Меню

Колебания силы тока в ламповом генераторе



§ 2.12. Ламповый генератор

Ламповый генератор представляет собой автоколебательную систему, в которой вырабатываются незатухающие колебания за счет энергии источника постоянного напряжения, например батареи гальванических элементов или выпрямителя. В этом отношении ламповый генератор подобен часам, в которых незатухающие колебания маятника поддерживаются за счет энергии поднятой гири или сжатой пружины.

Ламповый генератор содержит колебательный контур, состоящий из катушки с индуктивностью L и конденсатора емкостью С. Известно, что если конденсатор зарядить, то в контуре возникнут затухающие колебания. Чтобы колебания не затухали, нужно компенсировать потери энергии за каждый период.

Пополнять энергию в контуре можно, подзаряжая конденсатор. Для этого надо контур периодически подключать на некоторый промежуток времени к источнику постоянного напряжения. Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к положительному полюсу источника обкладка конденсатора заряжена положительно, а присоединенная к отрицательному полюсу — отрицательно (рис. 2.27). Только в этом случае источник подзаряжает конденсатор, пополняя его энергию. При этом электрическое поле зарядов на обкладках конденсатора соверпхает отрицательную работу и энергия конденсатора увеличивается*.

Если же ключ замкнуть в момент времени, когда знаки зарядов на обкладках конденсатора соответствуют рисунку 2.28, то электрическое поле зарядов, имеющихся на обкладках конденсатора, будет совершать положительную работу. Энергия конденсатора при этом уменьшается; конденсатор частично разряжается.

Следовательно, источник постоянного напряжения, все время подключенный к контуру, не может поддерживать в нем незатухающие колебания. Половину периода энергия будет поступать в контур, а в следующую половину периода — уходить из него.

Но если с помощью ключа подключать источник тока к колебательному контуру лишь в те полупериоды, когда происходит передача энергии в контур (см. рис. 2.27), то установятся незатухающие колебания. Понятно, что для этого необходимо обеспечить автоматическую работу ключа (или клапана, как его часто называют). Поскольку речь идет о колебаниях очень высокой частоты, то ключ должен обладать огромным быстродействием. В качестве такого практически безынерционного ключа используется триод (рис. 2.29).

В анодной цепи, в которую включен колебательный контур, должен протекать ток в те промежутки времени, когда обкладка конденсатора, присоединенная к положительному полюсу источника, заряжена положительно. Для этого колебания в контуре должны управлять потенциалом сетки uc, регулирующим силу тока в анодной цепи. Необходима, как говорят, обратная связь**.

Обратная связь в ламповом генераторе, схема которого приведена на рисунке 2.29, является индуктивной. В цепь сетки включена катушка Lc, индуктивно связанная с катушкой колебательного контура. Колебания силы тока в контуре вследствие явления электромагнитной индукции приводят к колебаниям напряжения не концах катушки Lc и тем самым к колебаниям потенциала сетки триода.

Выберем в качестве положительного направления обхода анодной цепи генератора направление против часовой стрелки. Напряжение на конденсаторе контура в этом случае равно разности потенциалов между нижней обкладкой конденсатора, присоединенной к положительному полюсу анодной батареи G, и верхней обкладкой.

Сила тока в контурной катушке отстает по фазе на π/2 от колебаний напряжения на контуре (это напряжение равно напряжению на конденсаторе). ЭДС индукции в катушке Lc (а значит, и напряжение между сеткой и катодом) согласно закону электромагнитной индукции сдвинута по фазе относительно колебаний силы тока в катушке контура тоже на π/2. В зависимости от порядка подключения концов катушки Lc к сетке и катоду лампы сдвиг фаз напряжения на участке сетка — катод равен либо +π/2, либо -π/2. В первом случае колебания напряжения на сетке совпадают по фазе с колебаниями напряжения на конденсаторе. Это означает, что в момент, когда нижняя пластина конденсатора заряжена положительно, сетка также заряжена положительно относительно катода лампы. Лампа при этом отперта, и ток в анодной цепи, созданный батареей G, подзаряжает конденсатор. В момент, когда нижняя пластина конденсатора заряжена отрицательно, потенциал сетки оказывается ниже потенциала катода и лампа запирается. Анодная цепь размыкается, и конденсатор не разряжается через анодную цепь. Это и является необходимым условием работы генератора.

При переключении концов катушки Lc напряжение на сетке меняет фазу на п. Сетка оказывается заряженной положительно, когда нижняя пластина конденсатора заряжена отрицательно (и наоборот). Анодный ток в лампе при этом разряжает конденсатор, а не подзаряжает его. В этих условиях генератор работать не будет.

После замыкания анодной цепи конденсатор заряжается и в контуре начинаются колебания. Их амплитуда нарастает до тех пор, пока потери энергии в контуре не будут в точности компенсироваться поступлением энергии из анодной цепи. Эта амплитуда прямо пропорциональна напряжению на полюсах источника тока. Увеличение напряжения источника увеличивает «толчки» тока, подзаряжающего конденсатор контура.

Частота колебаний в контуре определяется индуктивностью L катушки и емкостью С конденсатора контура согласно формуле Томсона:

При малых L и С частота колебаний велика.

Обнаружить возникновение колебаний в генераторе (возбуждение генератора) можно с помощью осциллографа, подав на его вертикально отклоняющие пластины напряжение с конденсатора. Если поменять местами концы катушки Lc, присоединяемые к сетке и катоду, генератор работать не будет.

Ламповые генераторы имеются на мощных передающих радиостанциях и входят в состав других радиотехнических устройств.

* Из курса механики известно, что если внутренние силы системы совершают отрицательную работу, то потенциальная энергия системы увеличивается.

** У часов с маятником обратная связь осуществляется анкерным механизмом.

Источник

Колебания силы тока в ламповом генераторе

§ 133. Ламповый генератор

Выше было рассмотрено применение трехэлектродной лампы в электронном усилителе. Однако триоды широко применяют и в ламповых генераторах, которые служат для создания переменных токов различной частоты.
Простейшая схема лампового генератора приведена на рис. 192. Основными его элементами являются триод и колебательный контур. Для питания нити накала лампы используется батарея накала Бн. В цепь анода включена анодная батарея Бa и колебательный контур, состоящий из катушки индуктивности Lк и конденсатора Cк, Катушка Lc включена в цепь сетки и связана индуктивно с катушкой Lк колебательного контура. Если зарядить конденсатор, а затем замкнуть его на катушку индуктивности, то конденсатор будет периодически разряжаться и заряжаться, а в цепи колебательного контура возникнут затухающие электрические колебания тока и напряжения. Затухание колебаний вызвано потерями энергии в контуре. Для получения незатухающих колебаний переменного тока необходимо периодически с определенной частотой добавлять энергию в колебательный контур с помощью быстродействующего устройства. Таким устройством является триод. Если накалить катод лампы (см. рис. 192) и замкнуть анодную цепь, то в цепи анода появится электрический ток, который зарядит конденсатор Ск колебательного контура. Конденсатор, разряжаясь на катушку индуктивности Lк, вызовет в контуре затухающие колебания. Переменный ток, проходящий при этом через катушку Lк, индуктирует в катушке Lс переменное напряжение, воздействующее на сетку лампы и управляющее силой тока в цепи анода.

Читайте также:  Катушка обмоточная для тока

Когда на сетку лампы подается отрицательное напряжение, анодный ток в ней уменьшается. При положительном напряжении на сетке лампы в анодной цепи увеличивается ток. Если в этот момент на верхней пластине конденсатора Ск колебательного контура будет отрицательный заряд, то анодный ток (поток электронов) зарядит конденсатор и тем самым скомпенсирует потери энергии в контуре.
Процесс уменьшения и увеличения тока в анодной цепи лампы повторится во время каждого периода электрических колебаний в контуре.
Если при положительном напряжении на сетке лампы верхняя пластина конденсатора Ск заряжена положительным зарядом, то анодный ток (поток электронов) не увеличивает заряда конденсатора, а, наоборот, уменьшает его. При таком положении колебания в контуре не будут поддерживаться, а будут затухать. Чтобы этого не случилось, необходимо правильно включать концы катушек Lк и Lc и обеспечить этим своевременный заряд конденсатора. Если колебания в генераторе не возникают, то необходимо поменять местами концы одной из катушек.
Ламповый генератор является преобразователем энергии постоянного тока анодной батареи в энергию переменного тока, частота которого зависит от индуктивности катушки и емкости конденсатора, образующих колебательный контур. Нетрудно понять, что это преобразование в схеме генератора выполняет триод. Э. д. с., индуктируемая в катушке Lc током колебательного контура, периодически воздействует на сетку лампы и управляет анодным током, который в свою очередь с определенной частотой подзаряжает конденсатор, возмещая таким образом потери энергии в контуре. Такой процесс повторяется многократно в течение всего времени работы генератора.
Рассмотренный процесс возбуждения незатухающих колебаний в контуре называют самовозбуждением генератора, так как колебания в генераторе сами себя поддерживают.

Источник

Теоретическое введение. Ламповый генератор- это радиотехнический прибор, служащий для получения незатухающих электромагнитных колебаний

date image2015-02-04
views image2575

facebook icon vkontakte icon twitter icon odnoklasniki icon

Ламповый генератор- это радиотехнический прибор, служащий для получения незатухающих электромагнитных колебаний.

Основной частью лампового генератора является колебательный контур, т.е. электрическая цепь, состоящая из индуктивности и ёмкости (рис. 1).

Пусть в некоторый момент конденсатор был заряжен до какой- то разности потенциалов, а затем источник напряжения был отключён. Конденсатор начнёт разряжаться через катушку индуктивности. Если вместо катушки индуктивности взять короткий провод, обладающий малой индуктивностью, которой мы можем пренебречь, то конденсатор разрядится периодически (рис. 2). При наличии индуктивности процесс будет происходить иначе. Причиной тому является ЭДС самоиндукции, которая возникает в катушке индуктивности при прохождении через неё тока изменяющейся величины.

Если при разрядке конденсатора ЭДС самоиндукции препятствует быстрому нарастанию тока, то, когда разность потенциалов на конденсаторе станет равной нулю, и ток уменьшается, она поддержит спадающий ток, и произойдёт перезарядка конденсатора.

Затем разряд конденсатора начнётся снова, только в обратном направлении и т.д. Таким образом, в цепи состоящей из индуктивности и ёмкости, возникнут колебания: периодические, по гармоническому закону, будут изменяться напряжение и величина заряда на конденсаторе, магнитный поток в катушке, энергия электрического поля в конденсаторе будет переходить в энергию магнитного поля в катушке и обратно. Эти колебания подобны колебаниям свободного математического маятника.

Частота (или период) электромагнитных колебаний в контуре полностью определяется его параметрами L, C и R.

Теория даёт для периода колебаний в контуре, омическое сопротивление которого ничтожно мало, формулу

Т = 2π (формула Томсона)

Свободные колебания, определяющиеся свойствами контура, называются собственными колебаниями контура (рис. 3) являются всегда затухающими из- за неизбежной потери энергии, которая тратится в основном на выделение тепла.

Рассмотрим колебательный процесс в этом контуре. В начальный момент времени при t = 0 заряд на обкладках конденсатора qm. Замыкание контура ключом К приводит к возникновению тока I, который вызовет в катушке ЭДС самоиндукции: .

Используя II закон Кирхгофа для мгновенных значений ЭДС и напряжений, можно записат

L + R + q =0 (1) I = ; =

Уравнение (1) – это дифференциальное уравнение затухающих колебаний в контуре.

Решение этого уравнения имеет вид

q = qme — βt cos(ωt — φ)

где b — коэффициент затухания

w — угловая частота затухающих колебаний

w собственная угловая частота колебаний в контуре

Период колебаний определяется по формуле

Графически зависимость q от времени t можно выразить так (рис.4)

Из графика видно, что чем больше R , тем быстрее колебания затухают.

Так как омическое сопротивление никогда не может равняться нулю, то сам по себе контур не может служить источником непрерывных электромагнитных колебаний. Для получения незатухающих колебаний нужно пополнять энергию контура за счёт какого- либо внешнего источника. Причём это необходимо делать в такт колебаниям, иначе их можно совсем погасить

Современная радиотехника для получения незатухающих колебаний широко применяет ламповые генераторы. Одна из возможных схем лампового генератора представлена на (рис. 5).

Главные составные части его: электронная лампа, колебательный контур, включенный в данном случае в анодную цепь лампы, и источник напряжения. Колебательный контур получает энергию от батареи. Подача энергии от батареи регулируется электронной лампой. Это происходит следующим образом: в цепь сетки включена катушка Ls, которая индуктивно связана с катушкой L колебательного контура. Изменение силы тока в колебательном контуре , создаёт в катушке Ls ЭДС индукции, и между сеткой и катодом лампы возникает переменное напряжение, которое управляет анодным током. Изменение этого напряжения происходит с частотой собственных колебаний контура. В течении половины периода потенциал на сетке положителен, и лампа открыта. Прохождение тока через лампу создаёт условия замыкания колебательного контура с анодной батареей и тем самым пополняется запас энергии контура за счёт анодной батареи. Когда отрицательный потенциал на сетке запирает лампу, эта цепь разрывается, а чтобы колебания в контуре не затухали, необходимо, чтобы значение напряжения на сетке лампы всегда содействовало ходу изменения напряжения и токов в колебательном контуре.

Соединение контура с анодной батареей через лампу производится в промежутке времени, когда знаки зарядов на пластинах конденсатора совпадают с полярностью анодной батареи. Когда же они меняются на противоположные, ток в лампе должен прекратиться. Описанный процесс в радиотехнике называется обратной связью, а катушка Ls – катушкой обратной связи. Существуют ламповые генераторы и других конструкций. С их помощью можно получить электромагнитные колебания самых разнообразных частот и длин волн: от высоких n=10 9 Гц, l=30 см, до весьма низких n и больших l. Это обуславливает широкое применение ламповых генераторов в технике.

Читайте также:  Что является источником электрического тока технология

Источник

ОБЩИЕ ПРИНЦИПЫ РАБОТЫ ЛАМПОВОГО ГЕНЕРАТОРА

ОБЩИЕ ПРИНЦИПЫ РАБОТЫ ЛАМПОВОГО ГЕНЕРАТОРА

Ламповые генераторы в качестве источников питания электротермических установок используются на частотах от 60 кГц до 80 МГц. Для того, чтобы они не мешали радиосвязи, выделены частоты: 66 кГц (–10. +12%); 440 кГц (±2,5%); 880 кГц (±2,5%); 1,76 МГц (±2,5%); 5,28 МГц (±2,5%); 13,56 МГц (±1%); 27,12 МГц (±1%); 40,68 МГц (±1%); 81,36 МГц (±1%).

Данный курсовой проект охватывает вопросы расчета схемы ламповых генераторов для индукционного нагрева, конструктивного расчета элементов схемы, частотного анализа и разработки конструкции генераторного блока.

Генераторная лампа

Основным элементом лампового генератора является генераторная лампа. Анод генераторной лампы изготавливается из меди и интенсивно охлаждается, так как под действием анодного напряжения (оно составляет в среднем 5…10 кВ) электроны приобретают большую энергию и отдают ее аноду.

Катод лампы изготовляется из вольфрамовой проволоки, которая при работе нагревается примерно до температуры 2300 °С. При нагреве от 20 до 2300 °С сопротивление вольфрама возрастает примерно в 10 раз. Поэтому включать холодный катод на полное напряжение не рекомендуется. Пойдет большой ток накала, и электродинамические усилия между нитями приведут к разрушению катода. Напряжение накала обычно включается в две ступени. Сначала подается половинное напряжение, а когда нить накала прогреется, включается полное напряжение. Для генераторных ламп оно составляет обычно 10–15 В, токи накала – десятки и сотни ампер.

Анодная цепь

Анодная цепь генератора содержит три основных элемента: электронную лампу, колебательный контур и источник анодного напряжения. Их можно соединить последовательно или параллельно.

На рис. 1 представлены два варианта схемы последовательного питания по аноду. В первом из них под высоким напряжением относительно земли находится колебательный контур, во втором – анодный выпрямитель. Необходимость изоляции от земли усложняет изготовление генератора по схеме последовательного питания, поэтому обычно применяется схема параллельного питания по аноду (рис. 2). Эта схема лишена указанных выше недостатков, но более сложна. Пути переменной и постоянной составляющих анодного тока разделяются с помощью анодного разделительного конденсатора Ca.р и блокировочного дросселя Lа.б. Таким образом, постоянная составляющая анодного тока проходит через выпрямитель, лампу и анодный блокировочный дроссель Lа.б.

Рис. 1. Схемы последовательного питания по аноду

Переменная составляющая идет через лампу, колебательный контур и анодный разделительный конденсатор Са.р. Назначение этого конденсатора – не пропускать постоянную составляющую анодного тока и иметь достаточно малое сопротивление для переменной. Значение Са.р выбирается из условия:

где Rэ – эквивалентное сопротивление колебательного контура.

Назначение Lа.б– не пропускать переменную составляющую анодного тока в выпрямитель. Его выбирают из соотношения:

Рис.2. Схема параллельного питания по аноду

Для дальнейшего уменьшения величины переменной составляющей выпрямитель шунтируется конденсатором Cб (см. рис. 2).

Сеточная цепь

Генераторы могут быть с независимым возбуждением (на сетку лампы подаются колебания от маломощного генератора) и с самовозбуждением.

Независимое возбуждение используется в радиопередатчиках, в генераторах для электротехнологии обычно используют самовозбуждение (используется положительная обратная связь с колебательного контура).

Рис. 3. Напряжения на электродах лампы

Для существования колебаний необходимо, чтобы напряжение на сетке было в фазе с напряжением на контуре, и, следовательно, в противофазе с напряжением на аноде (рис. 3). Это условие самовозбуждения по фазе.

Если сигнал обратной связи будет очень малым, то колебания не возникнут. Отсюда следует условие самовозбуждения по амплитуде.

где Кос = Ug / Ua – коэффициент обратной связи, Ug – напряжение на сетке;Ua –напряжение на аноде (cм. рис. 3), Кос min – минимальное значение коэффициента обратной связи, оно получается из расчета генераторной лампы.

В зависимости от соотношения между остаточным напряжением на аноде min максимальным напряжением на сетке eg max различают три режима работы: недонапряженный, перенапряженный и критический (граничный).

На рис. 4 представлены графики анодного тока и сеточного напряжения. Если анодно-сеточная характеристика линейна, то импульсы сеточного и анодного токов имеют вид отрезка синусоиды. Когда ток такой формы протекает через колебательный контур, то в нем возникают синусоидальные колебания, так как колебательный контур выделяет первую гармонику тока, которая и поддерживает колебания за счет положительной обратной связи. Для нормальной работы лампы на ее сетку необходимо подать отрицательное смещение Eg (рис. 4).

Рис. 4. Диаграммы анодного тока и сеточного напряжения

, wLg=10Rg

Одноконтурный генератор

На рис. 6 представлена принципиальная схема промышленного генератора ВЧГ1-25/0,44, имеющего один колебательный контур. Индуктивностью колебательного контора является закалочный трансформатор Тр, нагруженный на индуктор ИЗ. Согласование генератора с нагрузкой осуществляется путем переключения отводов на первичной стороне закалочного трансформатора Тр. Если колебательный контур настроен в резонанс, то его эквивалентное сопротивление

где – характеристическое сопротивление контура; r – активное сопротивление; С – емкость; L –индуктивность; Q – добротность.

Добротность отражает способность колебательного контура поддерживать электромагнитные колебания. Это отношение реактивной мощности Pr к активной Pa или реактивного сопротивления к активному:

Иногда вместо добротности используют затухание:

Чтобы генераторная лампа отдавала номинальную мощность, необходимо, чтобы на ней было номинальное колебательное напряжение Ua1 и через нее шел номинальный ток первой гармоники Ia1. Отсюда вытекает, что эквивалентное сопротивление колебательного контура, подключенного к лампе, должно быть равно эквивалентному сопротивлению лампы:

где Ua1 и Ia1 определяются из расчета лампы.

Если сопротивление колебательного контура RЭК > RЭЛ то режим генератора будет перенапряженным, иначе – недонапряженным.

Процесс согласования генератора с нагрузкой заключается в том, чтобы выполнить условие:

Rэк = Rэк.

Если это условие не выполняется, то включают не всю первичную обмотку трансформатора, а ее часть, используя отводы. При этом уменьшается коэффициент анодной связиp = Ua / Uk(см. рис. 6), а также эквивалентное сопротивление, приведенное к лампе:

При Rэк 3 .

2. Выбор шага намотки h и отношения 2 R/a .

Читайте также:  Как ограничить ток зарядки смартфона

3. Длина провода определяется по формуле (1).

ОБЩИЕ ПРИНЦИПЫ РАБОТЫ ЛАМПОВОГО ГЕНЕРАТОРА

Ламповые генераторы в качестве источников питания электротермических установок используются на частотах от 60 кГц до 80 МГц. Для того, чтобы они не мешали радиосвязи, выделены частоты: 66 кГц (–10. +12%); 440 кГц (±2,5%); 880 кГц (±2,5%); 1,76 МГц (±2,5%); 5,28 МГц (±2,5%); 13,56 МГц (±1%); 27,12 МГц (±1%); 40,68 МГц (±1%); 81,36 МГц (±1%).

Данный курсовой проект охватывает вопросы расчета схемы ламповых генераторов для индукционного нагрева, конструктивного расчета элементов схемы, частотного анализа и разработки конструкции генераторного блока.

Генераторная лампа

Основным элементом лампового генератора является генераторная лампа. Анод генераторной лампы изготавливается из меди и интенсивно охлаждается, так как под действием анодного напряжения (оно составляет в среднем 5…10 кВ) электроны приобретают большую энергию и отдают ее аноду.

Катод лампы изготовляется из вольфрамовой проволоки, которая при работе нагревается примерно до температуры 2300 °С. При нагреве от 20 до 2300 °С сопротивление вольфрама возрастает примерно в 10 раз. Поэтому включать холодный катод на полное напряжение не рекомендуется. Пойдет большой ток накала, и электродинамические усилия между нитями приведут к разрушению катода. Напряжение накала обычно включается в две ступени. Сначала подается половинное напряжение, а когда нить накала прогреется, включается полное напряжение. Для генераторных ламп оно составляет обычно 10–15 В, токи накала – десятки и сотни ампер.

Анодная цепь

Анодная цепь генератора содержит три основных элемента: электронную лампу, колебательный контур и источник анодного напряжения. Их можно соединить последовательно или параллельно.

На рис. 1 представлены два варианта схемы последовательного питания по аноду. В первом из них под высоким напряжением относительно земли находится колебательный контур, во втором – анодный выпрямитель. Необходимость изоляции от земли усложняет изготовление генератора по схеме последовательного питания, поэтому обычно применяется схема параллельного питания по аноду (рис. 2). Эта схема лишена указанных выше недостатков, но более сложна. Пути переменной и постоянной составляющих анодного тока разделяются с помощью анодного разделительного конденсатора Ca.р и блокировочного дросселя Lа.б. Таким образом, постоянная составляющая анодного тока проходит через выпрямитель, лампу и анодный блокировочный дроссель Lа.б.

Рис. 1. Схемы последовательного питания по аноду

Переменная составляющая идет через лампу, колебательный контур и анодный разделительный конденсатор Са.р. Назначение этого конденсатора – не пропускать постоянную составляющую анодного тока и иметь достаточно малое сопротивление для переменной. Значение Са.р выбирается из условия:

где Rэ – эквивалентное сопротивление колебательного контура.

Назначение Lа.б– не пропускать переменную составляющую анодного тока в выпрямитель. Его выбирают из соотношения:

Рис.2. Схема параллельного питания по аноду

Для дальнейшего уменьшения величины переменной составляющей выпрямитель шунтируется конденсатором Cб (см. рис. 2).

Сеточная цепь

Генераторы могут быть с независимым возбуждением (на сетку лампы подаются колебания от маломощного генератора) и с самовозбуждением.

Независимое возбуждение используется в радиопередатчиках, в генераторах для электротехнологии обычно используют самовозбуждение (используется положительная обратная связь с колебательного контура).

Рис. 3. Напряжения на электродах лампы

Для существования колебаний необходимо, чтобы напряжение на сетке было в фазе с напряжением на контуре, и, следовательно, в противофазе с напряжением на аноде (рис. 3). Это условие самовозбуждения по фазе.

Если сигнал обратной связи будет очень малым, то колебания не возникнут. Отсюда следует условие самовозбуждения по амплитуде.

где Кос = Ug / Ua – коэффициент обратной связи, Ug – напряжение на сетке;Ua –напряжение на аноде (cм. рис. 3), Кос min – минимальное значение коэффициента обратной связи, оно получается из расчета генераторной лампы.

В зависимости от соотношения между остаточным напряжением на аноде min максимальным напряжением на сетке eg max различают три режима работы: недонапряженный, перенапряженный и критический (граничный).

На рис. 4 представлены графики анодного тока и сеточного напряжения. Если анодно-сеточная характеристика линейна, то импульсы сеточного и анодного токов имеют вид отрезка синусоиды. Когда ток такой формы протекает через колебательный контур, то в нем возникают синусоидальные колебания, так как колебательный контур выделяет первую гармонику тока, которая и поддерживает колебания за счет положительной обратной связи. Для нормальной работы лампы на ее сетку необходимо подать отрицательное смещение Eg (рис. 4).

Рис. 4. Диаграммы анодного тока и сеточного напряжения

, wLg=10Rg

Одноконтурный генератор

На рис. 6 представлена принципиальная схема промышленного генератора ВЧГ1-25/0,44, имеющего один колебательный контур. Индуктивностью колебательного контора является закалочный трансформатор Тр, нагруженный на индуктор ИЗ. Согласование генератора с нагрузкой осуществляется путем переключения отводов на первичной стороне закалочного трансформатора Тр. Если колебательный контур настроен в резонанс, то его эквивалентное сопротивление

где – характеристическое сопротивление контура; r – активное сопротивление; С – емкость; L –индуктивность; Q – добротность.

Добротность отражает способность колебательного контура поддерживать электромагнитные колебания. Это отношение реактивной мощности Pr к активной Pa или реактивного сопротивления к активному:

Иногда вместо добротности используют затухание:

Чтобы генераторная лампа отдавала номинальную мощность, необходимо, чтобы на ней было номинальное колебательное напряжение Ua1 и через нее шел номинальный ток первой гармоники Ia1. Отсюда вытекает, что эквивалентное сопротивление колебательного контура, подключенного к лампе, должно быть равно эквивалентному сопротивлению лампы:

где Ua1 и Ia1 определяются из расчета лампы.

Если сопротивление колебательного контура RЭК > RЭЛ то режим генератора будет перенапряженным, иначе – недонапряженным.

Процесс согласования генератора с нагрузкой заключается в том, чтобы выполнить условие:

Rэк = Rэк.

Если это условие не выполняется, то включают не всю первичную обмотку трансформатора, а ее часть, используя отводы. При этом уменьшается коэффициент анодной связиp = Ua / Uk(см. рис. 6), а также эквивалентное сопротивление, приведенное к лампе:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник