Меню

Когда появляется электрический ток в катушке



Что такое ЭДС индукции и когда возникает?

В материале разберемся в понятии ЭДС индукции в ситуациях ее возникновения. Также рассмотрим индуктивность в качестве ключевого параметра возникновения магнитного потока при появлении электрического поля в проводнике.

indukcia

Электромагнитная индукция представляет собой генерирование электрического тока магнитными полями, которые изменяются во времени. Благодаря открытиям Фарадея и Ленца закономерности были сформулированы в законы, что ввело симметрию в понимание электромагнитных потоков. Теория Максвелла собрала воедино знания об электрическом токе и магнитных потоках. Благодаря открытия Герца человечество узнало о телекоммуникациях.

Магнитный поток

Вокруг проводника с электротоком появляется электромагнитное поле, однако параллельно возникает также обратное явление – электромагнитная индукция. Рассмотрим магнитный поток на примере: если рамку из проводника поместить в электрическое поле с индукцией и перемещать ее сверху вниз по магнитным силовым линиям или вправо-влево перпендикулярно им, тогда магнитный поток, проходящий через рамку, будет постоянной величиной.

При вращении рамки вокруг своей оси, тогда через некоторое время магнитный поток изменится на определенную величину. В результате в рамке возникает ЭДС индукции и появится электрический ток, который называется индукционным.

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

Движение провода в магнитном поле

Значение индуктированной ЭДС определяется в зависимости от длины проводника, пересекаемого силовыми линиями поля. При большем количестве силовых линий возрастает величина индуктируемой ЭДС. При увеличении магнитного поля и индукции, большее значение ЭДС возникает в проводнике. Таким образом, значение ЭДС индукции в движущемся в магнитном поле проводнике находится в прямой зависимости от индукции магнитного поля, длины проводника и скорости его движения.

Данная зависимость отражена в формуле Е = Blv, где Е — ЭДС индукции; В — значение магнитной индукции; I — длина проводника; v —скорость его перемещения.

Отметим, что в проводнике, который движется в магнитном поле, ЭДС индукции появляется, только когда он пересекает силовые линии магнитного поля. Если проводник движется по силовым линиям, тогда ЭДС не индуктируется. По этой причине формула применяется только в случаях, когда движением проводника направлено перпендикулярно силовым линиям.

Направление индуктированной ЭДС и электротока в проводнике определяется направлением движения самого проводника. Для выявления направления разработано правило правой руки. Если держать ладонь правой руки таким образом, чтобы в ее направлении входили силовые линии поля, а большой палец указывает направление движения проводника, тогда остальные четыре пальца показывают направление индуктированной ЭДС и направление электротока в проводнике.

Вращающаяся катушка

Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).

Согласно формуле, на Ф воздействуют изменения в ситуациях:

  • при изменении магнитного потока меняется вектор направления;
  • изменяется площадь, заключенная в контур;
  • меняется угол.

Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.

На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.

ЭДС самоиндукции

При прохождении через катушку переменного электротока генерируется переменное магнитное поле, которое характеризуется меняющимся магнитным потоком, индуцирующим ЭДС. Данное явление называется самоиндукцией.

В силу того, что магнитный поток пропорционален интенсивности электротока, тогда формула ЭДС самоиндукции выглядит таким образом:

Ф = L x I, где L – индуктивность, которая измеряется в Гн. Ее величина определяется числом витков на единицу длины и величиной их поперечного сечения.

Источник

От чего зависит индукционный ток?

Введение

Се­го­дняш­ний урок будет по­свя­щен яв­ле­нию элек­тро­маг­нит­ной ин­дук­ции. Яв­ле­ни­ем элек­тро­маг­нит­ной ин­дук­ции на­зы­ва­ет­ся яв­ле­ние воз­ник­но­ве­ния элек­три­че­ско­го тока в про­вод­ни­ке под дей­стви­ем пе­ре­мен­но­го маг­нит­но­го поля.

Важно, что в дан­ном слу­чае про­вод­ник дол­жен быть за­мкнут. В на­ча­ле XIX в. после опы­тов дат­ско­го уче­но­го Эр­сте­да стало ясно, что элек­три­че­ский ток со­зда­ет во­круг себя маг­нит­ное поле. После встал во­прос о том, нель­зя ли по­лу­чить элек­три­че­ский ток за счет маг­нит­но­го поля, т.е. про­из­ве­сти об­рат­ные дей­ствия. Если элек­три­че­ский ток со­зда­ет маг­нит­ное поле, то, на­вер­ное, и маг­нит­ное поле долж­но со­зда­вать элек­три­че­ский ток. В пер­вой по­ло­вине XIX века уче­ные об­ра­ти­лись имен­но к таким опы­там: стали ис­кать воз­мож­ность со­зда­ния элек­три­че­ско­го тока за счет маг­нит­но­го поля.

Читайте также:  Простейшая цепь постоянного тока состоит из следующих элементов

Опыты Фарадея

Впер­вые уда­лось до­стичь успех в этом (т.е. по­лу­чить элек­три­че­ский ток за счет маг­нит­но­го поля) ан­глий­ско­му фи­зи­ку Май­к­лу Фа­ра­дею. Итак, об­ра­тим­ся к опы­там Фа­ра­дея.

Рис. 1. Опыт, ана­ло­гич­ный опыту Фа­ра­дея. При дви­же­нии маг­ни­та в ка­туш­ке, в ее цепи ре­ги­стри­ру­ет­ся элек­три­че­ский ток

Пер­вая схема была до­воль­но про­стой. Во-пер­вых, М. Фа­ра­дей ис­поль­зо­вал в своих опы­тах ка­туш­ку с боль­шим чис­лом вит­ков. Ка­туш­ка на­ко­рот­ко была при­со­еди­не­на к из­ме­ри­тель­но­му при­бо­ру, мил­ли­ам­пер­мет­ру (мА). Нужно ска­зать, что в те вре­ме­на не было до­ста­точ­но хо­ро­ших ин­стру­мен­тов для из­ме­ре­ния элек­три­че­ско­го тока, по­это­му поль­зо­ва­лись необыч­ным тех­ни­че­ским ре­ше­ни­ем: брали маг­нит­ную стрел­ку, рас­по­ла­га­ли рядом с ней про­вод­ник, по ко­то­ро­му про­те­кал ток, и по от­кло­не­нию маг­нит­ной стрел­ки су­ди­ли о про­те­ка­ю­щем токе. Так вот в дан­ном слу­чае токи могли быть очень неве­ли­ки, по­это­му ис­поль­зо­вал­ся при­бор мА, т.е. тот, ко­то­рый из­ме­ря­ет ма­лень­кие токи.

Вдоль ка­туш­ки М. Фа­ра­дей пе­ре­ме­щал по­сто­ян­ный маг­нит – от­но­си­тель­но ка­туш­ки маг­нит дви­гал­ся вверх и вниз.

Об­ра­ща­ем ваше вни­ма­ние на то, что в этом экс­пе­ри­мен­те впер­вые было за­фик­си­ро­ва­но на­ли­чие элек­три­че­ско­го тока в цепи в ре­зуль­та­те из­ме­не­ния маг­нит­но­го по­то­ка, ко­то­рый про­хо­дит сквозь ка­туш­ку.

Фа­ра­дей об­ра­тил вни­ма­ние и на тот факт, что стрел­ка мА от­кло­ня­ет­ся от сво­е­го ну­ле­во­го зна­че­ния, т.е. по­ка­зы­ва­ет, что в цепи су­ще­ству­ет элек­три­че­ский ток толь­ко тогда, когда маг­нит дви­жет­ся. Стоит толь­ко маг­ни­ту оста­но­вить­ся, стрел­ка воз­вра­ща­ет­ся в пер­во­на­чаль­ное по­ло­же­ние, в ну­ле­вое по­ло­же­ние, т.е. ни­ка­ко­го элек­три­че­ско­го тока в цепи в этом слу­чае нет.

Вто­рая за­слу­га Фа­ра­дея – уста­нов­ле­ние за­ви­си­мо­сти на­прав­ле­ния ин­дук­ци­он­но­го элек­три­че­ско­го тока от по­ляр­но­сти маг­ни­та и на­прав­ле­ния его дви­же­ния. Сто­и­ло Фа­ра­дею из­ме­нить по­ляр­ность маг­ни­тов и про­пус­кать маг­нит через ка­туш­ку с боль­шим чис­лом вит­ков, как тут же ме­ня­лось на­прав­ле­ние ин­дук­ци­он­но­го тока, того, ко­то­рый воз­ни­ка­ет в за­мкну­той элек­три­че­ской цепи.

Т.о. мы при­шли к тому, с чего на­чи­на­ли урок: под­твер­ди­лась ги­по­те­за, что элек­три­че­ский ток воз­ни­ка­ет, когда из­ме­ня­ет­ся маг­нит­ное поле.

Итак, неко­то­рое за­клю­че­ние. Из­ме­ня­ю­ще­е­ся маг­нит­ное поле со­зда­ет элек­три­че­ский ток. На­прав­ле­ние элек­три­че­ско­го тока за­ви­сит от того, какой полюс маг­ни­та про­хо­дит в дан­ный мо­мент через ка­туш­ку, в каком на­прав­ле­нии дви­жет­ся маг­нит.

И еще: ока­зы­ва­ет­ся, на зна­че­ние элек­три­че­ско­го тока вли­я­ет ко­ли­че­ство вит­ков в ка­туш­ке. Чем боль­ше вит­ков, тем и зна­че­ние тока будет боль­ше.

Об­ра­тим­ся те­перь ко вто­ро­му экс­пе­ри­мен­ту Фа­ра­дея. В чем он за­клю­чал­ся?

Рис. 2. Вто­рой экс­пе­ри­мент по ис­сле­до­ва­нию яв­ле­ния элек­тро­маг­нит­ной ин­дук­ции

Две ка­туш­ки раз­ме­ща­лись близ­ко друг с дру­гом. Одна ка­туш­ка с боль­шим чис­лом вит­ков под­клю­ча­лась к ис­точ­ни­ку тока, в этой цепи был ключ, ко­то­рый за­мы­кал и раз­мы­кал цепь. Вто­рая ка­туш­ка, тоже с боль­шим чис­лом вит­ков, под­клю­чен­ная к мил­ли­ам­пер­мет­ру на­пря­мую, ни­ка­ких ис­точ­ни­ков тока нет. Как толь­ко цепь за­мы­ка­лась, мил­ли­ам­пер­метр по­ка­зы­вал на­ли­чие элек­три­че­ско­го тока в цепи. Как толь­ко цепь раз­мы­ка­лась, мил­ли­ам­пер­метр вновь ре­ги­стри­ро­вал на­ли­чие элек­три­че­ско­го тока, но на­прав­ле­ние элек­три­че­ско­го тока из­ме­ня­лось на про­ти­во­по­лож­ное. Пока цепь была за­мкну­та, т.е. пока в цепи про­те­кал элек­три­че­ский ток, мил­ли­ам­пер­метр ни­ка­ко­го тока в элек­три­че­ской цепи не ре­ги­стри­ро­вал.

Выводы из экспериментов

Какие вы­во­ды были сде­ла­ны М.Фа­ра­де­ем в ре­зуль­та­те этих экс­пе­ри­мен­тов? Ин­дук­ци­он­ный элек­три­че­ский ток по­яв­ля­ет­ся в за­мкну­той цепи толь­ко тогда, когда су­ще­ству­ет пе­ре­мен­ное маг­нит­ное поле. При­чем это маг­нит­ное поле долж­но из­ме­нять­ся.

От чего зависит индукционный ток?

Если из­ме­не­ния маг­нит­но­го поля не про­ис­хо­дит, то не будет ни­ка­ко­го элек­три­че­ско­го тока. Даже если маг­нит­ное поле су­ще­ству­ет. Мы можем ска­зать, что ин­дук­ци­он­ный элек­три­че­ский ток прямо про­пор­ци­о­на­лен, во-пер­вых, числу вит­ков, во-вто­рых, ско­ро­сти маг­нит­но­го поля, с ко­то­рой из­ме­ня­ет­ся это маг­нит­ное поле от­но­си­тель­но вит­ков ка­туш­ки.

Рис. 3. От чего за­ви­сит ве­ли­чи­на ин­дук­ци­он­но­го тока?

Для ха­рак­те­ри­сти­ки маг­нит­но­го поля ис­поль­зу­ет­ся ве­ли­чи­на, ко­то­рая на­зы­ва­ет­ся маг­нит­ный поток. Она ха­рак­те­ри­зу­ет маг­нит­ное поле в целом, мы об этом будем го­во­рить на сле­ду­ю­щем уроке. Сей­час от­ме­тим лишь, что имен­но из­ме­не­ние маг­нит­но­го по­то­ка, т.е. числа линий маг­нит­но­го поля, про­ни­зы­ва­ю­щих кон­тур с током (ка­туш­ку, на­при­мер), при­во­дит к воз­ник­но­ве­нию в этом кон­ту­ре ин­дук­ци­он­но­го тока.

Источник

Катушки индуктивности и магнитные поля. Часть 2. Электромагнитная индукция и индуктивность

Взаимосвязь электрических и магнитных полей

Электромагнитная индукция и индуктивностьЭлектрические и магнитные явления изучались давно, вот только никому не приходило в голову каким-то образом связать эти исследования между собой. И только в 1820 году было обнаружено, что проводник с током действует на стрелку компаса. Это открытие принадлежало датскому физику Хансу Кристиану Эрстеду. Впоследствии его именем была названа единица измерения напряженности магнитного поля в системе СГС: русское обозначение Э (Эрстед), англоязычное – Oe. Такую напряженность магнитное поле имеет в вакууме при индукции в 1 Гаусс.

Это открытие наводило на мысль о том, что из электрического тока можно получить магнитное поле. Но вместе с тем возникали мысли и по поводу обратного преобразования, а именно, как из магнитного поля получить электрический ток. Ведь многие процессы в природе обратимы: из воды получается лед, который можно снова растопить в воду.

На изучение этого очевидного сейчас закона физики после открытия Эрстеда ушло целых двадцать два года. Получением электричества из магнитного поля занимался английский ученый Майкл Фарадей. Делались различной формы и размеров проводники и магниты, искались варианты их взаимного расположения. И только, видимо, случайно ученый обнаружил, что для получения на концах проводника ЭДС необходимо еще одно слагаемое – движение магнита, т.е. магнитное поле должно быть обязательно переменным.

Сейчас это никого уже не удивляет. Именно так работают все электрические генераторы, — пока его чем-то вращают, электроэнергия вырабатывается, лампочка светит. Остановили, перестали вращать, и лампочка погасла.

Электромагнитная индукция

Таким образом, ЭДС на концах проводника возникает лишь в том случае, если его определенным образом перемещать в магнитном поле. Или, точнее говоря, магнитное поле обязательно должно изменяться, быть переменным. Это явление получило название электромагнитной индукции, по-русски электромагнитное наведение: в этом случае говорят, что в проводнике наводится ЭДС. Если к такому источнику ЭДС подключить нагрузку, то в цепи будет протекать ток.

Величина наведенной ЭДС зависит от нескольких факторов: длины проводника, индукции магнитного поля B, и в немалой степени от скорости перемещения проводника в магнитном поле. Чем быстрее вращать ротор генератора, тем напряжение на его выходе выше.

Замечание: электромагнитную индукцию (явление возникновение ЭДС на концах проводника в переменном магнитном поле) не следует путать с магнитной индукцией – векторной физической величиной характеризующей собственно магнитное поле.

Три способа получения ЭДС

Индукция

Этот способ был рассмотрен в первой части статьи. Достаточно перемещать проводник в магнитном поле постоянного магнита, или наоборот перемещать (практически всегда вращением) магнит около проводника. Оба варианта однозначно позволят получить переменное магнитное поле. В этом случае способ получения ЭДС называется индукцией. Именно индукция используется для получения ЭДС в различных генераторах. В опытах Фарадея в 1831 году магнит поступательно перемещался внутри катушки провода.

Взаимоиндукция

Это название говорит о том, что в этом явлении принимают участие два проводника. В одном из них протекает изменяющийся ток, который создает вокруг него переменное магнитное поле. Если рядом находится еще один проводник, то на его концах возникает переменная же ЭДС.

Читайте также:  Длина активной части проводника 15 см угол между направлением тока индукции магнитного поля равен 90

Такой способ получения ЭДС называется взаимоиндукцией. Именно по принципу взаимоиндукции работают все трансформаторы, только проводники у них выполнены в виде катушек, а для усиления магнитной индукции применяются сердечники из ферромагнитных материалов.

Если ток в первом проводнике прекратится (обрыв цепи), или станет пусть даже очень сильным, но постоянным (нет никаких изменений), то на концах второго проводника никакой ЭДС получить не удастся. Вот почему трансформаторы работают только на переменном токе: если к первичной обмотке подключить гальваническую батарейку, то на выходе вторичной обмотки никакого напряжения однозначно не будет.

ЭДС во вторичной обмотке наводится только при изменении магнитного поля. Причем, чем сильнее скорость изменения, именно скорость, а не абсолютная величина, тем больше будет наведенная ЭДС.

Три способа получения ЭДС

Самоиндукция

Если убрать второй проводник, то магнитное поле в первом проводнике будет пронизывать не только окружающее пространство, но и сам проводник. Таким образом, под воздействием своего поля в проводнике наводится ЭДС, которая называется ЭДС самоиндукции.

Явления самоиндукции в 1833 году изучал русский ученый Ленц. На основании этих опытов удалось выяснить интересную закономерность: ЭДС самоиндукции всегда противодействует, компенсирует внешнее переменное магнитное поле, которое вызывает эту ЭДС. Эта зависимость называется правилом Ленца (не путать с законом Джоуля — Ленца).

Знак «минус» в формуле как раз и говорит о противодействии ЭДС самоиндукции причинам ее породившим. Если катушку подключить к источнику постоянного тока, ток будет возрастать достаточно медленно. Это очень заметно при «прозвонке» первичной обмотки трансформатора стрелочным омметром: скорость движения стрелки в сторону нулевого деления шкалы заметно меньше, чем при проверке резисторов.

При отключении катушки от источника тока ЭДС самоиндукции вызывает искрение контактов реле. В случае, когда катушка управляется транзистором, например катушка реле, то параллельно ей ставится диод в обратном направлении по отношению к источнику питания. Это делается для того, чтобы защитить полупроводниковые элементы от воздействия ЭДС самоиндукции, которая может в десятки и даже сотни раз превышать напряжение источника питания.

Для проведения опытов Ленц сконструировал интересный прибор. На концах алюминиевого коромысла закреплены два алюминиевых же кольца. Одно кольцо сплошное, а в другом был сделан пропил. Коромысло свободно вращалось на иголке.

cамоиндукция

При введении постоянного магнита в сплошное кольцо оно «убегало» от магнита, а при выведении магнита стремилось за ним. Те же самые действия с разрезанным кольцом никаких движений не вызывали. Это объясняется тем, что в сплошном кольце под воздействием переменного магнитного поля возникает ток, который создает магнитное поле. А в разомкнутом кольце тока нет, следовательно, нет и магнитного поля.

Немаловажная деталь этого опыта в том, что если магнит будет введен в кольцо и останется неподвижным, то никакой реакции алюминиевого кольца на присутствие магнита не наблюдается. Это лишний раз подтверждает, что ЭДС индукции возникает только в случае изменения магнитного поля, причем величина ЭДС зависит от скорости изменения. В данном случае просто от скорости перемещения магнита.

То же можно сказать и о взаимоиндукции и самоиндукции, только изменение напряженности магнитного поля, точнее скорость его изменения зависит от скорости изменения тока. Для иллюстрации этого явления можно привести такой пример.

Пусть через две достаточно большие одинаковые катушки проходят большие токи: через первую катушку 10А, а через вторую целых 1000, причем в обеих катушках токи линейно возрастают. Предположим, что за одну секунду ток в первой катушке изменился с 10 до 15А, а во второй с 1000 до 1001А, что вызвало появление ЭДС самоиндукции в обеих катушках.

Но, несмотря на такое огромное значение тока во второй катушке, ЭДС самоиндукции будет больше в первой, поскольку там скорость изменения тока 5А/сек, а во второй всего 1А/сек. Ведь ЭДС самоиндукции зависит от скорости возрастания тока (читай магнитного поля), а не от его абсолютной величины.

Индуктивность

Магнитные свойства катушки с током зависят от количества витков, геометрических размеров. Значительного усиления магнитного поля можно добиться введением в катушку ферромагнитного сердечника. О магнитных свойствах катушки с достаточной точностью можно судить по величине ЭДС индукции, взаимоиндукции или самоиндукции. Все эти явления были рассмотрены выше.

Характеристика катушки, которая рассказывает об этом, называется коэффициентом индуктивности (самоиндукции) или просто индуктивностью. В формулах индуктивность обозначается буквой L, а на схемах этой же буквой обозначаются катушки индуктивности.

Единица измерения индуктивности – генри (Гн). Индуктивностью 1Гн обладает катушка, в которой при изменении тока на 1А в секунду вырабатывается ЭДС 1В. Это величина достаточно большая: индуктивностью в один и более Гн обладают сетевые обмотки достаточно мощных трансформаторов.

Поэтому достаточно часто пользуются величинами меньшего порядка, а именно милли и микро генри (мГн и мкГн). Такие катушки применяются в электронных схемах. Одно из применений катушек – колебательные контура в радиоустройствах.

Также катушки используются в качестве дросселей, основное назначение которых пропустить без потерь постоянный ток при этом ослабив переменный (фильтры в источниках питания). Как правило, чем выше рабочая частота, тем меньшей индуктивности требуются катушки.

Индуктивное сопротивление

Если взять достаточно мощный сетевой трансформатор и померить мультиметром сопротивление первичной обмотки, то окажется, что оно всего несколько Ом, и даже близко к нулю. Выходит, что ток через такую обмотку будет очень большим, и даже стремиться к бесконечности. Кажется, короткое замыкание просто неизбежно! Так почему же его нет?

Одним из основных свойств катушек индуктивности является индуктивное сопротивление, которое зависит от индуктивности и от частоты переменного тока, который подведен к катушке.

Нетрудно видеть, что с увеличением частоты и индуктивности индуктивное сопротивление увеличивается, а на постоянном токе вообще становится равным нулю. Поэтому при измерении сопротивления катушек мультиметром измеряется только активное сопротивление провода.

Конструкция катушек индуктивности весьма разнообразна и зависит от частот, на которых работает катушка. Например, для работы в дециметровом диапазоне радиоволн достаточно часто используются катушки, выполненные печатным монтажом. При массовом производстве такой способ очень удобен.

Индуктивность катушки зависит от ее геометрических размеров, сердечника, количества слоев и формы. В настоящее время выпускается достаточное количество стандартных катушек индуктивности похожих на обычные резисторы с выводами. Маркировка таких катушек выполняется цветными кольцами. Также существуют катушки для поверхностного монтажа, применяемые в качестве дросселей. Индуктивность таких катушек составляет несколько миллигенри.

Источник

Что такое самоиндукция?

Явление электромагнитной индукции очень часто наблюдается в электротехнике. Взаимное влияние электрических и магнитных полей иногда приводит к интересным результатам. Самоиндукция – частный случай электромагнитной индукции.

Общеизвестно, что причиной порождения электрического тока является переменное магнитное поле. Именно этот принцип реализован в конструкциях современных генераторов. Природа самоиндукции также связана с электромагнетизмом, но это явление проявляется она по-другому.

Определение

Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.

Читайте также:  Смертельное значение тока для человека в амперах

Магнитное поле катушки

Рис. 1. Магнитное поле катушки

Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.

Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.

Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.

Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.

Явление самоиндукции

Рис. 2. Явление самоиндукции

Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.

Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).

Схема опыта с лампочками

Рис. 3. Схема опыта с лампочками

Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.

На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.

График на рисунке 4 красноречиво объясняет эффект задержки.

Иллюстрация задержки изменения тока в цепи индуктивности

Рис. 4. Иллюстрация задержки изменения тока в цепи индуктивности

Обратите внимание на нелинейность изменения силы тока по времени.

Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.

Возникновение самоиндукции

Рис. 5. Возникновение самоиндукции

Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.

В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.

Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.

Формулы

Собственный магнитный поток контура (Ф) связан прямо пропорциональной зависимостью с индуктивностью (L) этого контура и величиной тока в нём (i). Данная зависимость выражается формулой: Ф = L×i. Коэффициент пропорциональности L принято называть коэффициентом самоиндукции или же просто индуктивностью контура.

При этом индуктивность контура пребывает в зависимости от его геометрии, площади плоскости ограниченной витком и магнитной проницаемости окружающей среды. Но этот коэффициент не зависит от силы тока в контуре. Если же форма, линейные размеры и магнитная проницаемость не изменяются, то для определения величины индуктивной ЭДС применяется формула:

ЭДС самоиндукции

где Eсамоинд. – ЭДС самоиндукции, Δi – изменение силы тока за время Δt.

Индуктивность

Выше мы отметили, что индуктивность контура зависит от его геометрии и размеров, а также от магнитной проницаемости среды. Если речь идёт о катушке, то эти утверждения справедливы и для неё. На индуктивность катушки влияет её диаметр и количество витков. Индуктивность существенно повышается, если в катушку добавить ферромагнитный сердечник.

Магнитные поля отдельных витков катушки складываются. Если витков достаточно много, то ток, протекающий через катушку, образует вокруг неё сильное магнитное поле, реагирующее на изменения электрического поля. Индуктивность является той величиной, которая характеризует то, насколько сильно проводник, из которого состоят витки, противодействует электрическому току.

Чем больше индуктивность катушки и чем выше скорость прерывания её цепи, тем больший всплеск ЭДС произойдёт в цепи. При этом полярность вихревых токов на выводах катушки противоположна направлению тока источника питания.

Индуктивность (то есть коэффициент пропорциональности) является важной характеристикой катушек, дросселей и других контурных элементов. Этот параметр можно сравнить с ёмкостью конденсаторов. Тем более что действие катушки индуктивности и конденсатора в электрических цепях очень похожи. RL и RC цепочки часто используют для сглаживания всплесков напряжений в различных фильтрах.

Единицей измерения индуктивности в международной системе СИ является генри. Величина размеров в 1 Гн – это такая индуктивность, при которой ЭДС составляет 1 В, при скорости изменения тока на 1 А за секунду.

Индуктивность определяет количество энергии, выделяющейся в результате действия собственного магнитного поля при самоиндукции. Эту энергию легко рассчитать по формуле: Wм = LI 2 /2.

Собственная энергия катушки численно равна работе, которую необходимо выполнить источником питания при преодолении ЭДС самоиндукции.

Важно знать, что в результате резкого разрыва цепи с большой индуктивностью, энергия высвобождается в виде искры или даже с образованием дугового разряда.

Примеры использования на практике

Явление самоиндукции нашло широкое практическое применение. Автолюбители прекрасно знают, что такое катушка зажигания. Без неё карбюраторный двигатель не запустится.

Работает этот важный узел следующим образом:

  1. На катушку с большой индуктивностью подаётся бортовое напряжение 12 В.
  2. Электрическая цепь резко обрывается специальным прерывателем.
  3. Накопленная энергия самоиндукции поступает по высоковольтным проводам на свечу и образует на её электродах мощную искру.
  4. Искровой разряд зажигает топливную смесь, приводя в движение поршень.

В современных автомобилях разрыв цепи выполняет электроника, но суть от этого не меняется – для образования искры по-прежнему используется энергия самоиндукции.

Мы уже упоминали о сетевых фильтрах, в которых используется явление самоиндукции. RL цепочка реагирует на любое изменение параметров. При его возрастании она задерживает во времени пиковые скачки и заполняет собственными вихревыми токами провалы. Таким образом, происходит сглаживание напряжения в электрически цепях.

В блоках питания электронной аппаратуры таким же способом убирают:

  • шумы:
  • пульсации;
  • нежелательные частоты.

Самоиндукция дросселей используется в люминесцентных лампах для розжига электродов. После срабатывания стартера происходит разрыв контактов, в результате чего в дросселе наводится ЭДС самоиндукции. Энергия дросселя разжигает дугу на электродах, и люминесцентная лампа начинает светиться.

Перечисленные примеры демонстрируют полезное применение самоиндукции. Однако, как это всегда бывает, индуктивная ЭДС может наносить вред. При разъединении контактов выключателей, нагрузкой которых являются цепи с большой индуктивностью, возможны дуговые разряды. Они разрушают контакты, замедляют время защиты и т.п. С целью снижения риска от негативных влияний самоиндукции автоматические выключатели оборудуют дугогасительными камерами.

В таких случаях приходится принимать меры для нейтрализации энергии ЭДС самоиндукции. Ещё большая потребность в рассеянии энергии самоиндукции возникает в полупроводниковых ключах, чувствительных к пробоям.

В промышленности и энергетике самоиндукция является серьёзной проблемой. При отключении нагруженных линий ЭДС самоиндукции может достигать опасных для жизни величин. Это требует дополнительных затрат на принятие мер предосторожности. В частности, необходимо устанавливать на линиях устройства, препятствующие молниеносному размыканию цепи.

Видео в помощь

Источник