Меню

Каким прибором измеряют работу электрического тока физика



Измерение тока. Виды и приборы. Принцип измерений и особенности

Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.

Измерение тока рекомендуется делать в следующих случаях:
  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
  • Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами

Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.

  • Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.

Ampermetry

  • Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Multimetry

Порядок измерения силы тока мультиметром:
  • Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
  • Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
  • Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
  • Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.

Izmerenie toka klemy

  • Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
  • Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
  • Отключить питание цепи и отсоединить мультиметр.
  • Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.

Izmeritelnye kleshchi

Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.

Izmerenie toka skhemy

При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Читайте также:  Как сделать крамников в тока бока всех

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Источник

Что такое электроизмерительный прибор: точность и принцип действия

Класс устройств, которые применяются для измерения электрических величин, называются электроизмерительными приборами. Наиболее известные из них – амперметры, вольтметры и омметры.

Сфера применения

Электроизмерительный прибор является необходимым устройством в связи, энергетике, промышленности, на транспорте, в медицине и научных исследованиях. Применяется это устройство и в быту, например для учета потребленной электроэнергии.
А если применить специальные преобразователи величин неэлектрических в электрические, то диапазон применения электроизмерительных приборов становится значительно шире.

Электроизмерительный прибор

Классификация электроизмерительных приборов

Один из существенных признаков систематизации подобных устройств — воспроизводимая или измеряемая физическая величина. Согласно ему приборы подразделяются:

— на измеряющие силу электрического тока – амперметры,

— измеряющие электрическое напряжение – вольтметры,

— измеряющие электрическое сопротивление – омметры,

— измеряющие частоту колебаний электротока – частотомеры,

— измеряющие различные величины – мультиметры или авометры, тестеры,

— для воспроизведения указанных сопротивлений – магазины сопротивлений,

— измеряющие мощность электрического тока – варметры и ваттметры,

— измеряющие потребление электрической энергии – электросчетчики и пр.

Классификация электроизмерительных приборов

Другие признаки систематизации

Существуют и другие признаки, по которым классифицируют такой вид устройств, как электроизмерительный прибор. Это может быть:

1. Назначение: меры, измерительные приборы и преобразователи, измерительные системы и установки, прочие вспомогательные устройства.

2. Система предоставления полученного результата: регистрирующие (графическое изображение на фотопленке или бумаге либо в виде компьютерного файла) или показывающие.

3. Способ измерения: приборы сравнения или непосредственной оценки.

4. Способ использования и конструктивные особенности: переносные, щитовые (закрепляются на специальной панели или щите), стационарные.

По принципу действия классификация электроизмерительных приборов выглядит следующим образом:

  • электромеханические, которые, в свою очередь, подразделяются:
  • электронные;
  • электрохимические;
  • термоэлектрические.

Система обозначений

За рубежом заводы-изготовители устанавливают свои обозначения на выпускаемых измерительных устройствах. В России и некоторых бывших республиках Советского Союза традиционна унифицированная система знаков. Основана она на принципе работы конкретного прибора. Основные электроизмерительные приборы в обозначении всегда имеют прописную букву русского алфавита, которая указывает на принцип действия устройства. А также число, которое обозначает условный номер модели. Иногда можно встретить прописную букву М, которая обозначает, что прибор модернизированный или К (контактный). Есть и другие, обозначения. Например, Д (электродинамические приборы), Н (самопишущие приборы), Р (меры, устройства, измеряющие параметры элементов электросетей, измерительные преобразователи), И (индукционные приборы), Л (логометры) и пр.

Точность электроизмерительных приборов

Показатели точности

Одна из главных характеристик прибора для электроизмерений – класс точности. Их существует несколько. А определяется он по зависимости от допустимого предела погрешности, вызванной конструктивными особенностями отдельно взятого устройства.

Точность электроизмерительных приборов не может быть равна погрешности относительной или абсолютной. Последняя не является определителем точности, а относительная имеет зависимость от значения величины, подвергшейся изменению, то есть для различных участков шкалы будет иметь разные значения.

Поэтому для характеристики точности электроприбора применяется приведенная погрешность (ɣ). Определяется она отношением погрешности абсолютной конкретного прибора (∆x) к максимуму (или пределу) измеряемой величины (xпр). Полученная величина, выраженная в процентах, и будет классом точности конкретного прибора:

Любой электроизмерительный прибор на шкале обязательно имеет указание на класс точности. Согласно ГОСТу он может быть 0,05, 0,1, 0,2, 0,5, 1,0, 1,5, 2,5 и 4,0. На этом основании приборы можно классифицировать следующим образом:

— класс точности 0,05 и 0,1 — образцовые, использующиеся для поверки точных приборов (например, лабораторных);

— класс точности 0,2 и 0,5 – лабораторные, используются в лабораториях для производства измерений и поверки технических приборов;

— класс точности 1,0, 1,5, 2,5 и 4,0 – технические, применяются для технических измерений.

Электроизмерительные приборы: принцип действия

Работа большей части электроизмерительных приборов основана на магнитоэлектрическом эффекте. Электроны, двигаясь по проводнику электрической цепи, образуют вокруг себя магнитное поле. В нем и перемещается стрелка измеряющего устройства, реагируя на силу окружающего поля. Чем магнитное поле слабее, тем меньше отклонение стрелки и наоборот.

Читайте также:  Условное направление действия тока

Основные электроизмерительные приборы

Если в непосредственной близости от проводника, через который не протекает электрический ток, подвешена стрелка, то реагировать она может только на магнитное поле Земли. Но если через проводник пропустить ток, стрелка будет уже реагировать на магнитное поле электрического тока. Таким образом, механическое отклонение стрелки провоцируют электроны, двигаясь через проводник. И следовательно, чем больше электрический ток, тем сильнее образованное им поле и тем дальше от начального положения отклоняется стрелка. Этот незатейливый принцип является основополагающим для большинства электроизмерительных приборов.

Один электроизмерительный прибор отличается от другого не измерительным отклонением стрелки (приборов с цифровым индикатором это не касается), а внутренними цепями и способами создания электромагнитного поля. Как известно, для движения в электрической сети электронов необходима нагрузка. Поэтому это движение имеет некоторые различия в омметрах, вольтметрах и амперметрах, имеющих измерительные клещи. Приборы с такими захватами «вытягивают» магнитное поле из пластинок, их образующих. В вольтметре для получения магнитного поля применяется резистор, который получает нагрузку при подаче на цепь напряжения. Омметр имеет индивидуальный источник питания и использует устройство, которое подвергает измерению, для образования магнитного поля.

Описанные выше приборы проводят измерения одинаковым способом, притом что подача нагрузки и источники питания у них разные.

Измерительное смещение стрелки, провоцируемое магнитным полем движущихся электронов, указывает на какое-либо деление шкалы. Их обычно несколько, и у каждой свой предел измерения напряжения, сопротивления и тока. На некоторых приборах для удобства пользователя продуман селекторный переключатель.

Как работают цифровые измерители

Цифровые электроизмерительные приборы имеют высокий класс точности (погрешность варьируется от 0,1 до 1,0 %) и широкий предел измерений. Они быстродейственны и могут совместно работать с электронно-вычислительными машинами, что позволяет передавать результаты измерений без каких-либо искажений на различные расстояния.

Цифровые электроизмерительные приборы

Эти устройства считаются приборами сравнения и непосредственной оценки. Их работа основана на принципе перевода измеряемой величины в код, благодаря чему пользователь имеет цифровое представление информации. Ещё какие электроизмерительные приборы относятся к цифровым? Это устройства, которые, измеряя непрерывную электрическую величину, автоматически конвертируют её в дискретную, кодируют и выдают результат в цифровой форме, удобной для считывания пользователем.

Устройства, расположенные в одном корпусе

Это приборы, которые для неодновременного измерения нескольких величин используют один механизм для измерения. Или же они имеют несколько преобразователей с общим для всех отсчетным устройством (шкалой). Она градуируется в единицах измеряемых величин. Чаще всего комбинированные электроизмерительные приборы совмещают в себе устройства, измеряющие силу постоянного или переменного тока и электрического напряжения (ампервольтметры); сопротивления, силы постоянного и переменного тока, напряжение (авометры или ампервольтомметры). А также существуют универсальные цифровые электроизмерительные приборы, которые измеряют напряжение постоянного и переменного тока, индуктивность и количество импульсов.

Какие электроизмерительные приборы

Примером такого устройства может служить новая разработка «Актаком ADS-4031». Прибор от компании «Актаком» гармонично сочетает в себе функциональный генератор, цифровой осциллограф, частотомер, RLC-метр и цифровой мультиметр. Кроме основных пяти совмещенных устройств, осциллографический тестер благодаря дополнительным приспособлениям может использоваться для ряда других измерительных задач.

Производство и разработка электроизмерительных приборов

На территории России работают и активно продвигают на рынок свою продукцию как новые предприятия, так и заводы, ведущие свою историю со времен СССР. Рассмотрим их более подробно.

ОАО «Электроприбор»

Один из таких долгожителей — Чебоксарский завод электроизмерительных приборов. Сегодня он называется ОАО «Электроприбор». Его цеха выпускают аналоговые и цифровые электроизмерительные устройства и шунты. В прайсах завода – амперметры, вольтметры, ватт- и варметры, многофункциональные устройства для измерений. А также измерительные преобразователи напряжения, тока, частоты и мощности. В современных реалиях завод принял к производству линейку вспомогательных изделий – шунтов, которые способны расширять диапазон измерения по напряжению и току. Выпускает «Электроприбор» трансформаторы и добавочные сопротивления.

Пользуются большим спросом приборы с электронными преобразователями, измеряющими частоту реактивной или активной мощности, а также ее коэффициент. Не менее популярны индикаторы, приборы для оснащения специализированных учебных кабинетов, различные цифровые приборы и комплектующие. В конце прошлого века предприятие получило сертификат, подтверждающий систему менеджмента качества ИСО 9001, соответствующую международному стандарту.

Комбинированные электроизмерительные приборы

Чебоксарский завод более 55 лет занимает лидерские позиции среди производителей электроизмерительных приборов.

ОАО «НИИ Электромера»

65 лет назад, согласно Постановлению Совета министров СССР, был образован ВНИИЭП — Всесоюзный научно-исследовательский институт электроизмерительных приборов. Кроме научно-исследовательских работ по разработке новейших образцов техники здесь изготавливали небольшие серии высокоточных, уникальных приборов.
Разрабатывая системы электроизмерительных приборов, предназначенных для автоматизации экспериментов и промиспытаний сложной техники, институт создал измерительно-управляющие комплексы.

В конце прошлого столетия ВНИИЭП преобразован в ОАО «НИИ Электромера».

ООО «Белтехприбор»

Одно из современных предприятий – ООО «Белтехприбор». Здесь постоянно расширяют номенклатуру выпускаемой продукции. Сегодня контрольно-измерительные приборы и низковольтное оборудование поставляется на отечественные предприятия машиностроительного, электромеханического, топливно-энергетического и нефтеперерабатывающего профиля.

Источник

Электроизмерительные приборы

Электроизмерительные приборы: принцип действия.

Электроизмерительные приборы — это специальные устройства, позволяющие получать значения некоторых параметров электрического тока. Любой электроизмеритель включается в исследуемую цепь (постоянно или с помощью щупов) и отображает на индикаторе значение параметра, для которого он предназначен.

Читайте также:  За направление электрического тока условно приняли направление движения заряженных частиц

Подключение тестера к электрической цепи

Рис. 1. Подключение тестера к электрической цепи.

Принцип действия электроизмерительных приборов основан на том, что исследуемая цепь влияет на подключенный прибор, причем это влияние пропорционально исследуемому параметру. А прибор отображает результат этого влияния в форме, удобной для считывания оператором.

В зависимости от того, какое влияние оказывает цепь на измеритель, различные приборы классифицируются по следующим видам:

  • работающие от проходящего через них тока;
  • работающие от накопления заряда;
  • работающие от взаимодействия с электрическим или магнитным полем;
  • работающие от теплового действия измерительной цепи.

В подавляющем большинстве случаев электроизмерительные приборы работают от проходящего через них тока. Приборы остальных принципов менее удобны. В самом деле, для накопления заряда или появления заметного электрического поля в измерительной цепи должны существовать высокие напряжения порядка киловольт. А для существования заметного магнитного поля или выделения заметного количества тепла необходимо наличие высоких токов порядка десятков ампер и выше. При прохождении же тока через измеритель можно обеспечить чувствительность, достаточную для очень малых токов, при этом стоимость прибора будет не сильно высокой.

Если требуется определение напряжения, то используется закон Ома, известный в 11 классе. Подключая прибор к измеряемому напряжению через фиксированное сопротивление, можно получить значение напряжения. Точно так же можно измерить и другие параметры электрического тока: частоту, фазу, нелинейные искажения и другие.

Приборы магнитоэлектрической системы

Электроизмерительные приборы, основанные на прохождении тока, имеют много вариантов, которые называются «системами». Наиболее широко распространены приборы магнитоэлектрической системы. В таких приборах рамка с током помещается в магнитное поле постоянного магнита и удерживается в начальном положении пружинами. Если по рамке идет ток, то в результате возникающей силы Ампера рамка поворачивается до тех пор, пока возникшая сила не будет уравновешена силой пружины. С рамкой связана стрелка, и по углу поворота можно судить о проходящем через прибор токе.

Форма постоянного магнита сделана такой, чтобы магнитное поле, в котором поворачивается рамка, было бы почти однородным. Это позволяет добиться высокой линейности прибора.

Магнитоэлектрическая система приборов

Рис. 2. Магнитоэлектрическая система приборов.

Прочие системы электроизмерительных приборов

Электроизмерительные приборы других видов и систем используются значительно реже, когда необходимы особенности этих приборов.

Например, нередко при измерении высоких напряжений слабой мощности недопустимо нагружать исследуемую цепь даже малым током. В этом случае используются системы электростатической системы, которые основаны на накоплении заряда: после заряда эти приборы не потребляют ток и не нагружают измеряемую цепь.

Особенности электроизмерительных приборов различных систем можно свести в таблицу:

Рис. 3. Таблица систем электроизмерительных приборов.

Что мы узнали?

Электроизмерительные приборы предназначены для получения значений одного или нескольких параметров электрического тока. Существует несколько систем электроизмерительных приборов, различающихся по принципу действия. Наиболее часто используются приборы магнитоэлектрической системы как наиболее точные и относительно простые.

Источник

Электроизмерительные приборы

Содержание

  1. Назначение
  2. Классификация
  3. Принцип работы
  4. Как выбрать
  5. Сферы применения
  6. Нормативно-техническая документация

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно самих приборов и другие средства измерений — меры, преобразователи, комплексные установки.

Назначение

Электроизмерительные приборы служат для контроля режима работы электрических установок, их испытания и учета расходуемой электрической энергии. К измерительным приборам относятся разнообразные аппараты, позволяющие получить максимально точные показатели в обозначенных диапазонах.

Классификация

В зависимости от измеряемой или воспроизводимой физической величины электроизмерительные приборы подразделяют на:

  • амперметры (измерители тока)
  • вольтметры (измерители напряжения)
  • ваттметры (измерители мощности)
  • мультиметры (иначе тестеры, авометры) — комбинированные приборы
  • частотомеры — для измерения частоты колебаний электрического тока
  • омметры (измерители сопротивления)
  • счетчики электрической энергии и др.

Различают две категории электроизмерительных приборов:

  • рабочие — служат для для практических измерений.
  • образцовые — для градуировки и поверки рабочих приборов.

Принцип работы

Несмотря на модификацию, во все электроизмерительные приборы вмонтированы преобразующие устройства. Первое выполняет задачу по конвертации измеряемых величин в сигнал, а второе — представляет их в доступной для восприятия форме. Последние устройства, как правило, имеют шкалу и стрелку или же цифровое табло (дисплей).

Как выбрать

При выборе электроизмерительных приборов нужно обязательно помнить о том, что для официальных исследований, контроля качества, гарантийного обслуживания, проверки устройств безопасности могут быть использованы только модели, который включены в Государственный реестр средств измерений.

Также имеет смысл выбирать “интеллектуальные” электроизмерительные приборы, преимуществом которых является то, что с их помощью можно не только собирать, но и анализировать измерения. Такие устройства обладают наибольшей производительностью и функциональностью.

Сферы применения

Электроизмерительные приборы нашли свое применения в различных областях — помимо научных исследований, их применяют как в промышленности и энергетике, так и на транспорте, в связи, а также в медицине. Также электроизмерительные приборы используются и повсеместно в быту для учета электроэнергии.

На сегодняшний день большей популярностью пользуются цифровые устройства, так как помимо повышенной точности и чувствительности к измеряемой величине, они обладают компактностью и широким диапазоном измерений. Аналоговые приборы используются в основном в качестве учебных.

Источник