Меню

Каковы характерные особенности проводимости цепи при резонансе токов



РЕЗОНАНС ТОКОВ.

Режим, при котором сдвиг фаз между напряжением и током равен нулю в цепи с двумя узлами называется резонансом токов. В этом режиме реактивные токи в ветвях равны по величине.

Рис. 82 Электрическая схема с двумя узлами, в которой реальная катушка индуктивности и конденсатор с потерями соединены параллельно: а – схема; б,в,г – векторные диаграммы токов (б), проводимостей (в), мощностей (г).

Условие резонанса токов:

(6-71)

На рис. 82б,в,г показаны векторные диаграммы токов, проводимости и мощности при резонансе.

, (6-72)

Так как = то

. (6-73)

Аналогично полная проводимость цепи

. (6-74)

Так как то полная реактивная проводимость

(6-75)

Полная мощность цепи

. (6-76)

Так как = то полная реактивная мощность =O. Тогда

(6-77)

Сдвиг фаз между напряжением и током

(6-78)

Следовательно, электрическая цепь в состоянии резонанса для источника цепи представляет собой чисто активную нагрузку.

Из равенства реактивных проводимостей можно получить выражение для частоты собственных колебаний рассматриваемой цепи:

;

После преобразований получаем выражение:

; (6-79)

Из выражения видно, что резонансная частота зависит от активных сопротивлений катушки и конденсатора.

Обычно на практике для определения частоты собственных колебаний пользуются приближенной формулой, вытекающей для случая идеальной цепи (нулевые потери энергии). При этом в обеих ветвях отсутствуют активные сопротивления Тогда

= ; (6-80)

Эти выражения совпадают с формулами, полученными ранее, для резонанса напряжений и резонанс наступает в электрической цепи при совпадении частот вынужденных и собственных колебаний системы.

Рассмотрим, как меняются проводимость и ток в цепи при изменении частоты.

Ток в неразветвленной части цепи

(6-81)

Таким образом, при резонансе в случае, когда ток минимален и равен суммарному активному току. До и после резонанса ток увеличивается. По величине тока можно установить наличие резонанса, а именно: минимальное значение тока в цепи указывает на момент резонанса.

Рис. 83 Частотные зависимости проводимости (а) и тока (б) в цепи с двумя узлами.

На рис. 83 б показаны резонансная кривая общего тока в цепи и его реактивных составляющих.

Как и в последовательной цепи, резонанса токов в нашем случае можно добиться изменением частоты источника питания или параметров цепи L и C.

Контрольные вопросы

1. Что такое активное сопротивление?

2. Имеется ли сдвиг фаз между током и напряжением в цепи переменного тока с активным сопротивлением?

3. Какое сопротивление называют индуктивным?

4. От чего зависит индуктивное сопротивление?

5. Что называют коэффициентом мощности?

6. Какая мощность называется реактивной?

7. Как ведет себя емкость в цепи переменного тока?

8. Каким образом можно увеличить коэффициент мощности?

9. Почему не совпадают по фазе ток и напряжение в цепи с чисто индуктивной нагрузкой?

10. Что называется резонансом в электрической цепи?

11. В каких простейших цепях возможны резонансы?

12. Каковы условия резонанса напряжений и резонанса токов в простеших электрическихт цепях?

13. Каковы характерные особенности режима резонанса напряжений а неразветвленной цепи?

14. В чем опасность резонанса напряжений, если он наступает непредусмотренно?

15. В чем состоит свойство «избирательности» неразветвленной цепи?

16. Где используется явление резонанса токов и резонанса напряжений?

Источник

Резонанс переменного электрического тока

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Читайте также:  Проект расчета токов кз

Соединение двух ветвей при резонансе

Соединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

схема для питания конденсатора

Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.

переключатель резонансной схемы

Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

ток в резонансной схеме равен нулю

Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Читайте также:  В частном доме душевая кабина бьет током

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср= I 2 конт * R = (V 2 конт / Z 2 ) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

Нулевой импеданс в резонансе определяется при помощи такой формулы:

Резонансная частота колебаний может быть аппроксимирована следующим образом:

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

Источник

Резонанс токов: условие его возникновения, особенности

date image2015-04-08
views image17401

facebook icon vkontakte icon twitter icon odnoklasniki icon

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Выразим резонансную частоту

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

Источник

Резонанс в электрической цепи

Разберемся сначала с важными понятиями.

Колебания внешнего воздействия могут усиливать даже незначительные колебания системы. Наибольший резонанс достигается при совпадении частоты колебаний внешнего воздействия с колебаниями системы.

Одним из примеров явления резонанса, есть расшатывание моста ротой солдат. Это происходит, когда частота шагов солдат, которая являются внешним воздействием, совпадает с частотой колебаний моста. Если возникнет такой резонанс, это может разрушить мост. Именно поэтому солдаты не переходят мосты стройным шагом, а идут в вольном режиме.

Часто встречаемым явлением в физике есть электрический резонанс. Без него невозможно было бы провести телетрансляцию, многие медицинские обследования и прочие важные процессы.

Востребованными резонансами в электрической цепи есть:

  • резонанс напряжений;
  • резонанс токов.

Резонанс в электрической цепи

Схема \(RLC\) – это электрическая цепь с последовательными, параллельными или комбинированными соединениями компонентов (резисторами, индукционными катушками и конденсаторами). \(RLC\) – это сочетание сопротивления, индуктивности и емкости.

Векторная диаграмма в случае последовательного соединения \(RLC\) -цепи бывает емкостной, активной или индуктивной.

В индуктивной векторной диаграмме резонанс напряжений появляется лишь при нулевом сдвиге фаз и совпадении сопротивлений индукции и емкости.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Читайте также:  Как определить силу тока блока питания мультиметром

Резонанс токов через реактивные элементы

Резонанс токов возникает при параллельном соединении реактивных сопротивлений с одинаковыми характеристиками в цепях с переменным током. Во время резонанса токов реактивная индуктивная проводимость приравнивается к реактивной емкостной проводимости, то есть \(BL=BC.\)

Колебания контура с определенной частотой совпадают с частотой колебаний источника.

Простейшим примером цепи, в которой может произойти резонанс токов, есть параллельное соединение катушки с конденсатором.

Поскольку реактивные сопротивления совпадают по модулю, то амплитуды токов конденсатора и катушки также будут совпадать и могут достичь наибольшего значения амплитуды. Согласно первому закону Кирхгофа \(IR\) равняется току источника. Иначе говоря, ток проходит лишь через резистор. Если рассмотреть параллельный контур \(LC,\) то при частоте резонанса его сопротивление будет огромным. В условиях режима гармонии при частоте резонанса в контуре будет расход тока лишь для восполнения потерь на активном сопротивлении.

Значит, в последовательной цепи \(RLC\) импеданс наименьший при частоте резонанса и равняется активному сопротивлению контура, при этом в параллельной цепи \(RLC\) импеданс наибольший при частоте резонанса и равняется сопротивлению утечки, что фактически есть активным сопротивлением контура. Это значит, что для обеспечения резонанса силы тока или напряжения в цепи необходима ее проверка с целью определения суммарного сопротивления и проводимости. Кроме того, ее мнимая часть должна равняться нулю.

Резонанс напряжений

Резонанс напряжений имеет место в цепи переменного тока в случае последовательного соединения активного \(R\) , емкостного \(C\) и индуктивного \(L\) компонентов. Резонанс напряжений состоит в совпадении внутренних колебаний источника и внешних колебаний контура. Резонанс напряжений применяется с пользой, но бывает и опасен. Например, данное явление применяют в радиотехнике, а опасность его состоит в том, что при резких скачках напряжения может произойти поломка оборудования и даже его возгорание.

Резонанс напряжения достигают несколькими путями:

  • подбирая индуктивность катушки;
  • подбирая емкость конденсатора;
  • подбирая угловую частоту \(ω_0\) .

Эти величины подбирают с помощью таких формул:

Частота \(ω_0\) – это резонансная величина. При постоянных напряжении и активном сопротивлении в цепи сила тока в процессе резонанса напряжения наибольшая и равняется отношению напряжения к активному сопротивлению. То есть, сила тока полностью не зависима от реактивного сопротивления. Если реактивные сопротивления индукции и емкости одинаковы и по своей величине превышают активное сопротивление, тогда на зажимах катушки и конденсатора будет напряжение, сильно превышающее напряжение на зажимах контура.

Не нашли что искали?

Просто напиши и мы поможем

Кратность превышения напряжения на зажимах катушки и конденсатора в соотношении с напряжением контура рассчитывается так:

Величина \(Q\) является добротностью контура и описывает его резонансные характеристики.

Величина, обратная добротности контура, – это затухание контура \( <1 \over Q>\) .

Явление резонанса на практике

Электрический резонансный трансформатор, который был разработан Николой Теслой в конце XIX века, является ярким примером практического применения резонанса в электрических цепях. Тесла проводил массу экспериментов при разных конфигурациях резонансных цепей.

На сегодняшний день словосочетанием «катушка Теслы» называют высоковольтные резонансные трансформаторы. Такие приспособления применяют для генерации высокого напряжения и частоты переменного тока. Если простые трансформаторы используют для передачи энергии с первичной на вторичную катушку, то резонансные — для хранения электрической энергии во временном режиме.

При помощи данного приспособления, посредством управления воздушным сердечником резонансно настроенного трансформатора, при незначительной силе тока получают высокие напряжения. При этом у каждой катушки есть собственная емкость и она работает как резонансный контур. Для создания еще большего напряжения достигают резонанса двух контуров.

Источник

Adblock
detector