Меню

Количество теплоты электрического тока с зарядом



Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 30. Закон Джоуля — Ленца. ЭДС

Перечень вопросов, рассматриваемых на уроке:

1) Работа электрического тока;

2) Мощность электрического тока;

3) Закон Джоуля — Ленца;

4) Сторонние силы;

5) Электродвижущая сила.

Глоссарий по теме

Работа тока на участке цепи равна произведению силы тока, напряжения на этом участке и времени, в течении которого совершалась работа.

Мощность тока равна отношению работы тока ко времени прохождения тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называются сторонними силами.

Электродвижущая сила (ЭДС) в замкнутом проводящем контуре равна отношению работы сторонних сил по перемещению заряда вдоль контура к этому заряду.

Основная и дополнительная литература по теме урока:

1. Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 343 – 347.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа,2009.- 68 – 74.

Основное содержание урока

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу, равную произведению заряда, прошедшего через проводник, и напряжения.

Сила тока равна отношению заряда прошедшего через проводник ко времени прохождения

Выразим заряд из формулы силы тока

через силу тока и время:

после подстановки в формулу (1) получим

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шёл ток.

Из закона Ома для участка цепи выразим напряжение через силу тока и напряжение

и подставив в формулу работы получим:

При последовательном соединении проводников для определения работы тока удобнее пользоваться этой формулой, так как сила тока одинакова во всех проводниках.

При параллельном соединении проводников формулой:

так как напряжение на всех проводниках одинаково.

Работа тока показывает, сколько электроэнергии превратилось в другие виды энергии за конкретный период времени. Для электроэнергии справедлив закон сохранения энергии.

Мощность определяется по формуле:

Мощность тока равна отношению работы тока ко времени прохождения тока.

Так же формулу для мощности можно переписать в нескольких эквивалентных формах:

Если на участке цепи не совершается механическая работа и ток не производит химических действий, то происходит только нагревание проводника.

Электрическое поле действует с силой на свободные электроны, которые начинают упорядоченно двигаться, одновременно участвуя в хаотическом движении, ускоряясь в промежутках между столкновениями с ионами кристаллической решетки. Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом. Последующие столкновения электронов с другими ионами увеличивают амплитуду их колебаний и соответственно температуру всего проводника.

В неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии:

Количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

При последовательном соединении большее количество теплоты выделяется в проводнике с большим сопротивлением, а при параллельном соединении – с меньшим.

Измерения, приводящие к закону Джоуля-Ленца, можно выполнить, поместив в калориметр с водой проводник с известным сопротивлением и пропуская через него ток определенной силы в течение известного времени. Количество выделяющейся при этом теплоты определяют, составив уравнение теплового баланса.

Если соединить проводником два металлических шарика, несущих заряды противоположных знаков, под влиянием электрического поля этих зарядов в проводнике возникает кратковременный электрический ток. Заряды быстро нейтрализуют друг друга, и электрическое поле исчезнет.

Чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство, которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, должны действовать силы неэлектростатического происхождения. Одно лишь электрическое поле заряженных частиц не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (то есть кулоновских), называют сторонними силами. Необходимости сторонних сил для поддержания постоянного тока в цепи объясняет закон сохранения энергии.

Читайте также:  Вещи из тока бока в реальной жизни

Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. Работа этих сил вдоль замкнутого контура отлична от нуля. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле.

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).

Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда:

Электродвижущую силу выражают в вольтах.

Разбор тренировочных заданий

1. Электрочайник со спиралью нагревательного элемента сопротивлением 30 Ом включен в сеть напряжением 220 В. Какое количество теплоты выделится в нагревательном элемента за 5 мин?

Решение. Количество теплоты выделяемой нагревательным элементом определяется законом Джоуля – Ленца:

Правильный ответ 3) 484000 Дж.

2. Определите работу сторонних сил при перемещении по проводнику заряда 10 Кл, если ЭДС равно 9 В. Ответ округлите до десятых.

=9В

Решение. Из формулы ЭДС выражаем

Источник

Работа электрического тока. Закон Джоуля-Ленца.

Работа электрического тока Закон ДжоуляЛенца

Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,

где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:

Работа электрического тока на участке цепи является произведением напряжения на концах это­го участка на силу тока и на время, на протяжении которого совершалась работа.

Закон Джоуля-Ленца .

Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтверж­ден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которо­му удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на про­воднике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.

Работа электрического тока Закон ДжоуляЛенца

При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то

Работа электрического тока Закон ДжоуляЛенца

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Источник

Закон Джоуля-Ленца

date image2015-02-27
views image6238

facebook icon vkontakte icon twitter icon odnoklasniki icon

В случае, когда проводник неподвижен и химических превращений в нем не происходит, то работа тока целиком расходуется на нагревание проводника. Количество теплоты, выделяющееся в проводнике за конечный промежуток времени при прохождении постоянного тока I, рассчитывается по формуле

Формула (2.7) выражает закон Джоуля-Ленца для участка цепи постоянного тока: количество теплоты, выделяемое постоянным электрическим током на участке цепи, равно произведению квадрата силы тока на время его прохождения и электрическое сопротивление этого участка цепи.

Так как IR = U, то формулу (2.7) можно переписать в виде

Если сила тока изменяется со временем, то количество теплоты, выделяющееся за время t, вычисляется по формуле

Закон Джоуля-Ленца в дифференциальной форме (для данной точки проводника с током) имеет вид

где ω − плотность тепловой мощности; σ − удельная электропроводность; Е− напряженность электрического поля в данной точке проводника; Е * − напряженность поля сторонних сил.

Примеры решения задач

Задача 1. За время τ = 20 с при равномерно возраставшей силе тока от нуля до Io в проводнике сопротивлением R = 5 Ом выделилось количество теплоты Q = 4 кДж. Найти Io.

По закону Джоуля-Ленца за время dt в проводнике выделится количество тепла

Полное количество тепла за время от до τ

Ответ: I = 11 А.

Задача 2. При включении электромотора в сеть с напряжением U = 220 В он потребляет ток I = 5 А. Определить мощность, потребляемую мотором, и его КПД, если сопротивление обмотки мотора R = 6 Ом.

Pп – ? η – ? Решение: Полная мощность, потребляемая мотором: , Р = 1100 Вт.
U = 220 В I = 5 А R = 6 Ом

Мощность, выделяющаяся в виде тепла:

Полезная мощность (механическая)

Ответ: η = 86,4%.

Задача 3. Источник тока с ЭДС замкнут на реостат. При силе тока I1 = 0,2 А и I2 = 2,4 А на реостате выделяется одинаковая мощность. Найти:

1) при какой силе тока на реостате выделяется максимальная мощность?

2) чему равна сила тока короткого замыкания?

I – ? Iкз – ? Решение: При силе тока I1 на реостате выделяется мощность , при силе тока I2 ,
I1 = 0,2 А
I2 = 2,4 А P1 = P2

где R1 и R2 – сопротивления реостата в каждом случае. По условию P1 = P2, поэтому

По закону Ома для полной цепи

Из (2) и (3) выражаем R1 и R2:

подставив их в (1), получаем:

Отсюда находим отношение :

Максимальная мощность выделяется при условии R = r, при этом ток

Ток короткого замыкания

Ответ:I = 1,3 А; Iкз = 2,6 А.

Задача 4. При изменении внешнего сопротивления с R1 = 6 Ом до R2 = 21 Ом. КПД схемы увеличился вдвое. Чему равно внутреннее сопротивление источника тока r ?

r − ? Решение: При сопротивлении R1 КПД источника тока , а при сопротивлении R2
R1 = 6 Ом R2 = 21 Ом η2 = 2η1

Так как по условию задачи η2=2η1, то

Отсюда выражаем r:

Ответ: r = 14 Ом.

Задача 5. Две батареи с ЭДС ε1 = 20 В и ε2 = 30 В и внутренними сопротивлениями r1 = 4 Ом и r2 = 60 Ом соединены параллельно и подключены к нагрузке R = 100 Ом. Найти: 1) мощность, которая выделяется в нагрузке; 2) параметры ε и r генератора, которым можно заменить батареи без изменения тока в нагрузке; 3) КПД этого генератора.

P – ? ε, r – ? η – ? Решение: Рис. 52
ε1 = 20 В ε2 = 30 В r1 = 4 Ом r2 = 60 Ом R = 100 Ом

Используя правила Кирхгофа, найдем токи I1, I2, I в узле A:

Для контура a с обходом против часовой стрелки

Для контура b с обходом против часовой стрелки

Решим систему линейных уравнений (1) – (3) относительно I1, I2, I.

Из (1) выразим I

Умножая уравнение (2) на R, а уравнение (5) на r1, и складывая их, получаем:

Подставляя (6) в выражение (2), находим I1:

Подставляя выражения (6) и (7) в (4), находим I:

В нагрузке выделяется мощность:

Находим параметры генератора. Если данные в задаче батареи заменить на одну с ЭДС ε и внутренним сопротивлением r, то через сопротивление R потек бы ток

Преобразуем выражение (8), поделив числитель и знаменатель дроби на (r1+r2), получим

Для того чтобы эти выражения были одинаковыми, необходимо выполнение условий:

КПД этого генератора в данной схеме

Ответ: η = 96,4 %.

Источник

Количество теплоты электрического тока с зарядом

В электрической цепи, подключённой к источнику, возникают электрические силы, действующие на носители зарядов и приводящие их в движение. Пусть под действием электрической силы `F` частица, несущая заряд `q`, переместилась вдоль проводника из точки `1` в точку `2`, а сила `F` совершила над заряженной частицей работу `A_(12)`. Отношение работы `A_(12)` электрической силы над зарядом `q` при перемещении его из точки `1` в точку `2` к самому заряду $$ q$$ называют электрическим напряжением между точками `1` и `2`:

Единицей измерения напряжения в СИ является вольт (В).

За один вольт принимается напряжение на концах проводника, при котором работа сил электрического поля по перемещению через этот проводник заряда в один кулон равна одному джоулю.

Эта единица названа в честь итальянского физика А. Вольта, который в 1800 г. изобрёл электрическую батарею и впервые получил с её помощью постоянный ток, устойчиво поддерживавшийся в электрической цепи. Это открытие ознаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию: современная жизнь немыслима без использования электрического тока.

Читайте также:  Электрическая сеть малого тока

В соотношении (3) индексы `1` и `2` можно опустить, если помнить, что `1` – это точка «старта», `2` – точка «финиша».

Зная напряжение `U` на концах проводника и силу тока `I`, текущего в проводнике в течение времени `t` постоянного тока, вычислим заряд `q=I*t`, который протечёт за указанное время по проводнику. Тогда за это время силы электрического поля в проводнике совершат работу

Это позволяет судить о скорости совершения работы электрическими силами, т. е. о мощности, развиваемой силами электрического поля. Из (4) следует, что в проводнике, напряжение на концах которого равно `U`, а сила тока `I`, силы электрического поля в единицу времени совершают работу

Напомним, что единицей измерения мощности в СИ служит ватт (Вт).

Очень часто работу и мощность электрических сил называют соответственно работой и мощностью электрического тока, тем самым подчёркивают, что это работа по поддержанию электрического тока в цепи.

По проводнику в течение `T=1` мин течёт постоянный ток силой `I=0,2` А. Напряжение на проводнике `U=1,5` В. Какую работу `A` совершают электрические силы в проводнике за указанное время? Найдите мощность `P` электрического тока в проводнике.

За время `T` через проводник пройдёт заряд `Q=I*T`. Работа сил электрического поля над этим зарядом в соответствии с (4) равна

Для ответа на второй вопрос задачи воспользуемся соотношением (5):

Заметим, что в повседневной жизни, рассчитываясь «за электричество», мы оплачиваем расход электроэнергии – работу электрических сил, а не мощность. И здесь принято работу электрических сил выражать во внесистемных единицах – киловатт-часах:

Работа электрического тока может идти на изменение механической и внутренней энергий проводника. Например, в результате протекания электрического тока через электродвигатель его ротор (подвижная часть, способная вращаться, в отличие от статора) раскручивается. При этом большая часть работы электрических сил идёт на увеличение механической энергии ротора, а также других тел, с которыми ротор связан теми или иными механизмами. Другая часть работы электрического тока (в современных электродвигателях один – два процента) идёт на изменение внутренней энергии обмоток двигателя, что приводит к их нагреванию (обмотка электродвигателя представляет собой катушку, изготовленную обычно из меди, с большим числом витков).

Обсудим тепловое действие электрического тока более подробно. Из опыта известно, что электрический ток нагревает проводник. Объясняется это явление тем, что свободные электроны в металлах, перемещаясь под действием сил электрического поля, взаимодействуют с ионами вещества и передают им свою энергию. В результате увеличивается энергия колебаний ионов в проводнике, его температура растёт, при этом говорят, что в проводнике за некоторое время `t` выделяется количество теплоты `Q_(«тепл»)`. Если проводник с током неподвижен и величина тока постоянна, то работа электрических сил идёт на изменение внутренней энергии проводника. По закону сохранения энергии это количество равно работе сил электрического поля (4) в проводнике за то же самое время, т. е.

Отсюда мощность `P` тепловыделения, т. е. количество теплоты, выделяющейся в единицу времени на участке цепи, где напряжение равно `U`, а сила тока равна `I` составляет

По спирали электроплитки, подключённой к источнику с напряжением `U=120` В, протекает постоянный ток силой `I=5` А в течение `T=1` ч. Какое количество теплоты `Q_(«тепл»)` отдаёт при этом плитка в окружающую среду?

В окружающую среду будет передано то количество теплоты, которое выделится в спирали нагревательного элемента плитки за указанное время. По формуле (6) находим:

`Q_(«тепл») =I*T*U=5*3600*120=2,16*10^6` Дж.

Электродвигатель, включённый в электрическую сеть с напряжением `U=24` В, за время `T=1` ч работы совершил механическую работу `A=1680` кДж. Сила тока в обмотке `I=20` А. Найдите мощность `P` электрического тока и коэффициент полезного действия `eta` двигателя. Какое количество теплоты `Q_(«тепл»)` выделится в обмотке?

Мощность электрического тока найдём по формуле (5):

По определению коэффициент полезного действия (КПД) `eta` двигателя равен отношению полезной механической работы `A` к работе электрических сил `A_(«эл»)`, умноженному на `100%`. С учётом выражения (4) для работы электрических сил находим КПД электродвигателя:

Количество `Q_(«тепл»)` теплоты, выделившейся в обмотке, найдём по закону сохранения энергии `A_(«эл»)=A+Q_(«тепл»)`. Отсюда `Q_(«тепл»)=A_(«эл»)-A=UIT-A=24*20*3600-1680*10^3=48*10^3` Дж.

Источник