадания», то выбирают емкость, стоящую ниже по ряду номиналов. Выше не рекомендуется, особенно для рабочих конденсаторов, так как это может привести к ненужному возрастанию рабочих токов и перегреву обмоток, которое может привести к межвитковому замыканию.
  • По напряжению конденсаторы выбираются номиналом не менее, чем в 1,5 раза больше, чем напряжение в сети, так как в момент пуска напряжение на выводах конденсаторов всегда повышенное. Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, «карман не тянет».

Приведем таблицу с номиналами конденсаторов рабочих и пусковых. В качестве примера приведены конденсаторы серий CBB60 и CBB65. Это полипропиленовые пленочные конденсаторы, которые наиболее часто применяют в схемах подключения асинхронных двигателей. Серия CBB65 отличается от CBB60, тем, что они помещены в металлический корпус.

В качестве пусковых применяют электролитические неполярные конденсаторы CD60. Их не рекомендуются применять в качестве рабочих так как продолжительное время их работы делает их жизнь менее продолжительной.. В принципе, для пуска подходят и CBB60, и CBB65, но они имеют при равных емкостях более объемные габариты, чем CD60. В таблице приведем примеры только тех конденсаторов, которые рекомендованы к использованию в схемах подключения электродвигателей.

Полипропиленовые пленочные конденсаторы CBB60 (российский аналог К78-17) и CBB65 Электролитические неполярные конденсаторы CD60
Изображение cbb60 cd60
Номинальное рабочее напряжение, В 400; 450; 630 В 220—275; 300; 450 В
Емкость, мкф 1,5; 2,0;2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 мкф 5,0; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500 мкф

Для того, чтобы «набрать» нужную емкость, можно использовать два и более конденсатора, но при разном соединении результирующая емкость будет отличаться. При параллельном соединении она будет складываться, а при последовательном — емкость будет меньше любого из конденсаторов. Тем не менее такое соединение иногда используют для того, чтобы, соединив два конденсатора на меньшее рабочее напряжение, получить конденсатор, у которого рабочее напряжение будет суммой двух соединяемых. Например, соединив два конденсатора на 150 мкф и 250 В последовательно, получим результирующую емкость 75 мкф и рабочее напряжение 500 В.

Последовательное и параллельное соединение конденсаторов

Последовательное и параллельное соединение конденсаторов

Для того чтобы рассчитать емкость двух последовательно соединенных конденсаторов, читателям предоставляется простой калькулятор, где надо просто выбрать два конденсатора из ряда существующих номиналов.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсаторов

Возможно ли самому подключить трехфазный асинхронный двигатель в сеть 220 В?

001Обычно эту операцию доверяют только электрикам, имеющим практический опыт. Однако, подключить двигатель можно и самому. Это доказывает статья нашего портала: «Как подключить трехфазный двигатель в сеть 220 В».

Источник

Суперконденсатор – описание, расчет заряда, схема источника питания

в Справочник 0 2,521 Просмотров

Суперконденсаторы (ионисторы) — это больше, чем просто конденсаторы большой емкости. Они работают по тому же принципу — накопление заряда в электрическом поле, однако при их изготовлении используются немного другие технологии.

У суперконденсаторов металлические электроды покрыты активированным углем и погружены в электролит. Благодаря своей пористости они могут накапливать гораздо больше заряда. В отличие от обычных конденсаторов, заряд накапливается не только на самом электроде, но и на его угольном покрытии. Вот почему их еще часто называют двухслойными конденсаторами (EDLC).

Более того, толщина изолятора здесь также намного меньше чем в обычных конденсаторах и измеряется в нанометрах. В результате этого можно запасти гораздо больше заряда — вплоть до сотни фарад! К сожалению, это происходит за счет допустимого напряжения.

Суперконденсаторы, доступные на рынке, обычно имеют номинальное напряжение 2,7В (одинарные) и 5,4В (сдвоенные). Конечно, это можно «исправить» и получить более высокое напряжение, подключив последовательно несколько суперконденсаторов, но при этом пожертвовав емкостью.

Немного теории

О суперконденсаторах нужно знать несколько вещей. Наиболее важные из них касаются зарядки, разрядки и подключения: последовательного и параллельного.

Зарядка суперконденсатора

Начнем с постоянной времени RC-цепи:

t=R*C

За время t суперконденсатор емкостью С, подключенный последовательно с резистором R, зарядится примерно до 2/3 (точнее до 63,2%) напряжения питания. За время 5t суперконденсатор зарядится до значения очень близкое к напряжению питания (99,3%).

Эти интервалы обусловлены тем, что процесс зарядки конденсатора является не линейной функцией (экспоненциальной). Для определения его параметров можно использовать следующие формулы:

В приведенных выше формулах:

  • Q: мгновенный заряд, в момент t [Кл];
  • C: емкость конденсатора [Ф];
  • I: мгновенный зарядный ток [A];
  • V0: напряжение зарядки [В];
  • V: мгновенное напряжение на суперконденсаторе [В];
  • R: сопротивление, подключенное последовательно с суперконденсатором [Ом];
  • t: время [сек].

Обратите внимание, что:

  1. По мере зарядки заряд на пластинах суперконденсатора растет, как и его напряжение.
  2. По мере продолжения зарядки ток заряда уменьшается: от V0\R до почти нуля.
  3. Время зарядки суперконденсатора зависит от его емкости C и сопротивления R.

Практический пример: зарядка суперконденсатора емкостью 1Ф через резистор сопротивлением 50 Ом от источника напряжения 5 В (зафиксированного на осциллографе):

На рисунке видно, что суперконденсатор достиг заряда 63,2% (3,16 В) примерно за 47 секунд. Это согласуется (более менее) с постоянной времени:

t = 50 Ом * 1 Ф = 50 сек

Схема зарядки суперконденсатора

Схема зарядки суперконденсатора выглядит следующим образом:

В данном случае:

t = R * C = 10 Ом * 1 Ф = 10 сек

суперконденсатор будет заряжен до

3,3В через 10 секунд — и до 5 В примерно через 5 секунд.

зарядный ток будет равен:

I = U \ R = 5 В \ 10 Ом = 0,5 A

В чем проблема? В выделяемой мощности на резисторе:

P = U \ I = U * (U \ R) = 5 В * (5 В \ 10 Ом) = 2,5 Вт

Из этого следует, что на резисторе можно выделиться до 2,5 Вт мощности. Резисторы, которые мы обычно используем, имеют не более 0,25 Вт мощности, что в десять раз меньше. Установленный в такую ​​схему резистор мощностью 0,25 Вт просто перегорит.

Выход из данной ситуации — распределение напряжения и тока следующим образом:

Конечное сопротивление такой схемы по-прежнему составляет 10 Ом:

Rz = R1 * R2 \ (R1 + R2) = (10 Ом + 10 Ом) * (10 Ом + 10 Ом) \ ((10 Ом + 10 Ом) + (10 Ом + 10 Ом)) = 400 Ом / 40 Ом = 10 Ом

В данном случае ток в обеих ветвях будет по 250 мА. Напряжение на каждом из резисторов:

Ur = I \ R = 0,25 A \ 10 Ом = 2,5 В

отсюда мощность на каждом резисторе:

P = U \ I = 2,5 В \ 0,25 A = 0,625 Вт

…таким образом, можно использовать резисторы мощностью 1 Вт.

Практичный источник питания с суперконденсатором

В практических решениях широко используются суперконденсаторы, например, для питания часов реального времени.

В подобных схемах необходимо использовать диод, который защитит цепь зарядки от «обратного тока» от самого суперконденсатора. Схема может выглядеть так:

Напряжение питания V0 может поступать, например, от Ардуино. Диод D1 защищает источник питания от «смещения» тока от суперконденсатора – чтобы на выход стабилизатора V0 не поступало напряжение с конденсатора.

Однако этот диод также влияет на напряжение зарядки суперконденсатора, которое в такой схеме ниже на величину падение напряжения на диоде. В зависимости от типа диода оно может составлять 0,6..0,8В.

Катод диода через резистор подключен к суперконденсатору C1. Сопротивление резистора определяется, как и выше, учитывая постоянную времени.

Примеры суперконденсаторов

При выборе суперконденсатора учитывайте:

  • Емкость, измеряемая в фарадах — чем больше емкость, тем больше заряда может накапливать суперконденсатор и, как следствие, дольше обеспечивать питание вашей системы,
  • Номинальное напряжение, измеряемое в вольтах — максимальное напряжение, которое конденсатор может обеспечить на выводах.

Некоторые примеры (фото) суперконденсаторов:

Емкость 1Ф, максимальное напряжение 5,5В (сдвоенный; на картинке слева — справа 4Ф):

Емкость 1Ф, максимальное напряжение 5,5В ФОТО

Максимальное напряжение 5,5 В, емкость 4Ф, высота 5 мм, диаметр 25 мм (сдвоенный):

Максимальное напряжение 5,5 В, емкость 4Ф, ФОТО

Максимальное напряжение 2,7 В, емкость: 100Ф (!), Высота и диаметр более 5 см:

Максимальное напряжение 2,7 В, емкость: 100Ф ФОТО

  • Каждый суперконденсатор имеет определенное максимальное напряжение — например, 2,7 или 5,5 В. Подача большего напряжения может привести к взрыву суперконденсатора.
  • Суперконденсаторы поляризованы: не перепутайте, какая ножка «-», а какая — «+»; обратная полярность может привести к взрыву суперконденсатора,
  • Суперонденсаторы могут выдерживать большое количество циклов заряда и разряда. В этом отношении они во много раз более устойчивы, чем, например, NiMH или LiPo батареи.
  • Если у вашего конденсатора слишком низкое напряжение или слишком малая емкость — вы можете подключать их последовательно или параллельно.

Источник

Суперконденсаторы: что это, зачем и где применяется

Энергетика — крайне интересная сфера, которая развивается бурными темпами много лет подряд. На Хабре публикуются самые разные статьи об альтернативных источниках энергии, аккумуляторных батареях от Маска, электромобилях и т.п.

Но есть одна тема, которая затрагивается не так уж и часто. Речь идет о суперконденсаторах. Им как раз посвящена эта статья, в ней раскрывается суть суперконденсатора, сферы применения, плюс описываются кейсы из разных отраслей — промышленности, транспорта и т.п., где используются эти системы.

Суперконденсатор, что ты такое?

Все мы знаем, что такое аккумулятор — это источник постоянной мощности, ограниченный током разряда. Батареи бывают большие и маленькие, применяются они крайне широко — от транспорта до игрушек.

Но эта статья посвящена суперконденсаторам, так что пришло время рассказать о них. Так вот, любой суперконденсатор — это источник не постоянной, а импульсной мощности. Она ограничена лишь эквивалентным внутренним сопротивлением, которое позволяет элементу работать, фактически, на токах короткого замыкания.

Но при этом, в отличие от аккумулятора, это источник кратковременных, хотя и мощных импульсов энергии. Соответственно, и используются суперконденсаторы там, где нужна большая мощность на небольшой срок.

Суперконденсаторы называют еще ионисторами. Эти элементы состоят обычно из двух погруженных в электролит электродов и сепаратора. Последний нужен для того, чтобы не допустить перемещение заряда между двумя электродами с противоположной полярностью.

У суперконденсаторов два положительных свойства — высокая мощность и низкое внутренне сопротивление, чем они и отличаются от конденсаторов и аккумуляторных батарей. Чаще всего материал электрода суперконденсаторов — активный углерод, у которого две важные особенности, включая очень большую площадь поверхности и небольшое расстояние между разделенными зарядами.

Еще один положительный момент — длительный срок хранения и продолжительный срок службы суперконденсаторов. Все это — благодаря особенностям накопления энергии. Так, суперконденсаторы работают за счет разделения зарядов. Этот процесс легко обратим, так что отдавать энергию суперконденсаторы могут действительно быстро.

Теперь немного об определении характеристик суперконденсаторов. В отличие от аккумуляторов, где основная характеристика — это емкость, измеряемая в Ампер-часах, у суперконденсаторов это Фарад. Вот формула, которая позволяет определить энергию суперконденсатора:
Энергия (Дж) = 1/2*Емкость (Ф) * Напряжение в квадрате (В)

image

Есть несколько видов суперконденсаторов:

  • Двойнослойные, или ДСК.
  • Псевдоконденсаторы.
  • Гибридные конденсаторы.

В первом случае система состоит из двух пористых электродов, разделенных заполненным электролитом сепаратором. Запас энергии идет за счет разделения заряда на электродах с очень большой разностью потенциалов.

Во втором — система включает два твердых электрода и базируется на двух механизмах сохранения энергии. Это фарадеевские процессы и электростатическое взаимодействие.

Третий вариант — переходный между конденсаторами и аккумуляторами. Электроды здесь выполнены из разных материалов, а накопление заряда осуществляется благодаря разным механизмам.

Где могут использоваться суперконденсаторы?

Вполне логичный ответ — в отраслях, где нужно отдавать энергию быстро и в большом объеме. В частности, это может быть:

  • Альтернативная энергетика, накопление энергии при помощи топлива, волн ветра и солнца.
  • Транспортные системы — это может быть запуск двигателя машин, гибридные электрические транспортные средства, локомотивы и т.п.
  • Накопители энергии в домохозяйствах — например, там, где используются фотоэлементы или ветрогенераторы.
  • Электронные устройства, где суперконденсаторы используются в качестве источника кратковременного питания.
  • ИБП — как небольшого размера, так и очень большие. В системах бесперебойного электропитания суперконденсаторы можно использовать совместно с топливными элементами и другими источниками.
  • Традиционная энергетика, в сферах, где неизбежны критические нагрузки, но где требуется бесперебойная работа всего и вся. Это могут быть аэропорты, вышки связи, больницы и т.п.
  • Электронные устройства разного размера и мощности.

Что касается ветроэнергетики и солнечной энергетики, то суперконденсаторы здесь стоит использовать для развертывания гибридных систем накопления энергии, которые включают в себя как накопитель на Li-Ion батареях, так и накопитель на основе суперконденсаторов.

Примеры

Их можно привести большое количество, но разумно будет ограничиться тремя наиболее показательными.

Частотно-регулируемый электропривод. Здесь суперконденсаторы нужны при просадках напряжения и кратковременном, не более 10 секунд, блэкауте. Такие приводы используются на участках непрерывного технологического цикла на производственных объектах. Кроме того, суперконденсаторы стоит использовать на предприятии и в системах, которые снабжают объект газом, водой, теплом и энергией, т.п. на компрессорных станциях, в котельных, насосных станциях и т.п.

Источник бесперебойного питания. В этом случае суперконденсаторы дают возможность компенсировать провалы напряжения, которые приводят к проблемам с непрерывностью технологических процессов. Здесь речь идет о крупных объектах, включая промышленность и разного рода инфраструктуру — например, транспортную.

Суперконденсаторы, в частности, используются на заводе Skoda в Чехии, а именно — роботизированном цехе по покраске корпусов автомобилей. Если процесс окрашивания по какой-либо причине остановится, потом корпус придется возвращать в начало цикла.

Регулирование выходной мощности турбин ветрогенераторов. Большая проблема альтернативной энергетики — сложность поддержания выходной мощности турбин на одном уровне. Чем выше скорость ветра и сам он мощнее, тем больше вырабатывается энергии. Чем ниже, соответственно — тем энергии меньше. В итоге выходная мощность турбин может меняться, и очень значительно.

В этом случае суперконденсатор может помочь, причем сразу несколькими способами:

  • Поддержание электропитания на прежнем уровне на время кратковременного пропадания напряжения.
  • Обеспечение стабилизации частоты и напряжения в передающих и распределительных сетях с высокой концентрацией возобновляемых источников энергии.

Производят ли суперконденсаторы в России?

Да, на Хабре еще несколько лет назад публиковалась новость о том, что в НИТУ «МИСис» разработала технологию, которая открыла возможность отечественной компании запустить производство суперконденсаторов.

Так, в 2017 году компания ТЭЭМП запустила в г. Химки производство высокоэффективных суперконденсаторов и модулей на их основе. При этом все это — чисто российские разработки. ТЭЭМП, к слову, производит плоские единичные элементы в ламинированном корпусе, который может использоваться в химических источниках тока с органическими электролитами: суперконденсаторах, литий-ионных аккумуляторах, металло-воздушных источниках тока.

При этом, ТЭЭМП производит ячейки собственной запатентованной конструкции – призматическая ячейка с токосъемом по всей ее поверхности. И сделано это не для того, чтобы показать свою уникальность, а чисто с практической точки зрения – распределенный по всей поверхности токосъем обеспечивает равномерность тепловых полей, тем самым замедляя процесс деградации и продлевая срок службы суперконденсатора.

Продукция «ТЭЭМП» уникальна по многим параметрам. Суперконденсаторные модули компании успешно работают при температурах до -60°С. Они отличаются низким внутренним сопротивлением, а значит, способны обеспечить большие импульсные токи. Собственная конструкция ячеек и модулей позволяет снизить массу и размер суперконденсаторной сборки на 30% по сравнению с аналогичными устройствами.

В сухом остатке

В качестве вывода можно подвести итоги, указав преимущества и недостатки суперконденсаторов. Некоторые из них упоминались выше, но сейчас стоит перечислить все это отдельно.

  • Относительно невысокая стоимость устройства накопления энергии в расчете на 1 Фарад.
  • Крайне высокая плотность мощности.
  • Высокий КПД цикла, который достигает 95% и выше.
  • Надежность, длительный срок службы.
  • Широкий диапазон рабочих температур.
  • Огромное количество циклов с неизменными параметрами.
  • Высокая скорость заряда и разряда.
  • Допустимость разряда до нуля.
  • Относительно небольшой вес.

Недостатки:

  • Относительно небольшая энергетическая плотность.
  • Высокая степень саморазряда. Небольшое напряжение из расчета на единицу элемента.

Достоинств все же больше, чем недостатков, и благодаря этому технология активно внедряется во все большее количество отраслей. Сейчас удельная емкость суперконденсаторов увеличивается, а время заряда — наоборот, снижается. При достижении определенного предела можно будет говорить о полной замене аккумуляторов на суперконденсаторов в некоторых сферах, что, в целом, уже и происходит.

Источник

Как подобрать конденсаторы для запуска электродвигателя

Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.

Двигатель с конденасторами

  • Описание разновидностей конденсаторов и расчет удельной емкости ↓
  • Схема подключения «Треугольник» ↓
  • Схема подключения «Звезда» ↓
  • Блиц-советы ↓

Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.

То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.

Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток – его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.

Всего существует 3 основных вида конденсаторов:

  • Электролитические;
  • Неполярные;
  • Полярные.

Описание разновидностей конденсаторов и расчет удельной емкости

Схема подключения пусковых конденсаторов

Схема подключения пусковых конденсаторов

Для электродвигателей с низкой частотой идеальным вариантом будет электролитический конденсатор, он обладает максимальной возможной емкостью, может достигать значения в 100000 мкФ. При этом напряжение может колебаться от стандартных 220 В до 600 В. Электродвигатели, в этом случае, могут использоваться в тандеме с фильтром источника энергии. Но при этом при подключении необходимо строго соблюдать полярность. Оксидная пленка, являющаяся очень тонкой, выступает в роли электродов. Зачастую электрики их называют оксидными.

  • Полярные лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко.
  • Неполярные являются хорошим вариантом, но их стоимость и габариты значительно выше электролитических.
  • Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм. Притом их должно быть два, не только для самого конденсатора, но и для двигателя. Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.

    I1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);

    Uсети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.

    где Сп – Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.

    Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.

    При мощности От 0,4 до 0,8 кВт: рабочая емкость – 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.

    При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.

    Разновидности конедсаторов

    Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко

    Схема подключения «Треугольник»

    Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

    Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

    Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

    Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

    Схема подключения

    Схема подключения “Треугольник” и “Звезда”

    Схема подключения «Звезда»

    А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.

    Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.

    В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.

    Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.

    Блиц-советы

    Электродвигатель

    При подключении к сети в 660 В некоторые используют метод комбинированного запуска

    Источник

    Читайте также:  Способы создания магнитного поля генератора постоянного тока