Меню

Коммутируемое напряжение постоянного тока



Прерыватели постоянного тока, описание, принцип действия

Прерыватели постоянного тока, описание, принцип действия

В рамках настоящего пункта рассматриваются устройства силовой электроники, предназначенные для включения или выключения нагрузки в цепи постоянного тока. С их помощью можно также регулировать среднее (или действующее) значение напряжения, изменяя соотношение между длительностью импульсов напряжения на нагрузке и длительностью пауз (т. е. осуществлять импульсное регулирование).

Преобразователи постоянного напряжения одного уровня в постоянное напряжение другого уровня, обеспечивающие регулирование постоянного напряжения на нагрузке, рассматриваются в другом подразделе.

Ранее основой мощных прерывателей постоянного тока служили незапираемые тиристоры. Такие прерыватели отличались сложностью схем.
В настоящее время для коммутаций в цепях постоянного тока широко используют полевые транзисторы, IGBT, запираемые тиристоры (Gate tuогТ thyristor — GTO), тиристоры с полевым управлением (MOScontrol thyristor — МСТ, для включения и выключения которых используются встроенные полевые транзисторы), а также, в некоторых случаях, биполярные транзисторы.

Современные силовые полупроводниковые приборы способны коммутировать ток в тысячи ампер и выдерживать напряжение в тысячи вольт.

По существу прерыватели постоянного тока представляют собой электронные ключи (к примеру, транзисторные), дополненные системами управления и элементами, обеспечивающими защиту силовых приборов.

Прерыватель на основе IGBT.

Обратимся к отечественному прерывателю (твердотельному реле) постоянного тока с малым временем срабатывания 5П59.10Ч3116012 (напряжение изоляции 4000 В, коммутируемое напряжение 0…1200 В, коммутируемый ток 160 А, остаточное напряжение во включенном состоянии 3 В, время включения не более 5 мкс, частота коммутации нагрузки до 10 Гц).

Для питания входной цепи рассматриваемого твердотельного реле необходимо использовать источник с напряжением Unum гальванически связанный с входной цепью (питание по входу).

Для защиты от перенапряжений, возникающих при отключении нагрузки, имеющей индуктивность, используется внешний диод D. При выключении IGBT ток нагрузки замыкается через диод (в остальное время диод находится под обратным напряжением и не влияет на работу схемы).

prerinatel toka

Рассмотрим рекомендуемую схему включения (рис. 4.19) отечественного прерывателя (твердотельного реле) постоянного тока (напряжение изоляции 4000 В, коммутируемое напряжение 0…600 В, коммутируемый ток 120 А, остаточное напряжение во включенном состоянии 2,5 В).Реле имеет встроенный диод Dlt который обеспечивает, совместно с внешним диодом Х)3, защиту IGBT от перенапряжений.

Особенностью рассматриваемого реле является также использование источника питания с напряжением Unumi гальванически связанного с силовой цепью (питание по выходу).

Двуполярный прерыватель постоянного тока па полевых транзисторах.

Двуполярные прерыватели обеспечивают протекание положительного тока в двух направлениях. Они также способны коммутировать переменный ток.

Обратимся к рекомендуемой схеме включения (рис. 4.20) отечественного двуполярного прерывателя (биполярного твердотельного реле) 5П19.10П1 124 (напряжение изоляции 4000 В, коммутируемое напряжение —400…+400 В, коммутируемый ток 12 А, сопротивление во включенном состоянии 0,5 Ом).

При анализе схемы нужно учитывать, что структура каждого из полевых транзисторов Г, и Т2 содержит шунтирующий диод, как показано пунктиром (структуры силовых полевых транзисторов рассмотрены выше). Пунктир использован потому, что в подобных схемах диоды часто не показывают (но их наличие подразумевают).

Ток нагрузки при любой полярности входного напряжения протекает через один открытый транзистор и диод другого транзистора.

Для защиты транзисторов от перенапряжений применяется вариант с тор.

Управление реле осуществляется с помощью токового сигнала im.

Источник

Особенности коммутации сетей постоянного тока

В конце XIX-начале XX века между специалистами-электротехниками развернулась самая настоящая «война токов». Основная конкуренция проходила между двумя направлениями систем генерации, электроснабжения и электропотребления: постоянным током (англ. DirectCurrent – DC) и переменным (англ. AlternatingCurrent – AC). В итоге предпочтение было отдано трёхфазным цепям переменного тока. Подсчитав объёмы капитальных затрат на создание систем электроснабжения, промышленники выбрали, казалось бы, самый оптимальный вариант. Но удастся ли переменному току удержать лидерство в современных условиях? Сегодня в ряде областей наблюдается развитие технологий и продвижение проектов на постоянном токе.

Области применения постоянного тока
Линии электропередачи низкого напряжения

В рамках финской программы «Интеллектуальные сети и рынок энергии» в Технологическом университете Лаппеенранты разработан проект системы электроснабжения и связи LVDC (англ. Low voltage direct current). Он предназначается для загородных посёлков с малым числом потребителей и линиями электроснабжения большой протяжённости.

Проект предусматривает замену дорогих традиционных трёхфазных распределительных сетей переменного напряжения 20/0,4 кВ на кабельные подземные линии LVDC (±0,75 кВ). Прокладка кабеля на глубине более 1,5 м минимизирует зоны отчуждения и не создаёт ограничений для ведения сельскохозяйственных работ. Такое решение существенно уменьшает стоимость сети и её зависимость от погодных катаклизмов. Каждое здание и сооружение будет подключаться к сети постоянного тока через преобразователи, согласующие напряжение LVDC с напряжением, необходимым потребителю.

Энергоснабжение локальных объектов, микро- и минисети постоянного напряжения

Сегодня для обеспечения повышения энергоэффективности всё чаще предлагаются проекты микросетей постоянного напряжения внутри здания (или нескольких зданий) и на локальной территории. На входе таких сетей установлен высокоэффективный преобразователь, превращающий переменное напряжение распределительных линий в постоянное.

Современные локальные сети постоянного напряжения имеют ряд преимуществ, среди которых необходимо отметить следующие:

  • общее преобразование из переменного напряжения в постоянное для всех нагрузок уменьшает потери на 10-20%;
  • эффективное интегрирование возобновляемых источников электроэнергии, являющихся также источниками постоянного напряжения (солнечные батареи, небольшие ветряные турбины, топливные элементы и др.);
  • простое согласование перечисленных источников постоянного напряжения, не требующих взаимной синхронизации;
  • эффективное управление графиками нагрузки (включая накопление электрической энергии в периоды избыточной генерации и выдачу в периоды дефицита);
  • повышенная электробезопасность сетей постоянного тока.

Транспорт

Не так давно была разработана энергосистема постоянного тока для крупного морского судна гражданского назначения – многоцелевого танкера для обслуживания нефтяных платформ, построенного в Норвегии. Традиционно в судах с электротягой происходит многократное преобразование переменного тока в постоянный для питания винто-рулевых колонок и гребных винтов, на которые приходится более 80% всего электропотребления. Это приводит к большим потерям энергии, снижению общего КПД, а также негативному влиянию на окружающую среду. Компания АББ, лидер в производстве силового оборудования и технологий для электроэнергетики и автоматизации, разработала проект, в котором электроэнергия распределяется через единую цепь постоянного тока. «С помощью нашего решения суда смогут максимально эффективно использовать свои возможности по энергосбережению с применением дополнительных источников постоянного тока, таких как солнечные батареи, топливные ячейки или аккумуляторы, подключенные напрямую к судовой сети постоянного тока», — рассказывает Вели-Матти Рейникала, руководитель подразделения «Автоматизация процессов» компании АББ.

В сравнении с системами на переменном токе спроектированная энергосистема имеет следующие преимущества:

  • расход топлива на 20% ниже;
  • за счёт отсутствия силовых низкочастотных трансформаторов суммарный вес и объём электрооборудования уменьшен на 30%;
  • высвобождается место для размещения оборудования, груза и экипажа, то есть улучшена компоновочная схема танкера.

Управляемый электропривод

Постоянное напряжение широко применяется для обеспечения эффективного регулирования скорости электродвигателей.
С каждым годом управляемый электропривод всё больше проникает в те сферы, в которых раньше считалось достаточным применение обычного неуправляемого привода. Специалисты уверены, что сочетание инвертор плюс асинхронный (или вентильный) электродвигатель в ближайшем будущем будет всё больше теснить традиционные типы приводов. А для такого инверторного привода питание постоянным напряжением является естественным и наиболее эффективным.

Бытовая электротехника и электроника

Практически вся современная бытовая техника питается переменным напряжением. Однако почти в каждом современном электроприборе происходит преобразование переменного входного напряжения в постоянное. И именно последнее используется электронными схемами.

Очевидно, что у постоянного тока множество преимуществ перед переменным. Но всё же у такого способа питания оборудования есть целый ряд особенностей, которые необходимо учитывать при разработке топологии электрических цепей и при выборе защитных и коммутационных устройств.

Особенности цепей постоянного тока

1. Направление тока

Электрический ток, называемый «постоянным», имеет неизменные во времени значение и направление. Если рассматривать постоянный ток как прохождение элементарных электрических зарядов через определённую точку, то значение заряда (Q), протекающего через эту точку (а вернее, через поперечное сечение проводника) за единицу времени, будет неизменным.

В системах постоянного тока относительное направление тока имеет особую важность, поэтому необходимо присоединение нагрузки со строгим соблюдением полярности. Ошибки неотвратимо приводят к тяжёлым аварийным процессам. Например, если аккумуляторная батарея будет подключена к источнику с неправильной полярностью, произойдет её перегрев с дальнейшим закипанием электролита и последующим возможным разрушением ее корпуса, которое обычно носит взрывной характер. При питании обратной полярностью серьёзные повреждения могут так же возникнуть и во многих электронных цепях.

К полярности чувствительно не только электротехническое оборудование, но и аппараты защиты и коммутации, устанавливающиеся в распределительных щитах. Обычно для того, чтобы избежать ошибок при монтаже электросети, производители наносят на переднюю панель аппаратов специальную маркировку. «Надо понимать, что работа монтажника достаточно однообразна: в день они собирают десятки однотипных схем. Так что от неточностей, связанных с невнимательностью, не застрахованы даже профессионалы. Случается, что коммутационные аппараты подключают неправильно. В итоге подача напряжения на распределительный щит может закончиться возгоранием», — рассказывает Илья Лёшин, начальник измерительной лаборатории компании «Центроэлектромонтаж».

Описанная специалистом проблема была актуальна для постоянного тока в течение многих десятилетий. Но в последнее время на рынке появились устройства, не чувствительные к полярности приложенного напряжения благодаря особым конструкторским решениям. «Использование подобных аппаратов избавляет от множества проблем, – комментирует Алексей Кокорин, менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Так, например, за счёт симметричной конструкции полюса выключатели-разъединители серии OTDC производства АББ не чувствительны к полярности приложенного напряжения. Их можно монтировать внутри щита как вертикально, так и горизонтально, подвод питания осуществляется сверху либо снизу».

Читайте также:  Что такое реле направления тока

2. Электрическая дуга

Одной из проблем, связанных с использованием аппаратов и переменного, и постоянного тока, является электрическая дуга. Она возникает между размыкающимися контактами из-за ионизации воздушного пространства между ними.

В выключателе переменного тока гашение дуги происходит при переходе значения переменного тока через ноль. После исчезновения разряда, во избежание его повторного появления, необходимо восстановить электрическую прочность воздушного дугового промежутка. Сделать это можно либо за счёт «принудительной» рекомбинации ионов и электронов, либо с помощью вывода из контактного промежутка заряженных частиц.

В цепях постоянного тока процесс происходит несколько иначе. В общем случае параметры дуги зависят от характеристик цепи, значения тока, а также параметров самой среды: температуры, давления, состава воздуха и т.п. Существует набор условий, при которых электрическая дуга при размыкании контактов в цепи постоянного тока может устойчиво гореть длительное время. Таким образом, для её гашения необходимо так изменить параметры процесса, чтобы не существовало точки устойчивого горения.

В аппаратах низкого напряжения применяется два решения: открытый разрыв и щелевые дугогасительные камеры. В первом случае дуга растягивается, допустим, с помощью электродинамических сил, одновременно охлаждаясь воздухом (способ применяется для токов до 5 кА и напряжений до 500 В). Во втором – дуга при помощи магнитного поля растягивается и попадает в узкую камеру, где охлаждается (применяется для токов до 90 кА).

«Часто эффективность работы дугогасительных механизмов, в которых задействованы магнитные или электродинамические силы, зависит от величины самого тока. При высоких значениях они справляются со своей задачей, но в некоторых случаях магнитных сил недостаточно, чтобы растянуть дугу до требуемой длины. Поэтому иногда аппараты дополняются, к примеру, постоянными магнитами, позволяющими расширить рабочий диапазон токов», — поясняет Алексей Кокорин (АББ). Схема, описанная специалистом, используется в аппаратах серии OTDC, где установлена дугогасительная решётка новой конструкции с удлинёнными пластинами специальной формы. В процессе гашения дуга изгибается в пространстве и растягивается. В то же время для увеличения падения напряжения на ней применяется принцип деионной решётки. Чтобы такой дугогасительный механизм эффективно работал как при низком, так и при высоком напряжении, в него были интегрированы дополнительные постоянные магниты. Их силы поля достаточно, чтобы перемещать дугу к решётке, даже если значения тока малы.

3. Размер защитных аппаратов должен быть минимальным

Цепи постоянного тока чаще всего применяются именно там, где важна компактность оборудования. «Габариты важны практически во всех отраслях, поскольку любое оборудование занимает дефицитные площади. Кроме того, есть сферы, где важен каждый кубический сантиметр: например, транспорт. При разработке оборудования наша компания уделяет его размерам особое внимание. Например, выключатели нагрузки серии OTDC работают с током 100-250 А при напряжении до 1000 В, имея при этом всего два полюса. Обычно для таких цепей применяются четырёхполюсные автоматические выключатели, имеющие почти в три раза большие габариты. Так как аппараты не чувствительны к полярности, дополнительную экономию места можно обеспечить за счёт удобного варианта размещения модулей в монтажном блоке (вертикально или горизонтально) как на шине, так и без нее, или благодаря более эргономичной подводке питания», — говорит Алексей Кокорин (АББ).

Хотя ещё полвека назад считалось, что постоянный ток окончательно сдал свои позиции, сегодня в рамках разговоров о повышении энергоэффективности систем электроснабжения всё чаще на повестке дня появляются проекты по строительству сетей DC. Переход промышленности на потребление постоянного тока потребует в первую очередь обновления оборудования и перестройки сложившейся культуры использования энергии. А правильный подбор коммутационной и защитной аппаратуры для цепей постоянного тока – первый шаг к использованию всех преимуществ подобных сетей.

Источник

Устройство и примеры применения реле, как выбрать и правильно подключить реле

Коммутация – это включение или выключение электроприбора в сеть. Для этого используют разъединители, выключатели, автоматические выключатели, реле, контакторы, пускатели. Последние три (реле, контактор и магнитный пускатель) подобны по своему строению, но предназначены для разных мощностей нагрузки. Это электромеханические коммутационные устройства. У новичков часто возникают вопросы типа:

«Для чего у реле столько контактов?»;

«Как заменить реле, если нет подобного по расположению выводов?»;

«Как подобрать реле?».

Я постараюсь ответить на все эти вопросы в статье.

Содержание статьи

Устройство и примеры применения реле, как выбрать и правильно подключить реле

Для чего нужно реле

Чтобы включить нагрузку нужно подать на её выводы напряжение, оно может быть постоянным и переменны, с разным количеством фаз и полюсов.

Напряжение можно подать несколькими способами:

Разъёмное соединение (вставить вилку в розетку или штекер в гнездо);

Разъединителем (как вы включаете свет в комнате, например);

Через реле, контактор, пускатель или полупроводниковый коммутационный прибор.

Первые два способа ограничены как по максимальной коммутационной мощности, так и по расположению точки подключения. Это удобно, если свет или прибор вы включаете выключателем или автоматом при этом и они расположены рядом друг с другом.

Для примера, приведу ситуацию, например водонагревательный бак (бойлер) – это достаточно мощная нагрузка (1 – 3 и более кВт). Ввод электроэнергии в коридоре, и там же на электрощите у вас расположен автомат включения бойлера, тогда вам нужно протянуть кабель сечением 2.5 кв. мм. На 3-5 метров. А если вам нужно включить такую нагрузку на большом расстоянии?

Для удаленного управления можно использовать такой же разъединитель, но чем больше расстояние – тем большим получится сопротивление кабеля, значит, нужно будет использовать кабеля с большим сечением, а это дорого. Да и если кабель оборвется – непосредственно на месте включить прибор уже не получится.

Для этого можно использовать реле, которое установлено непосредственно возле нагрузки, а включать его удаленно. Для этого не нужен толстый кабель, ведь сигнал управления обычно от единиц до десятков ватт, при этом может включаться нагрузка в несколько киловатт.

Выключатели и разъединители – нужны для ручного включения нагрузки, для того, чтобы управлять ею автоматически, нужно использовать реле или полупроводниковые приборы.

Сферы применения реле:

Схемы защиты электроустановок. Для автоматического ввода энергии защиты от низких и высоких напряжений, Реле тока – для срабатывания токовых защит, разрешения пуска электрических машин и пр.;

Для удаленного включения.

Электромагнитное реле

Как работает реле

Электромагнитное реле состоит из катушки, якоря и набора контактов. Набор контактов может быть разным, например:

Реле с одной парой контактов;

С двумя парами контактов (нормально-замкнутые – NC, и нормально-разомкнутые – NO);

С несколькими группами (для управления нагрузкой в независимых друг от друга цепях).

Катушка может быть рассчитана на разную величину постоянного и переменного тока, вы можете подобрать под свою схему, чтобы не использовать дополнительный источник для управления катушки. Контакты могут коммутировать как постоянный, так и переменный ток, величина тока и напряжения обычно указана на крышке реле.

Мощность нагрузки зависит от коммутационной способности аппарата обусловленного его конструкцией, на мощных электромагнитных коммутационных устройствах присутствует дугогасительная камера, для управления мощной резистивной и индуктивной нагрузкой, например электродвигателем.

Устройство реле

Для поддержания магнитного поля в свободном пространстве затрачивается больше энергии, чем для его поддержания в магнитном веществе. В результате этого между телами, состоящими из магнитного материала, всегда существует сила притяжения, если они находятся во внешнем намагничивающем поле.

Зазор между ферромагнитными пружинными пластинками закрывается, когда намагничивающая сила превышает силу пружины, и, наоборот, открывается, когда сила пружины преобладает. Такое закрывание и открывание зазора можно использовать соответственно для замыкания и размыкания некоторой электрической цепи.

Когда на катушку реле подаётся ток, то силовые линии магнитного поля пронизывают её сердечник. Якорь изготовлен из материала, который магнитится и он притягивается к сердечнику катушки. На якоре может быть размещена контактная медная пластика и гибкая подводка (провод), тогда якорь находится под напряжением и по медным шинам подаётся напряжение на неподвижный контакт.

Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты. Когда напряжение пропадает – якорь возвращается в нормальное состояние возвратной пружиной.

Устройство реле

Могут быть и другие конструкции, например, когда якорь толкает подвижный контакт, и он переключается от нормального состояния к активному, это изображено на картинке ниже.

Реле

Итог: Реле позволяет малым током через катушку управлять большим током через контакты. Величина управляющего и коммутируемого (через контакты) напряжения может быть разная и не зависит друг от друга.

Таким образом мы получаем гальванически развязанное управление нагрузкой. Это даёт существенное преимущество перед полупроводниками. Дело в том, что сам по себе транзистор или тиристор он не развязан гальванически, даже более того непосредственно связан.

Токи базы это часть тока коммутируемой через эмиттер-коллектор цепи, в тиристоре, в принципе, ситуация подобна. Если PN-переход повреждается – напряжение включаемой цепи может попасть на цепь управления, если это кнопка – ничего страшного, а если это микросхема или микроконтроллер – они, скорее всего, тоже выйдут из строя, поэтому реализуется дополнительная гальваническая развязка через оптопару или трансформатор. А чем больше деталей – тем меньше надежность.

ремонтопригодность. вы можете провести ревизию большинства реле, например, подчистить контакты от нагара и оно заново заработает, а при определенной сноровке можно заменить катушку или подпаять её выводы если они оторвались от выходящих контактов;

полная гальваническая развязка силовой цепи и цепи управления;

низкое переходное сопротивление контактов.

Читайте также:  Как определить частоту колебаний силы тока по графику

Чем ниже сопротивление контактов, тем меньше теряется напряжения на них и меньше нагрев. Электронные реле выделяют тепло, чуть ниже я бегло расскажу о них.

из-за того, что конструкция по сути механическая – ограниченное число срабатываний. Хотя для современных реле оно доходит до миллионов срабатываний. Так что сомнительный момент недостаток.

скорость срабатывания. Электромагнитное реле срабатывает за доли секунды, в то время как полупроводниковые ключи могут переключаться миллионы раз в секунду. Поэтому нужно подходить с умом к выбору коммутационной аппаратуры.

при отклонениях от управляющего напряжения может быть дребезжание реле, т.е. состояние, когда ток через катушку мал, для нормального удержания якоря, и оно «жужжит» открываясь и закрываясь с большой скоростью. Это чревато скорым выходом его из строя. Отсюда вытекает следующее правило – для управления реле аналоговый сигнал должен подаваться через пороговые устройства, типа триггера Шмидта, компаратора, микроконтроллера и т.д.;

Щелкает при срабатывании.

Контакты

Характеристики реле

Чтобы правильно подобрать реле нужно учесть ряд параметров, который описывает его особенности:

1. Напряжение срабатывания катушки. 12 В реле не будет устойчиво работать или не включится совсем если вы на его катушку подадите 5 В.

2. Ток через катушку.

3. Количество контактных групп. Реле может быть 1-канальным, т.е. содержать 1 коммутационную пару. А может и 3-канальным, что позволит подключать 4 полюса к нагрузке (например, три фазы 380В)

4. Максимальный ток через контакты;

5. Максимальное коммутируемое напряжение. У одного и того же реле оно различное для постоянного и переменного токов, например 220 В переменного и 30 В постоянного. Это связано с особенностями дугообразования при коммутации разных электроцепей.

6. Способ монтажа – клеммные колодки, вывод для клемм, пайка в плату или установка на DIN-рейку.

Установка на DIN-рейку

Электронные реле

Обычное электромагнитное реле при срабатывании щелкает, что может мешать вам при использовании таких приборов в бытовых помещениях. Электронное реле, или как его еще называют твердотельное реле, лишено этого недостатка, но оно выделяет тепло, т.к. в качестве ключа используется транзистор (для реле постоянного тока) или симистор (для реле переменного тока). Кроме полупроводникового ключа в электронном реле установлена обвязка для обеспечения возможности управления ключом нужным управляющим напряжением.

Схема электронного реле

Электронное реле

Такое реле для управления использует постоянное напряжение от 3 до 32, а коммутирует переменное от 24 до 380 В с током до 10 А.

малое потребление управляющего тока;

отсутствия шума при переключении;

больший ресурс (миллиард и больше срабатываний, а это в тысячу раз больше чем у электромагнитного).

может сгореть от перегрева;

если сгорит – отремонтировать не получится.

Как подключить реле

На картинке ниже хорошо изображена схема подключения реле к сети и нагрузке. На один из силовых контактов подключают фазу, на второй нагрузку, а ноль на второй вывод нагрузки.

Как подключить реле

Так собирается силовая часть. Цепь управления собирается так: источник питания, например аккумулятор или блок питания, если реле управляемое постоянным током, через кнопку подключается к катушке. Для управления реле переменного тока схема аналогична, на катушку подается переменное напряжение нужной величины.

Здесь очевидно, что напряжение управления никак не зависит от напряжения в нагрузке, тоже и с токами. Ниже вы видите схему управления активаторами центрального замка автомобиля с двухполярым управлением.

Задача следующая, чтобы активатор совершил движение вперед нужно подключить плюс и минус к его соленоиду, чтобы сдвинуть его назад – полярность нужно сменить. Это сделано с помощью двух реле с 5-ю контактами (нормально-замкнутый и нормально-разомкнутый).

Пример подключения

Когда напряжение подаётся на левое реле, плюс подается на нижний провод (по схеме) активатора, через нормально-замкнутые контакты правого реле верхний провод активатора подключен к отрицательному выводу (к массе).

Когда напряжение подано на катушку правого реле, а левое обесточено, полярность получается обратной: плюс через нормально-разомкнутый контакт правого реле подаётся на верхний провод. А через нормально-замкнутые контактны правого реле – нижний провод активатора соединен с массой.

Этот частный случай я привел для примера того, что с помощью реле можно не только включать напряжение на нагрузку, но и осуществлять разнообразные схемы подключения и переполюсовки.

Подборка статей про электромагнитные пускатели:

Учебное видео про устройство реле и пускателей:

Как подключить реле к микроконтроллеру

Чтобы управлять нагрузкой переменного тока через микроконтроллер удобно использовать реле. Но возникает небольшая проблема: ток потребления реле зачастую превышает максимальный ток через пин микроконтроллера. Чтобы её решить – нужно усилить ток.

На схеме изображено подключение реле с катушкой на 12В. Здесь транзистор VT4 обратной проводимости, он играет роль усилителя тока, резистор R нужен для ограничения тока через базу (устанавливается так, чтобы ток был не более чем максимальный ток через пин микроконтроллера).

Резистор в цепи коллектора нужен для того, чтобы задать ток катушки, подбирается по величине тока срабатывания реле, в принципе, его можно исключить. Параллельно катушке установлен обратный диод VD2 – он нужен, чтобы всплески самоиндукции не убили транзистор и выход микроконтроллера. С диодом всплески отправятся в сторону источника питания, и энергия магнитного поля прекратит свою работу.

Ардуино и реле

Для любителей Arduino есть готовые релейные шилды и отдельные модули. Чтобы обезопасить выходы микроконтроллера в зависимости от конкретного модуля может быть реализована опторазвязка управляющего сигнала, что значительно увеличит надёжность схемы.

Реле для Ардуино

Схема подобного модуля вот:

Схема модуля

Мы говорили о характеристиках реле, так вот они часто указаны в маркировке на передней крышке. Обратите внимание на фото релейного модуля:

10A 250VAC – значит что способно управлять нагрузкой переменного напряжения до 250В и с током до 10 А;

10A 30VDC – для постоянного тока напряжение в нагрузке не должно превышать 30В.

SRD-05VDC-SL-C – маркировка, зависит от каждого произовдителя. В ней мы видим 05VDC – это значит, что реле сработает от напряжения в 5В на катушке.

При этом у реле есть нормально открытый контакты, всего 1 подвижный контакт. Схема подключения к ардуине изображена ниже.

Схема подключения нагрузки к Ардуино

Подробнее про Ардуино для начинающих:

Заключение

Реле это классический коммутационный прибор который используется везде: пультах управления в щитовых промышленных цехов, в автоматике, для защиты оборудования и человека, для избирательного подключения конкретной цепи, в лифтовом оборудовании.

Начинающему электрику, электронщику или радиолюбителю очень важно научиться использовать реле и составлять схемы с ними, так вы можете применять их в работе и хозяйстве, реализуя релейные алгоритмы без применения микроконтроллеров. Это хоть и увеличит габариты, но значительно улучшит надежность схемы. Ведь надежность это не только долговечность, но и безотказность и ремонтопригодность!

Источник

Твердотельные реле. Схемы подключения

Схемы подключения твердотельных реле

Схемы подключения твердотельных реле

В этой статье обсудим схемы подключения твердотельными реле (ТТР), и способы управления ими.

Напоминаю, для тех кто не в курсе – что такое твердотельное реле и как оно работает – обратитесь к более старой моей статье О принципах работы твердотельных реле.

Схемы включения подобных реле не очень сложны, но, как и везде, есть свои особенности.

Твердотелки – надо ли их использовать?

Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:

У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.

Другой случай, когда такие реле не нужны:

Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.

О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.

Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.

Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.

Различия схем включения реле

По виду подключения твердотельные реле можно разделить на следующие категории:

По управлению (виду входного управляющего сигнала):

  • постоянное напряжение (встречается чаще всего),
  • переменное напряжение,
  • постоянный ток 4-20 мА,
  • переменный резистор.

По виду коммутируемого тока

  • твердотельные реле переменного тока
  • твердотельные реле постоянного тока

По количеству фаз

  • одна фаза
  • три фазы (как правило, фактически это две фазы)

В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.

Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))

Схемы подключения твердотельных реле

Теперь рассмотрим подключение твердотельного реле подробнее.

Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения реле переменного тока с сигналом управления 24В постоянного тока:

твердотельное реле однофазное, схема подключения

Схема включения твердотельного реле

Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.

С током не всё так просто, но об этом ниже.

Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!) подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.

Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!

Ещё раз напоминаю –

Читайте также:  Индукционный ток возникает если кольцо будет

НЗ – это закрытые (замкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) течёт ток.

НО – это открытые (незамкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) ток не течёт.

Условные выходные контакты ТТР также будут НО, т.к. без активации цепи управления нагрузка выключена.

Теперь подробнее по управлению твердотелками.

СамЭлектрик.ру в социальных сетях

Подписывайтесь! Там тоже интересно!

Схемы с управлением от транзистора

Здесь транзистор может быть выходом любого полупроводникового прибора – датчика приближения, контроллера, и т.п.

Управление транзистором PNP, НО реле

Скажу, что со схемами управления, которые я взял из фирменных инструкций, полная путаница. Можете сами разобраться, а я расскажу своё мнение.

Управление транзистором PNP, НО реле

Управление транзистором PNP, НО реле

Под “нормально открытым контактом” (читали, что это, ссылку я давал выше?) подразумевается, что без управляющего напряжения (на базе транзистора) твердотельное реле не пропускает ток. Напряжение между входными контактами 3 и 4 близко к нулю, реле выключено. При подаче входного управляющего напряжения на базу транзистора (например, +5В), транзистор открывается и плюс подается на вход 3. Реле открывается, нагрузка получает питание.

Управление транзистором NPN, НЗ реле

Управление транзистором NPN, НЗ реле

Управление транзистором NPN, НЗ реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, нагрузка под напряжением.

Управление транзистором NPN, НО реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, близкое к нулю, и нагрузка без напряжения.

Управление резистором

Плавно подходим к переменному току.

Управление переменным резистором

Управление переменным резистором

Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.

Схема с фиксацией и управлением кнопками (защелка)

Управление твердотельным реле с фиксацией включения

Управление твердотельным реле с фиксацией включения

Схема включения интересна тем, что можно включать – выключать нагрузку, используя только две кнопки – Пуск и Стоп. То есть, схема такая же, как и при использовании обычного реле. Точнее, магнитного пускателя. Важно, что управляющее напряжение равно напряжению питания нагрузки.

Схема нарисована тайваньскими инженерами, попробуем разобраться в ней.

Кстати, её же можно использовать для коммутации и переменного, и постоянного тока.

Схема работает таким образом. Исходно управляющее напряжение поступает на клемму 3 ТТР с источника питания через НЗ контакты кнопки Стоп. При нажатии кнопки Пуск (слева на схеме) напряжение с другого полюса источника поступает через НО контакты на клемму 4 ТТР. Реле включается, напряжение на клемме 1 появляется, и подается через резистор (вверху схемы) на клемму 4. Прошла доля секунды, кнопку Пуск можно отпускать, нагрузка питается до тех пор, пока не будет нажата кнопка Стоп.

Схемы включения трехфазных твердотельных реле

Трехфазное твердотельное реле, схема подключения.

Трехфазное твердотельное реле, схемы подключения.

Тут источник трехфазного напряжения – справа по схемам, нагрузка – слева. Управляющее напряжение может быть любым (переменным или постоянным).

Кроме того, коммутация может быть как по двум фазам, так и по трём, это важно! Подробнее ниже.

Реверсивные твердотельные реле

Существуют также специальные трехфазные твердотельные реле для реверса двигателей, у которых два управляющих входа.

Пример включения трехфазного реле – на фото ниже:

Включение трехфазного твердотельного реле

Включение трехфазного твердотельного реле

Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.

На корпусе реле напечатана его схема включения, где всё понятно. Реле реверсивное, и у него два входа – Forward и Reverse (Вперёд/Назад). Для реверса фазы L1 и L2 меняются местами.

Важно – внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление – от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко 🙁 .

Выбор твердотельных реле, защита и особенности работы

Обычное реле и контактор без особых проблем выдерживают кратковременные перегрузки до 150 и даже 200% от номинала. Особенно, если не коммутировать нагрузку с таким током, а повышать ток после замыкания, и понижать перед размыканием.

Обычные контакты могут выдержать и кратковременный ток КЗ, если сработает защита с правильной уставкой тока. Просто, возможно, придётся потом контакты почистить.

Твердотельные реле от перегрузок страдают сильнее, за пол периода портятся безвозвратно, и контакты потом не почистить, из-за отсутствия таковых.

Это как в звукотехнике. Ламповая техника при перегрузках чувствует себя нормально, только слегка “потеет”, а транзисторы начинают жутко искажать сигнал и могут выйти из строя. За это до сих пор так ценятся ламповые усилители, за их мягкий, бархатный звук на предельных мощностях. Другое дело, что источников качественного сигнала сейчас практически нет, всё заполонил mp3 128kbps, и то в лучшем случае. Но это тема отдельной статьи…

Если при выборе контактора достаточно выбрать запас в 10-20% и защитить его обычным автоматом, то с твердотельными устройствами всё сложнее.

Поэтому для твердотельных реле рекомендуется для активной нагрузки (лампы, ТЭНы) запас по номинальному току в 2-4 раза. При пуске асинхронных двигателей из-за большого пускового тока запас по току нужно увеличить до 6-10 раз.

То есть, трехфазная твердотелка Fotek TSR-40AA-H на 40А, показанная на фото чуть выше, на своих 40 амперах работать вряд ли будет. Мощность двигателя, которую можно коммутировать в данном случае – от 2,2 кВт до 5 кВт. Причём двигатель 5 кВт (это около 10А) должен запускаться обязательно на холостом ходу, с минимальным пусковым моментом, а нагрузку к нему прикладывать можно после пуска и разгона.

Кстати, с индуктивной нагрузкой твердотельные реле могут вести себя неадекватно, у меня бывали проблемы. В случае высокоиндуктивных нагрузок (трансформаторы, катушки с магнитопроводами, электрические звонки, и т.п.) нужно параллельно нагрузке включать RC-цепь (снабберную цепь из последовательных резистора и конденсатора) для уменьшения влияния противо-ЭДС. Кроме того, эта цепь уменьшает общую индуктивность нагрузки, т.е. делает её более активной. И ТТР легче работать.

Напоследок – защита при КЗ

Производители рекомендуют использовать специальные предохранители для твердотельных приборов:

  • gR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов(более быстродействующие , чем gS)
  • gS – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов, при повышенной загрузке линии.
  • aR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов от короткого замыкания.

Такие предохранители стоят дорого (сравнимы со стоимостью самого твердотельного реле), поэтому в большинстве случаев можно использовать защитные автоматы класса В. Чем же они хороши и как они спасут наши твердотельные реле от выгорания при КЗ?

Напомню, в 99% везде встречаются автоматы класса С. Класс D ставят в качестве вводных рубильников и при больших пусковых токах (мощные двигатели, трансформаторы). А класс В – самый чувствительный, срабатывает раньше всех.

Кстати, гуру электрики и электропроводки, cs-cs.net, предлагает дома ставить автоматы только В класса. И некоторые производители – рекомендуют ставить В класс на электроплиты, водонагреватели – туда, где нет двигателей и пусковых токов.

Почему – поясню на графике.

Кривые отключения

Кривые отключения или токо-временные характеристики

Подробно про выбор защитного автомата рассказано в другой статье.

Но мы вернёмся к нашему трехфазному твердотельному реле Fotek TSR-40AA-H на 40А, про которое я писал выше. Чтобы его гарантированно защитить от КЗ, надо обязательно поставить вот такой автомат:

Автомат В6

Автомат с характеристикой В6 (обведено красным)

Он мгновенно сработает при токе 20…30 Ампер и спасет твердотелку. А от перегруза надо будет поставить мотор-автомат на ток 4-6,3 А. И это всё будет питать двигатель на 2,2 кВт, лучше меньше. Либо ТЭН, тогда мотор-автомат не нужен.

Пишите в комментариях, у кого какой опыт по применению!

Полезные файлы, возможно, написано информативнее, чем у меня:

• Твердотельные реле Фотек / Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан: 3680 раз./
• Твердотельные реле – устройство и принцип работы / Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан: 4142 раз./

Где купить твердотельные реле

Если вы живете в крупном городе, то лучше конечно поехать в ближайший магазин – и через час реле можно устанавливать. Но, например, у меня в Таганроге такие реле – только под заказ, и купить их можно только через фирмы в Ростове.

Поэтому, на сегодняшний день лучший вариант – покупать твердотельные реле в интернете, через АлиЭкспресс. Цены примерно те же, но минус в том, что доставка может быть около месяца.

Пишите в комментариях, у кого какие вопросы, отзывы и опыт по применению!

Источник

Adblock
detector