Меню

Какое направление тока принимают за положительное физика 10 класс



Направление электрического тока

Электрический ток в разных веществах

Электрический ток возникает в самых разных веществах, которые могут находиться в различных агрегатных состояниях. Рассмотрим некоторые примеры, демонстрирующие возникновение направленного потока заряженных частиц в твердых, жидких и газообразных средах:

  • В металлах имеется много свободных электронов, которые являются главным источником тока;
  • Электролиты — это жидкости, проводящие электрический ток. Водные растворы кислот, щелочей, солей — все это примеры электролитов. Попадая в воду молекулы этих веществ распадаются на ионы, представляющие собой заряженные атомы или группы атомов, имеющие положительный (катионы) или отрицательный (анионы) электрические заряды. Катионы и анионы образуют электрический ток в электролитах;
  • В газах и плазме ток создается за счет движения электронов и положительно заряженных ионов;
  • В вакууме — за счет электронов, вылетающих с поверхности металлических электродов.

Примеры электрического тока в разных веществах (металлах, электролитах, газах, плазме, вакууме)

Рис. 1. Примеры электрического тока в разных веществах (металлах, электролитах, газах, плазме, вакууме).

В приведенных примерах токи возникают в результате движения заряженных частиц относительно той или иной среды (внутри тел). Такой ток называется током проводимости. Движение макроскопических заряженных тел называется конвекционным током. Примером конвекционного тока могут служить капли дождя во время разряда молнии.

В каком направлении течет ток

За направление тока принято направление движения положительно заряженных частиц; если же ток создается отрицательно заряженными частицами (например, электронами), то направление тока считается противоположным направлению движения частиц.

Направление движения тока для любой электрической цепи

Рис. 2. Направление движения тока для любой электрической цепи.

Возникает вопрос: почему не был принят очевидный вариант направления, совпадающий с направлением движения электронов? Для того, чтобы это стало понятно, надо немного окунуться в историю физики.

Почему надо знать историю физических открытий

Природу электрических явлений пытались объяснить многие исследователи задолго до открытия электрона (1897 г.). Впервые к пониманию о существовании двух типов зарядов — положительных и отрицательных пришел американский физик Бенджамин Франклин в 1747 г. На основе своих наблюдений он предположил (выдвинул гипотезу), что существует некая “электрическая материя”, состоящая из мелких, невидимых частиц. Он же первым ввел обозначение для электрических зарядов “−” и “+”. Франклин предложил считать, что если тело наполняется электрической материей, то оно заряжается положительно, а если оно теряет электричество, то заряжается отрицательно. В случае замыкания (соединения) цепи положительный заряд потечет туда, где его нет, то есть к “минусу”. Эта плодотворная гипотеза стала популярной, получила свое признание среди ученых, вошла в справочники и учебные пособия.

Конечно, после открытия отрицательно заряженного электрона, эта “нестыковка” реального направления движения с ранее общепринятым была обнаружена. Однако, мировым научным сообществом было принято решение оставить в силе предыдущую формулировку о направлении тока, поскольку в большинстве практических случаев это ни на что не влияет.

В случае необходимости, для объяснения отдельных физических эффектов в полупроводниках и искусственных материалах (гетероструктурах), принимается во внимание настоящее направление движения электронов.

Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель. Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет.

Изображение купюры 100 долларов США с портретом Бенджамина Франклина

Рис. 3. Изображение купюры 100 долларов США с портретом Бенджамина Франклина.

Что мы узнали?

Итак, мы узнали, что направление тока в электрической цепи соответствует направлению движения положительных зарядов, то есть от плюсового потенциала (плюса) к минусовому потенциалу (минусу). Несмотря на то, что чаще всего электрический ток создается отрицательно заряженными электронами, выбор направления тока было решено оставить именно таким. Так сложилось исторически.

Источник

Ток течет от плюса к минусу: «Почему ток в цепи идёт «от плюса к минусу», если носители заряда — электроны — заряжены отрицательно и должны идти «от минуса к плюсу»?» – Яндекс.Кью – Как течет ток от п

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.


Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Ответы@Mail.Ru: в каком направлении протекает ток в цепи

направление тока — условность, принятая для рисования схем и не более того. Принято рисовать от + к -. Если проводник — метал (провод, например) — реальные носители — электроны — летят в обратную сторону — к плюсу. Если носитель жидкость с ионами или ионизированный газ — ионы летят в обе стороны…

Давненько принято считать движение тока от плюса к минусу, хотя реальное движение носителей заряда бывает обратным, в большинстве случаев.

от плюса к минусу

принято от + к -..но электрончики бегут наоборот… все схемы читаются от + к -..

Принято считать, что во ВНЕШНЕЙ ЦЕПИ направление тока от положителного полюса к отрицательному. А во внутренней, соответственно, наоборот.

В замкнутой электрической цепи ток идет от точки с большим потенциалом в точку с меньшим потенциалом и никакие + или — тут ни при чем.

Читайте также:  Порезанный палец как током

Двести лет тому назад Фарадей поставил опыт, где демонстрируется получение тока в гальванометре при движении магнита в катушке индуктивности. Сегодня, осмысляя этот опыт, приходится делать вывод: современная теория тока проводимости в металлических проводниках ошибочна потому, что основой этой теории является движение свободных электронов при неподвижных ионах. Опыт же Фарадея демонстрирует движение, как отрицательных, так и положительных зарядов. А так как в проводнике, кроме подвижных электронов и неподвижных ионов, других зарядов нет, то следует сделать вывод: Фарадей двести лет тому назад получил, в качестве тока проводимости, электронно-позитронный ток, распространяющийся в эфире вокруг проводников.

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.


Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.


Параллельная электрическая цепь

Защита от токов короткого замыкания

Что можно сказать в заключение. Если вы планируете сделать ремонт электропроводки своими руками или модернизировать существующую, почитайте эту статью . Крайне внимательно отнеситесь к выбору аппаратов защиты вашей сети. Важный совет: когда устанавливаете или будете устанавливать новый автомат, УЗО или диффавтомат, внимательно прочитайте бумагу, которая идет в комплекте. В ней содержится такой пункт, как срок эксплуатации и срок поверки. В течении срока эксплуатации производитель дает гарантию, что устройство будет выполнять свои основные функции. Срок поверки указывает на период, в течение которого могут измениться параметры срабатывания защиты, то есть через указанный промежуток времени желательно (а я бы даже сказал обязательно) либо сделать поверку автомата, либо заменить (благо, не так дорого он стóит). Кстати, пробки с плавкими предохранителями в поверке не нуждаются. Не забывайте делать регулярный осмотр электропроводки и как минимум раз в год протягивать винтовые соединения на автоматах и шинах нулевых и заземляющих проводов. Не забывайте про заземление — оно поможет вовремя выявить устройства с поврежденной изоляцией.

Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания: 1. Последовательное соединение элементов. 2. Параллельное соединение элементов. 3. Последовательно-параллельное (смешанное) соединение элементов.

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Cила тока: формула

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Базовые понятия о электричестве

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе.Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля.

Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении(рис. 1.1).

Движение электронов в проводнике

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком.

На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2).

Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

Читайте также:  Лектрический ток в металлах

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.


Основные характеристики переменного тока

Как течет ток от плюса к минусу

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.
Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).


Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Источник

Какое направление тока принимают за положительное физика 10 класс

«Физика — 10 класс»

Электрический ток — направленное движение заряженных частиц. Благодаря электрическому току освещаются квартиры, приводятся в движение станки, нагреваются конфорки на электроплитах, работает радиоприемник и т. д.

Рассмотрим наиболее простой случай направленного движения заряженных частиц — постоянный ток.

Какой электрический заряд называется элементарным?
Чему равен элементарный электрический заряд?
Чем различаются заряды в проводнике и диэлектрике?

При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит (рис. 15.1, а). Поперечное сечение проводника в среднем пересекает одинаковое число электронов в двух противоположных направлениях. Электрический заряд переносится через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в направленном движении (рис. 15.1, б). В этом случае говорят, что по проводнику идёт электрический ток.

Электрическим током называют упорядоченное (направленное) движение заряженных частиц.

Электрический ток имеет определённое направление.

За направление тока принимают направление движения положительно заряженных частиц.

Если перемещать нейтральное в целом тело, то, несмотря на упорядоченное движение огромного числа электронов и атомных ядер, электрический ток не возникнет. Полный заряд, переносимый через любое сечение, будет при этом равным нулю, так как заряды разных знаков перемещаются с одинаковой средней скоростью.

Направление тока совпадает с направлением вектора напряжённости электрического поля. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.

Выбор направления тока не очень удачен, так как в большинстве случаев ток представляет собой упорядоченное движение электронов — отрицательно заряженных частиц. Выбор направления тока был сделан в то время, когда о свободных электронах в металлах ещё ничего не знали.

Действие тока.

Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.

Во-первых, проводник, по которому идёт ток, нагревается.

Во-вторых, электрический ток может изменять химический состав проводника: например, выделять его химические составные части (медь из раствора медного купороса и т. д.).

В-третьих, ток оказывает силовое воздействие на соседние токи и намагниченные тела. Это действие тока называется магнитным.

Читайте также:  Все ли жидкости проводят электрический ток

Так, магнитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химического и теплового является основным, так как проявляется у всех без исключения проводников. Химическое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсутствует у сверхпроводников.

В лампочке накаливания вследствие прохождения электрического тока излучается видимый свет, а электродвигатель совершает механическую работу.

Сила тока.

Если в цепи идёт электрический ток, то это означает, что через поперечное сечение проводника всё время переносится электрический заряд.

Заряд, перенесённый в единицу времени, служит основной количественной характеристикой тока, называемой силой тока.

Если через поперечное сечение проводника за время Δt переносится заряд Δq, то среднее значение силы тока равно:

Средняя сила тока равна отношению заряда Δq, прошедшего через поперечное сечение проводника за промежуток времени Δt, к этому промежутку времени.

Если сила тока со временем не меняется, то ток называют постоянным.

Сила переменного тока в данный момент времени определяется также по формуле (15.1), но промежуток времени Δt в таком случае должен быть очень мал.

Сила тока, подобно заряду, — величина скалярная. Она может быть как положительной, так и отрицательной. Знак силы тока зависит от того, какое из направлений обхода контура принять за положительное. Сила тока I > 0, если направление тока совпадает с условно выбранным положительным направлением вдоль проводника. В противном случае I

За положительное направление тока в проводнике примем направление слева направо. Заряд каждой частицы будем считать равным q. В объёме проводника, ограниченном поперечными сечениями 1 и 2 с расстоянием Δl между ними, содержится nSΔl частиц, где n — концентрация частиц (носителей тока). Их общий заряд в выбранном объёме q = qnSΔl. Если частицы движутся слева направо со средней скоростью υ, то за время все частицы, заключенные в рассматриваемом объёме, пройдут через поперечное сечение 2. Поэтому сила тока равна:

В СИ единицей силы тока является ампер (А).

Эта единица установлена на основе магнитного взаимодействия токов.

Измеряют силу тока амперметрами. Принцип устройства этих приборов основан на магнитном действии тока.

Скорость упорядоченного движения электронов в проводнике.

Найдём скорость упорядоченного перемещения электронов в металлическом проводнике. Согласно формуле (15.2) где е — модуль заряда электрона.

Пусть, например, сила тока I = 1 А, а площадь поперечного сечения проводника S = 10 -6 м 2 . Модуль заряда электрона е = 1,6 • 10 -19 Кл. Число электронов в 1 м 3 меди равно числу атомов в этом объёме, так как один из валентных электронов каждого атома меди является свободным. Это число есть n ≈ 8,5 • 10 28 м -3 (это число можно определить, если решить задачу 6 из § 54). Следовательно,

Как видите, скорость упорядоченного перемещения электронов очень мала. Она во много раз меньше скорости теплового движения электронов в металле.

Условия, необходимые для существования электрического тока.

Для возникновения и существования постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц.

Однако этого ещё недостаточно для возникновения тока.

Для создания и поддержания упорядоченного движения заряженных частиц необходима сила, действующая на них в определённом направлении.

Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за столкновений с ионами кристаллической решётки металлов или нейтральными молекулами электролитов и электроны будут двигаться беспорядочно.

На заряженные частицы, как мы знаем, действует электрическое поле с силой:

Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц.
Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между концами проводника в соответствии с формулой (14.21) существует разность потенциалов. Как показал эксперимент, когда разность потенциалов не меняется во времени, в проводнике устанавливается постоянный электрический ток. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального на другом, так как положительный заряд под действием сил поля перемещается в сторону убывания потенциала.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Источник

§ 100. Электрический ток. Сила тока

Электрический ток — направленное движение заряженных частиц. Благодаря электрическому току освещаются квартиры, приводятся в движение станки, нагреваются конфорки на электроплитах, работает радиоприемник и т. д.

Рассмотрим наиболее простой случай направленного движения заряженных частиц — постоянный ток.

Какой электрический заряд называется элементарным?

Чему равен элементарный электрический заряд?

Чем различаются заряды в проводнике и диэлектрике?

При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую

При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит (рис. 15.1, а). Поперечное сечение проводника в среднем пересекает одинаковое число электронов в двух противоположных направлениях. Электрический заряд переносится через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в направленном движении (рис. 15.1, б). В этом случае говорят, что по проводнику идёт электрический ток.

Электрический ток имеет определённое направление.

Направление тока совпадает с направлением вектора напряжённости электрического поля. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.

Действие тока. Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.

Во-первых, проводник, по которому идёт ток, нагревается.

Во-вторых, электрический ток может изменять химический состав проводника: например, выделять его химические составные части (медь из раствора медного купороса и т. д.).

В-третьих, ток оказывает силовое воздействие на соседние токи и намагниченные тела. Это действие тока называется магнитным.

Так, магнитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химического и теплового является основным, так как проявляется у всех без исключения проводников. Химическое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсутствует у сверхпроводников.

В лампочке накаливания вследствие прохождения электрического тока излучается видимый свет, а электродвигатель совершает механическую работу.

Сила тока. Если в цепи идёт электрический ток, то это означает, что через поперечное сечение проводника всё время переносится электрический заряд.

Если через поперечное сечение проводника за время Δt переносится заряд Δq, то среднее значение силы тока равно:

Среднее значение силы тока

Сила переменного тока в данный момент времени определяется также по формуле (15.1), но промежуток времени Δt в таком случае должен быть очень мал.

Источник