Меню

Конденсатор в сети постоянного тока задачи



Задачи на конденсаторы и электроемкость с решениями

Конденсатор – деталька, без которой не обойдется работа ни одного электронного прибора. Но прежде чем разбираться с основами электроники, нужно научиться решать физические задачи на конденсатор и электроемкость. Именно этим мы и займемся в сегодняшней статье, посвященной подробному разбору решений задач.

Подписывайтесь на наш телеграм: теперь помимо полезных и интересных материалов там можно найти скидки и акции на любые работы.

Задачи на конденсаторы и электроемкость с решением

Если вы не знаете, как решать задачи с конденсаторами, сначала посмотрите теорию и вспомните про памятку по решению задач по физике и полезные формулы.

Задача №1 на электроемкость батареи конденсаторов

Условие

Плоский конденсатор емкостью 16 мкФ разрезают на 4 равные части вдоль плоскостей, перпендикулярных обкладкам. Полученные конденсаторы соединяют последовательно. Чему равна емкость батaреи конденсаторов?

Решение

Из условия следует, что площадь получившихся конденсаторов в 4 раза меньше, чем у исходного. Зная это, можно найти емкость каждого полученного конденсатора:

Соединяя 4 таких конденсатора последовательно, получаем:

Ответ: 1 мкФ.

Задача №2 на энергию плоского конденсатора

Условие

Плоский конденсатор заполнили диэлектриком с диэлектрической проницаемостью, равной 2. Энергия конденсатора без диэлектрика равна 20 мкДж. Чему равна энергия конденсатора после заполнения диэлектриком? Считать, что источник питания отключен от конденсатора.

Решение

Энергия конденсатора до заполнения диэлектриком равна:

После заполнения емкость конденсатора изменится:

Энергия конденсатора после заполнения:

Ответ: 40 мкФ.

Задача №3 на последовательное и параллельное соединение конденсаторов

Условие

На рисунке изображена батарея конденсаторов. Каждый конденсатор имеет емкость 1 мкФ. Найдите емкость батареи.

Решение

Как видим, часть конденсаторов соединена параллельно, а часть последовательно. Это типичный пример смешанного соединения конденсаторов. Алгоритм решения задач при смешанном соединении конденсаторов сводится к тому, чтобы упростить схему и свести все только к параллельному или последовательному соединению.

Конденсаторы 3 и 4 соединены параллельно. Складывая их емкость, получаем в итоге последовательное соединение четырех конденсаторов: 1, 2, 5 и 3-4. Для параллельного соединения:

Для последовательного соединения:

Ответ: 0,285 мкФ.

Задача №4 на пролет частицы в конденсаторе

Заряд конденсатора равен 0,3 нКл, а емкость – 10 пФ. Какую скорость приобретет электрон, пролетая в конденсаторе от одной пластины к другой. Начальная скорость электрона равна нулю.

Решение

По закону сохранения энергии, разность кинетических энергий электрона в начале и в конце пути будет равна работе поля по его перемещению. По условию, начальная кинетическая энергия электрона равна 0. Запишем:

С учетом этого, получим:

Ответ: 10^7 м/с.

Задача №5 на вычисление энергии электрического поля конденсатора

Условие

Конденсатор подключен к источнику постоянного напряжения U=1 кВ. Емкость конденсатора равна 5 пФ. Как изменяться заряд на обкладках конденсатора и его энергия, если расстояние между обкладками уменьшить в три раза.

Решение

Заряд конденсатора равен:

Изменение заряда будет равно:

Ответ: 5 мкДж.

Вопросы на тему «Конденсатор и электроемкость»

Вопрос 1. Что такое конденсатор?

Ответ. Конденсатор – устройство, имеющее два полюса и предназначенное для накопления электрического заряда.

Простейший тип конденсатора – плоский воздушный конденсатор. Он состоит из двух пластин (обкладок), имеющих разные заряды и разделенных воздухом. В зависимости от диэлектрика, разделяющего обкладки, разделяют:

  • воздушные конденсаторы;
  • бумажные конденсаторы;
  • слюдяные и другие конденсаторы.

Основная роль конденсатора в электронных приборах – накапливать заряд, а потом передавать его дальше в цепь.

Вопрос 2. Что такое электроемкость?

Ответ. Электроемкость – скалярная физическая величина, характеризующая способность накапливать электрический заряд. В системе СИ измеряется в Фарадах.

Вопрос 3. Какие есть способы соединения конденсаторов?

Ответ. Конденсаторы можно соединить последовательно и параллельно.

При параллельном соединении емкость цепи равна сумме емкостей отдельных конденсаторов.

При последовательном соединении величина, обратная общей емкости, равна сумме обратных емкостей каждого конденсатора.

Вопрос 4. Что такое колебательный контур?

Ответ. Это простейшая электрическая цепь, состоящая из конденсатора, катушки индуктивности и источника тока. В колебательном контуре происходят свободные электромагнитные колебания: энергия конденсатора переходит в энергию катушки, и наоборот.

Вопрос 5. Что происходит при отключении источника питания, к которому подключен конденсатор в цепи?

Ответ. В этот момент конденсатор начинает разряжаться, отдавая накопленный заряд другим элементам цепи.

Мы не понасылшке знаем, что от сложных задач на конденсаторы мозги буквально плавятся. Если ваш мозг устал от постоянного решения задач по физике и других заданий, обращайтесь в профессиональный образовательный сервис за консультацией и поддержкой в любое время. У нас есть решение для ваших проблем с учебой!

  • Контрольная работа от 1 дня / от 100 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 7950 р. Узнать стоимость
  • Курсовая работа 5 дней / от 1800 р. Узнать стоимость
  • Реферат от 1 дня / от 700 р. Узнать стоимость

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Методика решения задач. Конденсаторы в цепи постоянного тока.
методическая разработка по физике (10 класс) по теме

Курлова Галина Александровна

Представленные задачи с глубоким физическим содержанием, решение которых требует свободного владения электростатическими законами.

Первые две задачи достаточно простые, необходимые для первоначального ознакомления с методикой решения. Преследовалась

цель максимально раскрыть физическую суть процессов, описанных в задачах, и провести все необходимые математические выкладки.

Приведены задачи , предлагавшиеся на ЕГЭ в уровне «С» 2008 года и на вступительных экзаменах МГТУ им. Н.Э. Баумана.

Скачать:

Вложение Размер
prezentatsiya_yarmarka_tsv.ppt 173 КБ

Предварительный просмотр:

Подписи к слайдам:

По теме: методические разработки, презентации и конспекты

Пример решения задачи на расчет цепи постоянного тока с конденсатором

Возможное решение задачи уровня С на расчет цепи посоянного тока.

Методическая разработка на тему «Электрические цепи постоянного тока» составлена таким образом, что она помогает педагогу при обучении блока «Электротехнические работы» предмета Технология объяснять т.

Методика решения задач по теме «Законы постоянного тока»

Методическая разработка по методике решения задач по теме «Законы постоянного тока».

Приводится план-конспект урока физики с использованием метода проектов.

Конспект урока «Решение задач по теме «Законы и закономерности в цепи постоянного тока»

Данный урок изучается в 8 классе в главе «Электрические явления». Применяется метод проектов, что позволяет активировать и углубить знания о законах электрического тока, развивать инте.

Решение задач части С Электродинамика. Катушка и конденсатор в цепи постоянного тока.

В презентации представлены задачи из сборника заданий для подготовки к ЕГЭ Демидовой М. Ю. 2020г. Материал предназначен для подготовки к ЕГЭ учеников по темем электродинамика. Часть С ,задание №31. В .

Краткое описание способов измерения силы тока и напряжения в цепях постоянного тока. Расширение пределов измерения. Формулы для расчета сопротивления шунта и добавочного сопротивления. Определения иде.

Источник

Практическое занятие № 3

Тема. Решение задач по теме «Постоянный электрический ток».

— рассмотреть методы решения задач на использование закона Ома в цепях постоянного тока;

— показать на примерах применение правил Кирхгофа для расчета сложных разветвленных цепей постоянного тока.

В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.

При решении задач на законы постоянного тока нужно начертить электрическую цепь и проанализировать, как соединены резисторы, источники тока, конденсаторы. Если точки цепи имеют одинаковые потенциалы, их можно соединять между собой.

Далее рассчитывают сопротивление отдельных участков цепи или полное сопротивление цепи и используют закон Ома для участков цепи или замкнутой цепи. Если в цепи постоянного тока включен конденсатор, то ток через него не идет. Если параллельно конденсатору подключен резистор, то напряжение на резисторе и конденсаторе одинаково.

Расчет сложных разветвленных цепей проводят с помощью правил Кирхгофа. Для этого произвольно выбирают направление тока на всех участках цепи. Разбивают сложную цепь на простые замкнутые контуры, произвольно выбирают направления обхода контуров.

Составляют систему уравнений в соответствии с правилами Кирхгофа, учитывая правила выбора знаков «плюс» и «минус».

Для решения задач на превращение электрической энергии в тепловую и механическую используют закон сохранения и превращения энергии.

1. Моток голой проволоки, состоящий из семи с половиной витков, растянут между двумя вбитыми в доску гвоздями, к которым прикреплены концы проволоки. Подключив к гвоздям приборы, измерили сопротивление цепи между гвоздями. Определите, во сколько раз изменится это сопротивление, если моток размотать, оставив концы присоединенными к гвоздям.

2. Пять одинаковых сопротивлений включены по схеме, приведенной на рис. 1. Как изменится накал правой верхней спирали, если замкнуть ключ К?

3. Могут ли существовать токи, текущие от более низкого потенциала к более высокому?

4. Трамвайный провод оборвался и лежит на земле. Человек в токопроводящей обуви может подойти к нему лишь маленькими шагами. Делать же большие шаги опасно. Почему?

5. Для того, чтобы включить лампу в сеть, напряжение которой больше напряжения, на которое рассчитана лампа, можно воспользоваться одной из схем, приведенных на рис. 2. У какой из этих схем коэффициент полезного действия выше, если в каждом случае лампа горит в нормальном режиме?

6. На рис. 3 представлены две схемы для измерения сопротивления. Какую из них следует предпочесть, когда измеряемое сопротивление: а) велико; б) мало?

7. Две лампы с сопротивлениями при полном накале r и R, причем R > r , подключают к источнику электродвижущей силы. В обеих лампах вольфрамовые нити. Которая из ламп горит ярче при последовательном соединении? При параллельном соединении?

8. Гирлянда елочных фонариков сделана из 40 лампочек, соединенных последовательно и питаемых от городской сети. После того как одна лампочка перегорела, оставшиеся 39 лампочек снова соединили последовательно и включили в сеть городского тока. В каком случае в комнате будет светлее: когда горело 40 лампочек или 39?

9. Показание какого вольтметра больше (рис. 4)? Почему?

10. Ток проходит по стальной проволоке, которая при этом слегка накаляется. Если одну часть проволоки охладить, погрузив ее в воду, то другая часть накаляется сильнее. Почему? (Разность потенциалов на концах проволоки поддерживается постоянной).

11. Две стальные проволоки одной и той же длины, но разного сечения соединены параллельно между собой и включены в сеть электрического поля. В какой из них будет выделяться большее количество теплоты?

Примеры решения расчетных задач

Задача 1. По медному проводу сечением S = 1 мм 2 течет ток силой I = 10 мА. Найдите среднюю скорость упорядоченного движения электронов вдоль проводника, если считать, что на каждый атом меди приходится один электрон проводимости. Молярная масса меди А = 63,6 г/моль, плотность меди = 8,9 г/см 3 .

Решение:

Сила тока в проводнике равна заряду, протекающему за единицу времени через поперечное сечение проводника

где n — концентрация электронов, q — заряд одного электрона, v — средняя скорость упорядоченного движения, S — площадь поперечного сечения проводника. Из (1) получим следующее выражение для средней скорости упорядоченного движения электронов:

Поскольку на каждый атом меди приходится один электрон проводимости, то концентрация электронов проводимости будет равна концентрации атомов меди. Следовательно, концентрация электронов проводимости будет связана с плотностью меди соотношением

где m — масса одного атома.

здесь NA — число Авогадро. Подставляя (4) в (3), получим:

Тогда скорость упорядоченного движения электронов будет иметь вид:

Задача 2. В схеме, изображенной на рис. 5, определите силу тока, протекающего через батарею в первый момент времени после замыкания ключа К; спустя большой промежуток времени. Параметры элементов схемы и внутреннее сопротивление источника r считать заданными.

Решение:

В первый момент времени конденсаторы не заряжены, и ток в цепи, согласно закону Ома, будет равен

В установившемся режиме ток течет через сопротивления R1 и R3, и сила тока будет равна

Задача 3. Что покажет амперметр в схеме, изображенной на рис. 6?

Решение:

Найдем силу тока, текущего через источник. Будем считать, что сопротивление амперметра очень мало. Тогда электрическую схему можно будет перерисовать так, как показано на рис. 7. После этого легко найти сопротивление всей цепи. Сопротивления R1 и R3 соединены параллельно, поэтому сопротивление участка ВС будет равно

Общее сопротивление участка цепи, содержащего сопротивления R1, R2 и R3, будет равно

Тогда общее сопротивление всей цепи определится следующим образом:

Сила тока, текущего через источник, согласно закону Ома для полной цепи, будет равна

где — электродвижущая сила источника тока.

Как видно из рис. 6, ток, идущий через источник, равен сумме токов, текущих через сопротивление R1 и амперметр IA:

Обратимся снова к рис. 7. Так как R123 = R4 , то в точке А ток I делится на две равные части. Через резистор R2 будет идти ток силой I2 = 2A. В точке В ток I2 снова делится поровну между резисторами R1 и R3, и через резистор R1 пойдет ток силой I1 = 1A.

Задача 4. Собрана электрическая цепь, приведенная на рис. 8. Вольтметр, включенный параллельно резистору с сопротивлением R1 = 0,4 Ом, показывает U1 = 34,8 В. Напряжение на зажимах источника тока поддерживается постоянным и равным U = 100 В. Найдите отношение силы тока, идущего через вольтметр, к силе тока, идущего через резистор с сопротивлением R2 = 0,6 Ом.

Решение:

Напряжение на резисторе с сопротивлением R2 будет равно , а сила тока, идущего через этот резистор, согласно закону Ома для однородного участка цепи,

где I1 — сила тока, идущего через резистор с сопротивлением R1, а IV — сила тока, идущего через вольтметр. Отсюда

Задача 5. Несколько источников тока соединены так, как показано на рис. 9. Каковы показания идеального амперметра и вольтметра, включенных в цепь? Сопротивлением соединительных проводов пренебречь.

Решение:

Случай 1. Считаем, что все источники одинаковы, то есть имеют одинаковую электродвижущую силу и внутреннее сопротивление r. Пусть количество источников равно n. Тогда, используя закон Ома для замкнутой цепи, получим:

Таким будет показание амперметра. Из закона Ома для неоднородного участка цепи следует, что показание вольтметра будет

Случай 2. Все источники различны. Тогда амперметр покажет силу тока

Очевидно, что показание вольтметра в этом случае

Ответ: если все источники тока одинаковы, то если электродвижущие силы источников тока различны, то

Задача 6. Найдите напряжение на конденсаторах емкостями С1 и С2 в цепи, показанной на рис. 10, если известно, что при коротком замыкании сила тока, проходящего через источник, возрастает в n раз. С1, С2, известны.

Решение:

Напряжение на резисторе, подключенном параллельно к конденсаторам,

где U1 и U2 — напряжение на первом и втором конденсаторах соответственно. Конденсаторы соединены последовательно, следовательно, заряды на них будут одинаковыми.

Решая совместно уравнение (5) и (6), получим:

Через конденсаторы ток не идет, поэтому закон Ома для рассматриваемой цепи запишется в виде:

где r — внутреннее сопротивление источника, I — сила тока, текущего через источник и резистор. Падение напряжения на резисторе, согласно закону Ома для однородного участка цепи,

Ток короткого замыкания соответствует R = 0 , то есть

Согласно условию задачи

Подставляя значение I и I в последнее соотношение, получим:

Отсюда R = r(n -1). Подставляя значение R в (8), получим

После подстановки I в (9) получим:

Подставляя найденное значение U в (7), получим:

Задача 7. Между пластинами плоского конденсатора помещен жидкий диэлектрик (рис. 11) Уровень жидкости каждую секунду равномерно поднимается на h. К пластинам подсоединен последовательно источник постоянного тока, электродвижущая сила которого , и сопротивление R. Определите ток в цепи. Ширина пластин l, расстояние между ними d, диэлектрическая проницаемость диэлектрика .

Решение:

В каждый момент времени конденсатор, частично заполненный жидкостью, можно рассматривать как совокупность двух конденсаторов, воздушного и заполненного жидкостью, соединенных параллельно. Емкость параллельно соединенных конденсаторов равна сумме их емкостей. За каждую секунду часть пластин высотой h освобождается от диэлектрика. Это приводит к изменению емкости конденсатора на

Заряд при этом стекает с пластин конденсатора и в цепи течет ток, сила которого

Поскольку напряжение между пластинами конденсатора не меняется, то изменение заряда на пластинах конденсатора за единицу времени будет равно

Тогда после подстановки в (12) получим:

то есть сила тока в цепи будет равна

Напряжение на пластинах конденсатора можно найти из закона Ома для полной цепи.

Подставив значение U в (13), получим для силы тока следующее выражение:

Задача 8. В схеме на рис. 12 1 = 2 В, 2 = 4 В, 3 = 6 В, R1 = 4 Ом, R2 = 6 Ом, R3 = 8 Ом. Найдите силу тока во всех участках.

Решение:

Воспользуемся правилами Кирхгофа. Зададим направления токов I1, I2, I3 . В качестве независимых контуров выберем большой контур, содержащий источники тока 1 и 3, и малый контур, содержащий источники тока 1 и 2. Обход контуров будем совершать по часовой стрелке (рис. 13). Тогда можно составить следующую систему уравнений:

Решая систему уравнений относительно токов, получим следующие значения:

Знак минус означает, что ток I1 течет в направлении, противоположном выбранному.

Задача 9. Электродвижущая сила батареи = 16 В, внутреннее сопротивление r = 3 Ом. Найдите сопротивление внешней части цепи, если известно, что в ней выделяется мощность Р = 16 Вт. Определите к.п.д. батареи.

Решение:

Если внешнее сопротивление равно R, то на нем выделяется полезная мощность P = I 2 R. Силу тока в цепи можно найти из закона Ома для полной цепи:

Последнее выражение можно переписать в виде квадратного уравнения с неизвестным R:

Решение этого уравнения имеет вид:

Подставляя в полученное решение числа, получим R1 = 1 Ом; R2 = 9 Ом. Этим двум значениям сопротивления соответствуют к.п.д.:

Задача 10. Через два последовательно соединенных проводника с одинаковыми сечениями S, но разными удельными сопротивлениями 1 и 2 ( 2 > 1), течет ток силой I (рис. 14). Определите знак и величину поверхностной плотности заряда, возникающего на границе раздела проводников.

Решение:

Воспользуемся теоремой Гаусса для электрических полей. В качестве произвольной замкнутой поверхности, через которую будем рассчитывать поток вектора напряженности электрического поля, выберем цилиндрическую поверхность, боковая поверхность которой совпадает с поверхностью проводника (рис. 15). Векторы напряженности электрического поля в проводнике параллельны боковой поверхности цилиндра, поэтому вклад в поток вектора напряженности дают только потоки через основания цилиндрической поверхности. Поскольку каждый проводник электронейтрален, то внутри этой поверхности нескомпенсированным оказывается только заряд q на границе раздела проводников. Поэтому теорема Гаусса запишется следующим образом:

Поэтому теорема Гаусса запишется следующим образом:

Согласно закону Ома

где j — плотность тока в проводнике. Подставим значения Е1 и Е2 в (14):

Плотность тока равна , а заряд на границе раздела связан с поверхностной плотностью заряда соотношением . Подставляя значения j и q в (15), получим:

Следовательно, на границе раздела скапливается положительный заряд.

Задачи для самостоятельной работы

1. Электродвижущая сила источника = 1,6 В, его внутреннее сопротивление r = 0,5 Ом. Сила тока в цепи I = 2,4 А. Чему равен к.п.д. источника?

2. Батарея, состоящая из двух одинаковых параллельно соединенных элементов с электродвижущими силами = 2 В, замкнута резистором, сопротивление которого R = 1,4 Ом (рис. 16). Внутреннее сопротивление элементов r1 = 1 Ом и r2 = 1,5 Ом. Найдите токи I1, I2, I, текущие в цепи.

3. Два потребителя, сопротивления которых R1 и R2, подключаются к сети постоянного тока первый раз параллельно, а второй — последовательно. В каком случае мощность, потребляемая от сети, будет больше?

4. Резистор и конденсатор соединены последовательно с источником электродвижущей силы, при этом заряд на обкладках конденсатора q1 = 6 10 -4 Кл. Если резистор и конденсатор подключены к источнику электродвижущей силы параллельно, то заряд на обкладках конденсатора q2 = 4 10 -4 Кл. Найдите внутреннее сопротивление источника электродвижущей силы r, если сопротивление резистора R = 45 Ом.

5. Определите полное сопротивление R показанной на рис. 17 цепи, если R1 = R2 = R5 = R6 = 3 Ом, R3 = 20 Ом, R4 = 24 Ом. Чему равна сила тока, идущего через каждый резистор, если к цепи приложено напряжение U = 36 В?

6. Два источника тока соединены, как показано на рис. 18. 1) Определите разность потенциалов между точками А и В. 2) Какой станет эта разность потенциалов, если изменить полярность включения второго источника?

7. Конденсаторы с емкостями С и включены в цепь, как показано на рис. 19, электродвижущая сила источника равна . Какое количество теплоты выделится на резисторе с сопротивлением R после замыкания ключа К? Внутренним сопротивлением источника пренебречь.

8. Найдите суммарный импульс электронов в проводе длины l = 1000 м, по которому течет ток силой I = 70 А.

9. Во сколько раз добавочное сопротивление (шунт) должно быть больше сопротивления вольтметра, чтобы этот вольтметр позволил измерить напряжение в n = 10 раз большее, чем то, на которое он рассчитан?

10. Пучок электронов проходит ускоряющую разности потенциалов U = 1000 В и, попадая на металлическую пластину, полностью поглощается. При этом микроамперметр, включенный между пластинкой и «землей», показывает ток I = 10 -3 А (рис. 20). Определите температуру металлической пластинки после поглощения ею электронного пучка, если начальная температура пластинки была Т = 300 К. Теплоемкость металлической пластинки С = 10 Дж/К, время действия пучка t = 100 c. Считать, что все тепло, выделившееся в пластинке, идет на ее нагревание.

Рекомендуемая литература

1. Бутиков Е.И., Кондратьев А.С. Физика. Т. 2. Электродинамика. — М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. — С. 11-82.

2. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. — М.: Физматлит, 2005. — С. 123-142.

3. Готовцев В.В. Лучшие задачи по электричеству. — М.; Ростов н/Д: Издательский центр «Март», 2004. — С. 59-116.

Источник

Что такое конденсатор и для чего он нужен в схемах

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.
Что такое конденсатор

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Как работает конденсатор

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Принцип работы конденсатора

Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

Как работает конденсатор в схеме

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Конденсатор и постоянный ток

Добавим в схему лампочку. Она загорится только во время зарядки.

Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Принцип работы конденсатора в цепи постоянного тока

Лампочка затухает при полной зарядке.

Почему конденсатор не пропускает постоянный ток

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Конденсатор и переменный ток

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Как работает конденсатор при переменном токе

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
Назначение конденсатора в схеме

Как работает конденсатор в схеме

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Зачем конденсатор нужен в усилителе

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Источник

Позойский С.В., Жидкевич В.И. Избранные задачи по теме «Конденсаторные цепи»

Позойский С.В., Жидкевич В.И. Избранные задачи по теме «Конденсаторные цепи» // Фiзiка: праблемы выкладання. – 2006. – № 4. – С. 42-49.

Исправления Сакович А.Л. (ноябрь 2006)

В статье разобраны примеры задач повышенного и углубленного уровня на расчет электрических цепей постоянного тока с конденсаторами. Приводится краткий теоретический материал по данной теме.

Расчет электрических цепей, в которых конденсаторы соединены последовательно или параллельно, производится по известным формулам.

Если в цепи нет участков с последовательно или параллельно соединенными конденсаторами, но есть точки с одинаковыми потенциалами, то их можно либо соединять, либо разъединять, не меняя режима работы цепи. Цепь при этом упрощается, и мы приходим к случаю параллельно и последовательно соединенных конденсаторов.

Если в цепи нет параллельно и последовательно соединенных конденсаторов и нет точек с одинаковыми потенциалами, то для ее расчета используются следующие положения.

1. Сумма зарядов всех обкладок, соединенных с одним из полюсов источника тока, равна заряду источника (закон сохранения заряда):

Например, для цепи, изображенной на рисунке 1, .

2. Если пластины нескольких конденсаторов соединены в один узел, не связанный непосредственно с источником тока, то алгебраическая сумма зарядов на этих пластинах равна нулю (закон сохранения заряда):

Например, для цепи, представленной на рисунке 2, .

Это соотношение справедливо и тогда, когда перед конденсаторами имеются источники ЭДС (рис. 3): .

3. Алгебраическая сумма разностей потенциалов на всех конденсаторах и источниках тока, встречающихся при обходе любого замкнутого контура, равна нулю (закон сохранения энергии):

4. Если на каком-либо из участков цепи 12 (рис. 4) имеется конденсатор и источник ЭДС, т.е. участок цепи неоднородный, то заряд конденсатора определяется ЭДС источника и разностью потенциалов на концах участка :

Если источника ЭДС на участке нет , то

Этот факт обусловливает необходимость учитывать выбор знаков в каждом конкретном случае:

а) Если , т.е. разность потенциалов направлена в ту же сторону, что и ЭДС (см. рис. 4), то следует пользоваться формулой (4).

б) Если , то формулу (4) лучше записать в таком виде:

В этом случае разность потенциалов «противодействует» ЭДС. Если же при этом , то для определения заряда формулу (4) следует записать в таком виде:

Правило для определения знаков зарядов на обкладках конденсатора: поле между обкладками конденсатора направлено в ту сторону, в которую направлена сумма ЭДС и разности потенциалов .

В приведенном примере (см. рис. 4) при и поле конденсатора направлено влево (левая обкладка заряжена отрицательно, правая – положительно);

Если , то поле между обкладками конденсатора направлено в сторону меньшего потенциала, т.е. со стороны меньшего потенциала будет обкладка с отрицательным зарядом.

в) В случае, когда величина потенциалов j 1 и j 2 неизвестна, следует пользоваться одним из рассмотренных вариантов по своему усмотрению.

Если несколько источников ЭДС и конденсаторов соединены последовательно, то заряд конденсатора определяется из соотношения

где – алгебраическая сумма ЭДС, С – общая емкость конденсаторов.

Правила знаков те же, что и приведенные ранее.

Задача 1. Конденсаторы соединены так, как показано на рисунке 5. Чему равна емкость всей батареи, если емкость каждого конденсатора равна С?

Решение. Упростим последовательно цепь (рис. 6).

Задача 2. Из проволоки сделан куб, в каждое ребро которого включено по одному конденсатору емкостью С. Найдите емкость батареи (рис. 7).

Решение. Соединяем точки с одинаковыми потенциалами 1, 2, 3 и 4, 5, 6 . Получим (рис. 8):

Предлагаем читателю самостоятельно рассмотреть случаи, когда цепь присоединена к источнику тока точками а3 и а6.

Решение. а) Из условия следует, что , поэтому конденсатор С5 можно «выбросить» (рис. 10, а). Получим:

б

б) Но точки с одинаковыми потенциалами можно также соединить (рис. 11):

Задача 4. Определите заряд батареи конденсаторов, изображенной на рисунке 12, если к клеммам АВ приложено напряжение U = 100 B, а емкости конденсаторов C1 = 2 мкФ, С2 = 1 мкФ.

Решение. Заменим эту схему эквивалентной (рис. 13, а):

б

Мы видим, что эта задача аналогична задаче 3. И в этой цепи и конденсатор С2 можно «выбросить». Тогда получим цепь (рис. 13, б). Общая емкость этой батареи .

Находим заряд батареи: , q = 2∙10 –4 Кл.

Точки 2, 3 можно было и соединить, как в задаче 3. Получили бы тот же результат.

Задача 5. Найдите емкость батареи одинаковых конденсаторов (рис. 14). Емкость отдельного конденсатора С считать известной.

Решение. Общая емкость батареи

где q – заряд батареи, U – напряжение на ней.

Запишем уравнения для контуров и узлов. Контуры обходим против часовой стрелки. Если при этом мы идем от «–» к «+» на обкладках конденсатора, то соответствующая разность потенциалов берется со знаком «+», если от «+» к «–», то со знаком «–». Выбор направления обхода контура условен: его можно обходить и по часовой стрелке.

Решая эту систему уравнений, получим

Эту же задачу можно решить иначе.

Для определенности будем считать, что . Тогда

Кроме того, так как , то

Из этой системы получим

Задача 6. Батарея конденсаторов заряжена до разности потенциалов U = 200 В, после чего ее отключили от источника напряжения (рис. 15). Как изменится при этом энергия батареи при замыкании ключа К, если С1 = С2 = С3 = С5 = 1 мкФ; С4 = 0,5 мкФ?

Решение. При отключении батареи от источника тока ее заряд не изменится независимо от положения ключа К, а емкость ее после замыкания ключа изменится. Пусть С, С – емкости батареи до замыкания и после замыкания соответственно, W, W – соответствующие энергии, q = q – заряд батареи.

где q = CU; q = C∙U; U – напряжение на батарее конденсаторов после замыкания ключа (источник напряжения отключен). До замыкания ключа К

Найдем емкость батареи после замыкания ключа.

Из приведенной системы уравнений (1)–(8) находим С, q , U . Затем из соотношения определяем С, а из уравнения (1) D W.

Расчеты дают С = 0,38 мкФ; Q = 0,85 U ; С = 0,85 мкФ; D W = –0,39 мДж.

Таким образом, при замыкании ключа энергия батареи уменьшилась. Заметим, что заряд ее не изменился, а емкость увеличилась. Уменьшение энергии обусловлено выделением в цепи теплоты (перераспределение зарядов между конденсаторами сопровождалось возникновением электрического тока в соединительных проводах) и излучением электромагнитных волн при изменении силы тока.

Задача 7. Найдите электродвижущую силу источника тока в схеме, изображенной на рисунке 16. Заряды на конденсаторах 2С и С соответственно 3 q и 2q. Внутреннее сопротивление источника не учитывать.

Решение. Заряды на обкладках конденсаторов определяются из соотношений:

С учетом (3), (4), (5) соотношения (1) и (2) примут вид:

Делим почленно (1) и (2), получим: ;

С учетом (3) и (4) имеем:

Тогда соотношения (6) и (7) примут вид:

Проверим результат по (7):

Задача 8. Какое количество теплоты выделится в цепи (рис. 17) при размыкании ключа?

Решение. Мы указали на схеме предположительные знаки зарядов на обкладках конденсаторов.

По второму правилу Кирхгофа:

По закону сохранения заряда , т.е. ,

Решив систему, получим:

Выделившаяся в цепи теплота

Задача 9. В цепи (рис. 18) = 1 В, = 2 В, = 3 В, С1 = 20 мкФ, С2 = 30 мкФ, С3 = 60 мкФ. Найдите напряжение на каждом конденсаторе.

Решение. Так как конденсаторы соединены последовательно, то их общая емкость

При последовательном соединении заряды всех конденсаторов одинаковы. Тогда

Задача 10. Два конденсатора с емкостями C1 и С2 присоединены к двум источникам с и (рис. 19). Определите напряжение на каждом конденсаторе и разность потенциалов между точками а и b . Внутреннее сопротивление источников не учитывать.

Решение. Найдем общую емкость этих двух конденсаторов:

Заряды на них одинаковы (конденсаторы соединены последовательно): .·Заряд на каждом конденсаторе равен заряду на эквивалентной емкости С, т.е.

Напряжение на конденсаторах:

Для нахождения Uab рассмотрим участок цепи adb (рис. 20):

Из рисунка видно, что

Из этих соотношений получаем (вычитая из первого второе):

Задача 11. Какое количество теплоты выделится в цепи при переключении ключа К из положения 1 в положение 2 (рис. 21)?

Решение. При переключении ключа через батарею протечет некоторый заряд D q. Работа батареи равна . Эта работа может частично пойти на увеличение энергии, запасенной в конденсаторе, частично – на выделение теплоты в цепи.

Как видно из рис. 21, заряд и, следовательно, энергия, запасенная в конденсаторе, не изменяются при переключении ключа. Меняются лишь знаки зарядов на обкладках. Следовательно, при переключении ключа К через батарею протечет заряд и в цепи выделится количество теплоты .

Задача 12. Конденсатор емкостью С, заряженный до напряжения U = , подключается через резистор с большим сопротивлением к источнику тока с ЭДС 5 (рис. 22). Определите количество теплоты, которое выделяется в цепи при зарядке конденсатора до напряжения U = 5 .

Решение. Энергия конденсатора до подключения к источнику тока . При подключении конденсатора к источнику тока происходит подзарядка его до напряжения 5 . При этом через источник тока протечет заряд , а энергия конденсатора увеличится и станет равной . Источник совершит работу .

Часть этой работы затрачивается на увеличение энергии конденсатора, а оставшаяся часть выделится в виде теплоты:

Задача 13. Какое количество теплоты выделится в цепи при переключении ключа К из положения 1 в положение 2 (рис. 23), если емкость каждого конденсатора равна С?

Решение. При переключении ключа К емкость цепи не меняется. Напряжение на системе конденсаторов тоже неизменно и равно . Следовательно, энергия системы не изменяется и вся произведенная батареей работа переходит в теплоту. Для подсчета этой работы необходимо определить заряд, протекший через батарею. До переключения на этом конденсаторе С1 была половина заряда системы, т.е. (емкость системы равна ). После переключения заряда на конденсаторе С1 удвоится. Значит, через батарею протечет заряд , и, следовательно, батарея произведет работу . Выделившееся количество теплоты .

1. Балаш В.А. Задачи по физике и методы их решения. – М., 1983.

2. Буховцев Б.Б. и др. Сборник задач по элементарной физике. – М., 1987.

3. Гладкова Р.А. Сборник вопросов и задач по физике. – М., 1986.

4. Коган Б.Ю. Задачи по физике. – М., 1971.

5. Савченко Н.Е. Решение задач по физике. – Минск, 1988.

6. Сборник задач по физике / под ред. С.М. Козела. – М., 1990.

Источник

Читайте также:  Как рассчитать силу тока трехфазного двигателя