Какие вы знаете проводники электрического тока физика 10 класс

Проводники и диэлектрики в электростатическом поле

Урок 63. Физика 10 класс

Доступ к видеоуроку ограничен

Конспект урока «Проводники и диэлектрики в электростатическом поле»

Как вы знаете из курса физики восьмого класса, все тела можно классифицировать, в соответствии с их способностью проводить электрический ток. Тело может являться проводником, полупроводником или диэлектриком. Проводниками называют тела, проводящие электричество, а диэлектриками называют тела, не проводящие электричество.

Полупроводники — это тела, которые меняют свои свойства проводимости в зависимости от внешних условий. Но о полупроводниках мы поговорим позже, а сегодня мы рассмотрим проводники и диэлектрики. Рассмотрим, что происходит с проводником, помещенным в электростатическое поле. Конечно, к проводникам, в первую очередь, относятся металлы, в которых существуют, так называемые, свободные заряды. Свободные заряды — это электрические заряды, способные перемещаться внутри проводника. Как вы знаете, в металлах наблюдается металлическая связь. Нейтральные атомы металла начинают взаимодействовать друг с другом, в результате чего, некоторые электроны отрываются от атомов и становятся свободными. Эти электроны начинают участвовать в тепловом движении и могут перемещаться по всему проводнику в случайных направлениях. Иными словами, свободные электроны в проводнике ведут себя подобно молекулам газа. Поскольку все атомы изначально электрически нейтральны, если они теряют электрон, они становятся положительно заряженными ионами.

Таким образом, в проводниках наблюдается следующая картина: положительно заряженные ионы оказываются окружены так называемым электронным газом. Конечно, не надо думать, что электроны образуют какой-то реальный газ. Просто их движение очень напоминает хаотическое движение молекул газа.

Рассмотрим случай, когда металлический проводник находится в однородном электростатическом поле.

Как вы знаете, под действием электрического поля свободные электроны приходят в упорядоченное движение (то есть, в проводнике возникает электрический ток). В результате одна сторона проводника заряжается отрицательно, а другая — положительно. Это явление называется электростатической индукцией. То есть электростатическая индукция — это явление наведения собственного электростатического поля под воздействием внешнего электрического поля.

Итак, из-за электростатической индукции, возникает другое электростатическое поле, создаваемое появившимися зарядами. По принципу суперпозиции полей, это поле накладывается на внешнее поле и компенсирует его. Из этого мы можем сделать очень важный вывод: напряженность электростатического поля внутри проводника равна нулю:

Этот факт используется для создания электростатической защиты: чувствительные к электрическому полю приборы, помещаются в металлические ящики. В настоящее время даже некоторые виды спецодежды включают в себя современные электропроводящие материалы, которые создают внутри костюма замкнутое пространство, защищенное от воздействия электрических полей.

Впервые, эксперимент, подтверждающий отсутствие электростатического поля внутри проводника, провел Майкл Фарадей еще в 1836 году. По его указанию большую деревянную клетку оклеили листами оловянной фольги (которая является проводником). Предварительно клетку изолировали от земли и сильно зарядили ее (так что при приближении к ней тел, с ее поверхности вылетали искры).

Тем не менее, сам Фарадей совершенно спокойно находился внутри данной клетки. Более того, в его руках был исправный электроскоп, который показывал полное отсутствие электрического поля. Впоследствии, подобные конструкции получили название «клетка Фарадея».

Необходимо отметить еще один важный факт: вблизи поверхности (вне проводника) линии напряженности электростатического поля перпендикулярны этой поверхности.

Если бы это было не так, и какая-то линия напряженности была бы не перпендикулярна поверхности, то это привело бы к движению свободных зарядов. Такое движение продолжается до тех пор, пока все силовые линии не станут перпендикулярны поверхности проводника. Надо сказать, что весь статический заряд любого проводника находится на поверхности этого проводника. В этом легко убедиться, поскольку мы уже выяснили, что напряженность электростатического поля внутри проводника равна нулю. Следовательно, внутри проводника никакого заряда нет, поскольку в противном случае, он создавал бы отличную от нуля напряженность.

Читайте также:  Как понизить силу тока лампочкой 1

Теперь давайте поговорим о диэлектриках. Диэлектрики в электростатическом поле ведут себя иначе, чем проводники. Диэлектрики, наоборот, не проводят ток, но внутри них может существовать электрическое поле.

Дело в том, что в диэлектриках не возникают свободные заряды, поскольку между ядрами атомов и электронами существует довольно сильная связь. Приведем два классических примера распределения электрического заряда. Как вы знаете, ядро водорода состоит из одного протона, а вокруг этого протона вращается один электрон. В целом, атом электрически нейтрален. Электрон вращается вокруг протона с очень большой скоростью: за одну секунду он делает порядка 10 15 оборотов. Это говорит нам о том, что каждую микросекунду электрон оказывается в любой точке своей орбиты миллионы раз. Поэтому, смело можно считать, что в среднем по времени центр распределения отрицательного заряда находится в центре атома, то есть совпадает с положительно заряженным ядром.

Тем не менее, есть и другие случаи. Например, молекула поваренной соли состоит из атома натрия и атома хлора. Из курса химии вы знаете, что атом хлора имеет 7 валентных электронов, а у атома натрия всего один валентный электрон. Поэтому, в процессе образования молекулы, атом хлора захватывает электрон натрия, в результате чего образуется система из двух ионов. Теперь центр распределения отрицательного заряда приходится на ион хлора, а центр распределения положительного заряда приходится на ион натрия. Тем не менее, в целом молекула остается электрически нейтральна. Подобные системы называются электрическими диполями.

В связи с этим, разделяют два вида диэлектриков: неполярные и полярные. Неполярные диэлектрики — это диэлектрики, состоящие из атомов или молекул, у которых центры распределения положительных и отрицательных зарядов совпадают.

И наоборот, полярными диэлектриками называются диэлектрики, состоящие из атомов или молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают.

О поляризации диэлектриков мы поговорим более подробно в одном из следующих уроков. А сейчас давайте рассмотрим величину, характеризующую свойство диэлектрической среды, которая называется диэлектрической проницаемостью. Эта величина показывает, во сколько раз кулоновская сила взаимодействия между двумя точечными зарядами в данной среде меньше, чем кулоновская сила взаимодействия этих же зарядов в вакууме:

Таким образом, мы можем записать закон кулона для произвольной среды:

В формулу добавляется диэлектрическая проницаемость, то есть, характеристика среды. Диэлектрические проницаемости многих сред измерены и сведены в таблицы. Эти величины измерены экспериментально, например, с помощью измерения кулоновских сил тех же зарядов в различных средах.

Источник

Конспект урока по физике для учащихся 10 класса по теме: «Проводники»

Тема урока: Проводники в электрическом поле

Цель: Содействовать развитию у учащихся физической речи, умений: обобщать, делать выводы; помочь учащимся осознать практическую значимость изучаемого материала.

Микроцель: вспомнить основные понятия и формулы

Какие знания должны быть у учащихся

Какие виды зарядов вы знаете?

Какими свойствами обладает одноименные и разноименные заряды?

Какой заряд называется точечным?

В каких случаях, при рассмотрении взаимодействия заряженных тел используют свойства суперпозиции?

К каким видам зарядов относятся электроны?

Поле создано параллельными, разноимённо заряженными пластинами. Какое поле между пластинами?

Силовая характеристика электрического поля?

Энергетическую характеристику электрического поля?

Что называют разностью потенциалов между двумя точками поля?

Как изменится напряжение при увеличении напряженности электрического поля?

Микроцель: рассмотреть физический смысл

Понима -ние физичес-кого смысла основных понятий

Сопоставить формулы с названием этих формул

2) hello_html_6ebbd1b5.png

3) hello_html_m58ed1c3f.png

4) hello_html_4fae7c45.jpg

Напряжение , напряженность электрического поля созданного зарядом Q , закон Кулона, разность потенциалов, потенциал поля, работа сил поля, закон сохранения электрического заряда, напряженность однородного поля.

Объяснение новой темы

Микроцель: объяснение основных понятий и явлений

Проводники в электрическом поле

Проводники различной формы

Микроцель: проанализировать уровень усвоения

Объяснить следующий опыт:

Читайте также:  Номинальное значение силы электрического тока

К hello_html_733cf18e.pngнезаряженному проводнику АВ поднесли, не касаясь его, положительно заряженную стеклянную палочку (рис. 1). Затем, не убирая палочку, разделили проводник на две части (рис. 2). Какое утверждение можно сделать о знаках зарядов частей А и В после разделения?

Микроцель: обобщить и систематизировать ЗУН

Ответить на вопросы

Какие вещества называются проводниками?

Какие частицы являются носителями свободных зарядов в металлах?

Как распределяется по проводнику сообщенный ему заряд?

В чем состоит явление электростатической индукции?

При равновесии зарядов на проводнике потенциал всех его точек будет?

Домашнее задание: § 8.8 Упражнение 17 (3,4)

Размерами которого, в рамках условия рассматриваемой задачи, можно пренебречь

Когда заряды нельзя считать точечными

закон сохранения электрического заряда

работа сил поля

напряженность однородного поля

напряженность электрического поля созданного зарядом Q

Часть В будет иметь отрицательный заряд, часть А – положительный.

Имеющие наличие свободных зарядов

Равномерно, по всему объему проводника

Когда проводник попадает в электрическое поле, то он электризуется так, что на одном его конце возникает положительный заряд, а на другом конце такой же по величине отрицательный заряд. Такая электризация называется электростатическая индукция.

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДБ-138870

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

§ 100. Электрический ток. Сила тока

Электрический ток — направленное движение заряженных частиц. Благодаря электрическому току освещаются квартиры, приводятся в движение станки, нагреваются конфорки на электроплитах, работает радиоприемник и т. д.

Рассмотрим наиболее простой случай направленного движения заряженных частиц — постоянный ток.

Какой электрический заряд называется элементарным?

Чему равен элементарный электрический заряд?

Чем различаются заряды в проводнике и диэлектрике?

При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую

При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит (рис. 15.1, а). Поперечное сечение проводника в среднем пересекает одинаковое число электронов в двух противоположных направлениях. Электрический заряд переносится через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в направленном движении (рис. 15.1, б). В этом случае говорят, что по проводнику идёт электрический ток.

Электрический ток имеет определённое направление.

Направление тока совпадает с направлением вектора напряжённости электрического поля. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.

Действие тока. Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.

Во-первых, проводник, по которому идёт ток, нагревается.

Во-вторых, электрический ток может изменять химический состав проводника: например, выделять его химические составные части (медь из раствора медного купороса и т. д.).

В-третьих, ток оказывает силовое воздействие на соседние токи и намагниченные тела. Это действие тока называется магнитным.

Так, магнитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химического и теплового является основным, так как проявляется у всех без исключения проводников. Химическое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсутствует у сверхпроводников.

Читайте также:  Уравнение в общем виде для колебаний переменного электрического тока

В лампочке накаливания вследствие прохождения электрического тока излучается видимый свет, а электродвигатель совершает механическую работу.

Сила тока. Если в цепи идёт электрический ток, то это означает, что через поперечное сечение проводника всё время переносится электрический заряд.

Если через поперечное сечение проводника за время Δt переносится заряд Δq, то среднее значение силы тока равно:

Среднее значение силы тока

Сила переменного тока в данный момент времени определяется также по формуле (15.1), но промежуток времени Δt в таком случае должен быть очень мал.

Источник

Проводник и непроводник электричества

Проводники

Проводимость в кристалле металла

Самыми лучшими проводниками являются металлы. Происходит это потому, что ядра атомов с электронами внутренних электронных оболочек (ионы) образуют плотную регулярную пространственную структуру – кристаллическую решетку, электроны внешних оболочек оказываются «общими» для соседних ионов и могут достаточно свободно перемещаться от одного иона к другому.

Металлическая кристаллическая решетка

Рис. 1. Металлическая кристаллическая решетка.

Электроны движутся хаотически, но если возникает электрическое поле, то электроны начинают двигаться упорядочено, а поскольку тормозящих сил нет – легко возникает электрический ток.

Примерами хороших проводников являются такие металлы, как серебро, медь, алюминий.

Хотя скорость движения электронов по проводнику невысока (миллиметры в секунду), само электрическое поле распространяется с очень большой скоростью, сравнимой со скоростью света.

Проводимость растворов

Поскольку чистая дистиллированная вода практически не содержит свободных зарядов, она не может проводить электрический ток. Однако, если в воде растворено другое вещество, (например, обычная поваренная соль), то под действием молекул воды нейтральная молекула этого вещества распадается на заряженные части (ионы). И теперь при появлении электрического поля ионы придут в упорядоченное движение, возникнет электрический ток.

Ионная проводимость растворов

Рис. 2. Ионная проводимость растворов.

Поскольку ионы в растворе значительно тяжелее электронов в металле, растворы хуже проводят электричество, по сравнению с металлами.

Проводимость газов

Газы, как правило, состоят из отдельных, хаотично движущихся и достаточно далеко отстоящих друг от друга молекул. Поэтому они не проводят электрический ток. Однако, если внешними воздействиями создавать внутри газа заряженные частицы (ионы), то газ начинает проводить электрический ток. Такими воздействиями может быть нагревание, либо создание такого большого электрического поля, что его сил оказывается достаточно для разрушения внешних электронных оболочек. Газ при этом ионизируется, и возникает разряд – тлеющий или искровой.

Тлеющий или искровой газовый разряд

Рис. 3. Тлеющий или искровой газовый разряд.

Диэлектрики

Если среда содержит очень мало свободных зарядов (или не содержит их вообще), такая среда не может проводить электрический ток и является непроводником (диэлектриком, изолятором).

В отличие от кристаллов проводников, кристаллы диэлектрика имеют такую пространственную структуру, что внешние электроны не могут далеко удалиться от ионов. В результате даже при приложении достаточно большого внешнего электрического поля ток в диэлектрике не возникает. Типичными примерами непроводников является стекло или пластмассы.

Жидкости-диэлектрики – это жидкости, в которых нет растворенных примесей, а молекулы этих жидкостей сами по себе ионами не являются, например, дистиллированная вода.

Газы в нормальных условиях, как уже было сказано выше, содержат очень мало заряженных частиц, и являются хорошими изоляторами. Примером может являться обычный воздух.

Граница между проводниками и непроводниками достаточно условна. Кроме того, существуют вещества, занимающие промежуточное положение, они называются полупроводниками. В таких веществах количество свободных зарядов не так велико, как в металлах, однако, значительно больше, чем в диэлектриках. К типичным полупроводникам относится кремний.

Что мы узнали?

Деление на проводники и непроводники электричества проводится в зависимости от количества свободных электрических зарядов в веществе. Проводники – это вещества, в которых имеется много свободных электрических зарядов, типичные представители – металлы. Непроводники (диэлектрики, изоляторы) – это вещества, в которых мало или вовсе нет свободных электрических зарядов, типичные представители – стекло, пластмасса. Кроме того, существуют полупроводники, занимающие промежуточное положение, например, кремний.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector