Меню

Как закоротить вторичные цепей трансформаторов тока



Опасность размыкания вторичной обмотки ТТ

В данной статье речь пойдет об опасности размыкания вторичной обмотки трансформаторов тока (ТТ).

Трансформаторы тока предназначены для преобразования первичного тока до наиболее удобных для измерительных приборов и реле значений и отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Трансформатор тока работает при постоянной нагрузке во вторичной цепи и переменной величине тока в первичной обмотке, т.е. при переменном магнитном потоке. Нормальный режим его работы близок к условиям короткого замыкания, так как его вторичная обмотка замкнута на последовательно соединенные обмотки приборов, реле и других аппаратов с незначительным сопротивлением.

Трансформатор тока представляет собой замкнутый магнитопровод 2 (рис.9.35 а) [Л1, с.285-287] и две обмотки. Первичную обмотку 1 включают последовательно в контролируемую цепь (цепь измеряемого тока) I1. Ко вторичной обмотке 3 присоединяют последовательно токовые обмотки приборов и реле, обтекаемые током I2. Тогда коэффициент трансформации равен [Л1, с.286]:

Коэффициент трансформации трансформаторов тока

Номинальные вторичные токи равны 5 А и 1 А.

На векторной диаграмме (рис. 9.35 б) показана результирующая магнитнодвижущая сила (МДС) F. В нормально режиме работы она сравнительно невелика, что обусловливает малые значения магнитного потока (Ф) и электродвижущей силы Е2 (ЭДС), наводимой во вторичной обмотке.

Рис. 9.35 - Трансформатор тока

При разомкнутой вторичной обмотке ток в ней равен нулю, т.е. I2 = 0, и МДС вторичной обмотки также равна нулю, т.е. F2=I2w2=0. Так как ток в первичной обмотке I1 и ее МДС F1 практически не изменяются, то результирующая МДС F увеличивается во много раз и становится равной F1.

Соответственно увеличивается магнитный поток Ф, величина которого ограничивается лишь насыщением сердечника и индукцией в стали сердечника, при этом за счет повышенных потерь в стали сердечника происходит сильный нагрев магнитопровода, вплоть до пожара.

В результате магнитный поток Ф наведет во вторичной обмотке значительную ЭДС, а напряжение на разомкнутых концах этой обмотки может возрасти с нескольких десятков до тысяч вольт, что, опасно для:

  • обслуживающего персонала;
  • изоляции вторичной обмотки;
  • приборов, реле и терминалов защит.

Поэтому при эксплуатации запрещается разрывать вторичную цепь работающего трансформатора тока согласно ПУЭ 7-издание пункт 3.4.16, тем более что это может совпасть с режимом к.з. в первичной обмотке.

ПУЭ пункт 3.4.16

Перед отключением прибора от трансформатора тока необходимо предварительно замкнуть накоротко его вторичную обмотку используя испытательные блоки или зашунтировать обмотку реле, прибора и только после этого отъединить прибор.

Следует запомнить, что:

Нормальным режимом работы ТТ является режим К3 , а режим с разомкнутой вторичной обмоткой (режим холостого хода) — аварийным режимом . Поэтому если ТТ включен и к его вторичной обмотке не подключена нагрузка, то эту обмотку следует обязательно закоротить.

1. Электроснабжение сельского хозяйства. И.А. Будзко, 2000 г.

Источник

Причины, почему нельзя размыкать вторичную обмотку трансформатора тока

Кроме трансформаторов, питающих электрооборудование, есть устройства, которые используются для измерения тока. Это трансформаторы тока (ТТ). Первичная обмотка этих устройств включается последовательно с нагрузкой, а к вторичной обмотке подключается амперметр или защитное устройство, обладающее низким сопротивлением. Эти приборы отличаются от обычных электротрансформаторов, в которых режим холостого хода (разомкнутые вывода вторичной катушки) является нормой. Если вторичную обмотку трансформатора тока ТТ разомкнуть, то устройство может выйти из строя.

Что из себя представляет измерительный трансформатор тока

Трансформатор тока — это небольшой электротрансформатор, обычно мощностью 5Вт, в котором первичная катушка намотана толстым проводом или шиной. В аппаратах, предназначенных сетей с силой тока более 100А вместо обмотки используется кабель или шина, проходящая через магнитопровод.

Нагрузкой ТТ являются амперметры, реле максимального или минимального тока и токовые обмотки электросчетчиков. Это аппараты, обладающие малым внутренним сопротивлением, поэтому ТТ работает в режиме КЗ.

Трансформатор тока

Виды ТТ

Такие трансформаторы есть разных типов:

  • Сухие. Самый распространенный вид. Первичная обмотка выполнена из неизолированной шины или нескольких витков толстого провода.
  • Тороидальные. Первичная катушка отсутствует, вместо этого аппарат надевается на изолятор высоковольтного трансформатора или через него пропускается кабель. Отличаются простотой конструкции и низкой точностью измерений. Применяются в цепях защиты.
  • Высоковольтные. Используются для измерения в цепях высокого напряжения и для разделения измерительных приборов и цепей ВН.

Тороидальный трансформатор

Основные параметры

Главными параметрами при выборе аппарата являются следующие:

  • Номинальное напряжение. Определяется изоляцией обмоток и указывает, в сетях с каким напряжением допускается использовать устройство.
  • Номинальный ток первичной цепи. Это максимальная измеряемая величина, при котором возможна длительная работа.
  • Номинальный ток вторичной цепи. Нагрузка вторичной обмотки при подключенных реле или амперметре.
  • Сопротивление нагрузки. Полное сопротивление амперметра, катушки реле или электросчетчика. Отклонение этого параметра от паспортных данных влияет на точность измерений.
  • Коэффициент трансформации. Определяется соотношением первичного и вторичного токов.

Измерительный трансформатор тока

Информация! Большинство параметров указывается на корпусе аппарата, остальные данные есть в паспорте устройства.

Преимущества использования

Применение ТТ дает преимущества при проектировании и эксплуатации электросетей:

  • использование одинаковых по конструкции амперметров, отличающихся только градуировкой шкалы;
  • разделение сетей высокого и низкого напряжения;
  • увеличение диапазона измерений.

Трансформатор тока

Применение

Измерительные трансформаторы используются в следующих случаях:

  • Измерение тока, величина которого не позволяет измерить его непосредственно амперметром. Обычно это больше 5А.
  • Питание электросчетчиков. Позволят измерять бОльшую мощность, чем предусмотрено аппаратом.
  • Использование в качестве разделительного трансформатора. Позволяет производить измерения в сетях напряжением выше 1кВ.
  • В цепях контроля тиристорных преобразователей. При нарушениях в работе тиристоров на выходе аппарата вместо постоянного напряжения появляется пульсирующее, что приводит к появлению тока во вторичной обмотке ТТ.
  • Нулевая защита ВВ трансформаторов. Отключает аппарат при значительном перекосе нагрузки и коротком замыкании одной из фаз на землю.

Измерительный трансформатор

Обозначение на схеме

В отличие от обычного электротрансформатора на схеме ТТ не отмечается магнитопровод. Условное обозначение этого устройства состоит из двух элементов, изображенный один поверх другого:

  • прямая линия – символизирует шину, проходящую через окно магнитопровода;
  • две полуволны, символизирующих вторичную обмотку, к которой подключается измерительный прибор.

Схема трансформатора тока

Почему ТТ не может работать в режиме холостого хода

В отличие от обычного электротрансформатора для трансформатора тока является нормальным режим короткого замыкания. При размыкании выводов вторичной обмотки в ТТ происходят процессы, которые могут привести к аварийной ситуации.

Увеличение магнитного потока

В электротрансформаторе переменный ток I¹, протекающий по первичной обмотке, создает магнитный поток F¹ в магнитопроводе. Этот поток наводит напряжение во вторичной обмотке.

В свою очередь, ток I², протекающий по вторичной обмотке, создает магнитный поток F². Эти потоки находятся в противофазе и в значительной степени нейтрализуют друг друга – увеличение I² и F² приводит к росту I¹ и F¹, что ограничивает результирующий магнитный поток F.

Особенностью ТТ является то, что ток в первичной обмотке I¹ не зависит от нагрузки I² и магнитный поток F¹ остается неизменным, что при размыкании выводов и отсутствии I² приводит к росту F и перегреву магнитопровода.

Трансформатор тока

Повышение напряжения на выводах

В режиме ХХ происходит рост напряжения на выводах вторичной обмотки. Это связано с тем, что трансформатор передает не просто ток или напряжение. Аппарат передает с одной катушки на вторую мощность P=I¹*U¹=I²*U².

В обычных аппаратах при уменьшении I² уменьшается также I¹ и передаваемая мощность Р. В отличие от них в ТТ I¹, U¹ и Р не зависят от I². Поэтому при уменьшении I², протекающего через вторичную обмотку, напряжение начинает расти и достигает максимума в режиме ХХ.

Читайте также:  Как течет ток в усилителе

Справка! Измерить увеличение напряжения можно обычным вольтметром, но его ограничивает ток, протекающий через прибор. Для более качественного измерения необходим электростатический вольтметр.

Трансформатор тока русского производства

Что произойдет при размыкании цепи вторичной обмотки

При размыкании или обрыве проводов, идущих к измерительным приборам, появляются два фактора, которые могут привести к аварии и травмам людей:

  • Перегрев, вызванный большим магнитным потоком в магнитопроводе. Возникает из-за того, что магнитный поток F¹, создаваемый шиной или силовым кабелем, проходящим через аппарат, не компенсируется потоком вторичной обмотки F². Может привести к разрушению изоляции и возгоранию устройства.
  • Высокая ЭДС на выводах вторичной катушки. Появляется потому, что трансформатор передает мощность с одной катушки на другую. Из-за того, что мощность, потребляемая аппаратом, при отключении измерительного прибора не меняется, а I². во вторичных цепях равен “0”, ЭДС увеличивается до нескольких киловольт. Это приводит к травмированию людей и разрушению изоляции.

Опасность возникновения аварийных ситуаций отображена в нормативных документах. Запрет на размыкание отходящих выводов трансформатора указан в нормативных документах, таких, как ПОТЭУ п.42.2, ПТЭЭП п.2.6.24 и других.

Как закоротить, если есть необходимость

При необходимости отсоединить измерительный прибор или реле, не отключая первичную цепь, вывода, идущие к этим элементам, необходимо закоротить куском провода или перемычкой сечением не менее 0,35мм². Устанавливается перемычка на выводах трансформатора или непосредственно возле измерительного прибора.

При заземленных отходящих выводах это можно сделать, не отключая электроустановку.

Важно! В процессе установки закоротки и демонтажа амперметра или реле под нагрузкой вторичная цепь не должна размыкаться.

Трансформатор

Проверка правильности соединений

Правильность подключения ТТ производится контрольным измерением переносными токоизмерительными клещами. Показания приборов должны совпадать.

При подключении к аппарату реле защиты проверка выполняется при помощи специальных приборов, позволяющих подать ток необходимой величины в первичную обмотку.

При проверке подключения трехфазных электросчетчиков, необходимо проверить правильность подключения трансформаторов для каждой фазы:

  • подключить нагрузку к одной из фаз;
  • включить питание;
  • проверить направление вращения диска устройства или учет энергии в аппаратах других конструкций;
  • при неправильном подключении изменить полярность подключения;
  • повторить пп1-4 для каждой из фаз.

Источник

Обслуживание РЗиА и вторичных цепей — Трансформаторы тока и вторичные токовые цепи

Содержание материала

  • Обслуживание РЗиА и вторичных цепей
  • Обязанности оперативного персонала при обслуживании устройств РЗиА
  • Трансформаторы тока и вторичные токовые цепи
  • Трансформаторы напряжения и вторичные цепи напряжения
  • Источники и цепи постоянного оперативного тока
  • Способы питания оперативных цепей переменным током
  • Неисправности в цепях оперативного тока
  • Сигнальная аппаратура
  • Цепи сигнализации
  • Сигнализация замыкания на землю в сетях 3—35 кВ
  • Обслуживание цепей и устройств сигнализации
  • Газовая защита трансформаторов и автотрансформаторов
  • Обслуживание газовой защиты
  • Дифференциальная защита шин
  • Релейная защита шиносоединительных и обходных выключателей
  • АПВ
  • АВР
  • Операции с релейной защитой и АПВ при производстве переключений
  • Фиксирующие приборы и автоматические осциллографы
  • Графические условные обозначения в схемах

ГЛАВА ВТОРАЯ
ВТОРИЧНЫЕ ЦЕПИ, ИСТОЧНИКИ ПИТАНИЯ И ИХ ОБСЛУЖИВАНИЕ
К вторичным цепям относятся как оперативные цепи (в том числе цепи управления), так и цепи тока и напряжения. Рассмотрим сначала измерительные трансформаторы, являющиеся источниками питания цепей тока и напряжения.
В установках высокого напряжения измерительные трансформаторы изолируют реле устройств РЗА и приборы от цепей высокого напряжения, что значительно облегчает конструирование и условия эксплуатации этих реле и приборов.
Измерительный трансформатор состоит из магнитопровода, набранного из тонких листов трансформаторной стали, и обмоток, охватывающих его часть. Обмотка, подключаемая к первичной цепи подстанции, называется первичной, а обмотка, к которой подключаются измерительные приборы, реле и другая аппаратура, называется вторичной обмоткой измерительного трансформатора.
Согласно правилам техники безопасности вторичные обмотки измерительного трансформатора должны иметь постоянное заземление в одной точке схемы для предохранения персонала и оборудования вторичных цепей от высокого напряжения в случае повреждения изоляции между обмотками. Измерительные трансформаторы делятся на трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).
Трансформаторы тока и вторичные токовые цепи. Первичная обмотка ТТ включается последовательно в цепь присоединения, например линии, трансформатора. В цепь вторичной обмотки ТТ последовательно включают обмотки реле и приборов. Коэффициентом трансформации ТТ называют отношение номинального тока I1 первичной обмотки к номинальному току I2 вторичной обмотки, что приблизительно равно отношению числа витков w2 вторичной обмотки к числу витков W1 первичной обмотки:

Магнитные потоки, создаваемые токами первичной и вторичной обмоток в магнитопроводе, направлены навстречу друг другу. Результирующий магнитный поток определяется разностью этих магнитных потоков; в нормальных условиях работы он невелик. При конструировании ТТ сечение магнитопровода рассчитывают, исходя из нормального
значения результирующего магнитного потока. Вторичная обмотка трансформатора тока должна быть замкнута всегда на цепь с относительно малым сопротивлением. При обрыве цепи вторичной обмотки, когда через первичную обмотку проходит ток, магнитный поток в магнитопроводе значительно возрастает, так как исчезает магнитный поток, создаваемый вторичной обмоткой. В разомкнутой вторичной обмотке будет наводиться э. д. е., значение которой может достигать десятков тысяч вольт и быть смертельно опасным. Магнитопровод ТТ при этом будет перегреваться из-за возросшего магнитного потока, что может привести к повреждению изоляции обмоток и железа ТТ. С учетом этого обстоятельства во вторичных цепях ТТ устанавливают испытательные зажимы и испытательные блоки, позволяющие при проведении испытаний или проверок устройств РЗА и приборов подключать, например, измерительные приборы без разрыва вторичной цепи.
На рис. 1,а схематично показан испытательный зажим в нормальном режиме работы вторичной цепи, когда съемная перемычка 1 соединяет две части испытательного зажима. Измерительный прибор подключают к измерительным винтам 2 зажима параллельно съемной перемычке, не разрывая замкнутую цепь, а затем ослабляют винты 3 и отодвигают или снимают перемычку, вследствие чего измерительный прибор оказывается последовательно включенным в замкнутую вторичную цепь (рис. 1,6). С помощью испытательных зажимов можно также замкнуть накоротко вторичные обмотки ТТ без предварительного разрыва цепей с аппаратурой и приборами, для чего надлежит установить перемычку между измерительными винтами испытательных зажимов, установленных в фазных и нулевом проводах ТТ (см. штриховую линию на рис. 3).

Рис. I. Испытательный зажим во вторичной цепи ТТ: а — нормальный режим; б —включение амперметра
Испытательные блоки — это специальные четырех- или шестицепные (на четыре или на шесть цепей) разъемные контактные устройства, при помощи которых присоединение устройств РЗА или измерительных приборов
к вторичным цепям ТТ, а в некоторых случаях — и к вторичным цепям ТН, к источникам и цепям оперативного тока. Эти устройства обеспечивают возможность быстрого и надежного размыкания или замыкания цепей, а также производства проверок и регулировок реле и других устройств с безразрывным подключением приборов во вторичные цепи ТТ. Обеспечивается также возможность временных изменений в схемах защиты, необходимых при наладке и проверке, без производства переключений на зажимах панели. На рис. 2 показан испытательный блок на шесть цепей. Испытательный блок состоит из основания (корпуса) 1, в углублении которого установлены два ряда пружинящих контактов (пластин) 3, и съемной рабочей крышки 2 с контактными планками 4, соединяющими попарно пружинящие контакты в каждой цепи при вставленной в корпус рабочей крышке (рис. 2,в). К одному ряду верхних внешних зажимов 6 блока подключают провода, идущие к реле или приборам, а к другому ряду нижних внешних зажимов 7 подключают вторичные цепи от ТТ или от ТН или питающие цепи оперативного тока. При снятии рабочей крышки испытательного блока, верхние и нижние пружинящие контакты каждой цепи изолируются друг от друга, а соседние пружинящие контакты нижнего ряда, к которому подведены вторичные цепи от ТТ, закорачиваются без разрыва цепей на расположенные в глубине корпуса блока закорачивающие пластины 5 (рис. 2,а). На время проверок защиты персоналом службы РЗАИ рабочая крышка заменяется испытательной крышкой, электрически соединяющей испытательную схему или измерительные приборы с цепями устройств РЗА. В отличие от рабочей испытательная крышка 8 (рис. 2,г) вместо контактных планок имеет контактные пластины 9, электрически соединенные с измерительными зажимами 10 на внешней стороне крышки. При включении испытательной крышки с заранее подсоединенным к ней амперметром последний включается в цепь, проходящую через блок, без разрыва этой цепи.
В каждой крышке блока есть замок (на рис. 2 не показан), защелкивающийся при установке крышки на полную глубину и фиксирующий ее положение. Если по условиям эксплуатации испытательный блок должен длительное время находиться без рабочей крышки, то вместо нее в блок должна быть вставлена холостая крышка для предовращения попадания пыли и мусора внутрь блока. Холостая крышка не имеет внутреннего выступа, контактных планок или пластин и поэтому при своем включении сохраняет неизменным положение пружинящих контактов блока. Холостая крышка должна отличаться от рабочей крышки цветом. При установке испытательных блоков в шкафах открытого распределительного устройства шкафы должны оборудоваться подогревом.
Вторичные обмотки ТТ и обмотки реле (приборов) соединяют между собой по различным типовым схемам.

Читайте также:  Источник постоянного потребитель переменного тока что будет

Рис. 2. Устройство испытательного блока: а — корпус испытательного блока без крышки (со снятой левой боковиной); б — рабочая крышка испытательного блока; в — испытательный блок с вставленной рабочей крышкой (в разрезе); г — схема испытательного блока с испытательной крышкой, включенной для измерения тока в цепи

Нa рис. 3 в качестве примера приведена схема соединения вторичных обмоток ТТ и обмоток реле в полную звезду (имеются также схемы соединения в неполную звезду, в треугольник и др.) [2]. В этой схеме три одноименных конца вторичных обмоток (обозначены и1 или и2) соединены между собой и образуют нулевую точку «звезды», от остальных трех концов обмоток отходят фазные провода. Обмотки трех реле подключены с одной стороны к фазным проводам, другие концы обмоток реле соединены между собой и также образуют нулевую точку. Нулевые точки ТТ и реле соединены между собой проводом, который называют нулевым. В нормальном режиме нагрузки и при трехфазных к. з. по фазным проводам проходят равные по значению токи, соответствующие токам в первичной цепи, по нулевому проводу при этом проходит ток во много раз меньшего значения — так называемый ток небаланса. Ток небаланса возникает из-за отклонений значения и фазы вторичных токов ТТ; эти отклонения бывают различны в каждой фазе. Ток небаланса равен геометрической сумме вторичных токов трех фаз.

Рис. 3. Схема соединения вторичных обмоток ТТ и обмоток реле (приборов) в полную звезду (ИЗ — испытательные зажимы)
При однофазном замыкании на землю по фазному проводу поврежденной фазы и нулевому проводу проходит ток, соответствующий току замыкания на землю. Приведенная на рис. 3 схема является также фильтром токов нулевой последовательности; в выходную цепь этого фильтра (в нулевой провод) включают реле, которые должны действовать при замыканиях на землю. На кабельных линиях напряжением 35 кВ и ниже иногда устанавливают специальные ТТ нулевой последовательности (ТНП). Стальной магнитопровод ТНП кольцеобразной или прямоугольной формы охватывает трехфазный кабель или несколько трехфазных кабелей. К вторичной обмотке ТНП подключают реле. При прохождении по защищаемому кабелю токов нагрузки, токов трехфазных или двухфазных к. з. геометрическая сумма магнитных потоков в магнитопроводе ТНП теоретически равна нулю. При этом ток во вторичной обмотке „ТИП теоретически должен быть равен нулю. Однако вследствие некоторой несимметрии расположения жил кабеля или самих кабелей по отношению к вторичной обмотке ТНП в последней возникает небольшая э. д. с. и через обмотку реле проходит ток небаланса, который отстраивают от тока срабатывания реле. При прохождении по фазе кабеля тока однофазного замыкания на землю во вторичной обмотке ТНП индуцируется э. д. е., под действием которой появляется ток, достаточный для срабатывания реле.
Постоянное заземление вторичной обмотки ТТ в одной точке выполняют обычно на самом ТТ или на ближайшем к нему ряду зажимов. В сложных схемах релейной защиты, когда соединяют между собой вторичные обмотки нескольких групп ТТ, размещенных в разных местах подстанции, постоянное заземление вторичных цепей этих ТТ также должно выполняться в одной точке. Обычно это заземление устанавливают в месте сборки цепей групп ТТ (в распределительном устройстве или на панели релейной защиты).
Особенности производства операций в токовых цепях. Эксплуатационные работы (проверки и испытания), связанные с ТТ, могут ограничиваться только вторичными цепями ТТ (измерение сопротивления изоляции, проверка цепей релейной защиты под нагрузкой и т. д.), а могут охватить и первичную цепь ТТ. Оперативный персонал должен четко представлять себе объем и место предстоящих работ и выполнять все подготовительные работы в полном соответствии с правилами техники безопасности [5].
Проведение операций с испытательными блоками во вторичных цепях ТТ разрешается оперативному персоналу лишь в некоторых случаях (см. ниже). При этом оперативный персонал проходит специальное обучение, во время которого должны быть рассмотрены варианты всех операций, их содержание и последовательность. Оперативный персонал, допущенный к операциям с испытательными блоками, должен быть также проинструктирован персоналом службы РЗАИ на рабочем месте.
Основные правила выполнения операций с испытательными блоками заключаются в следующем. При снятии рабочей крышки испытательного блока необходимо нажать пальцами на обе защелки, чтобы открыть замки с двух сторон крышки, а затем резко без перекосов выдернуть крышку в направлении, перпендикулярном панели. Вставлять рабочую крышку нужно до защелкивания замка.
При наличии двух выключателей на присоединение операции в токовых цепях одного из двух комплектов ТТ
с помощью испытательных блоков надлежит проводить с временным отключением устройств релейной защиты, которые по принципу действия и чувствительности могут срабатывать ложно из-за кратковременного возникновения несимметрии токов при рабочем режиме (например, дифференциально-фазные высокочастотные защиты, чувствительные токовые защиты нулевой последовательности соответствующих ступеней, защиты параллельных линий и т. п.) [6]. Если указанные выше операции поручается выполнить оперативному персоналу, службой РЗАИ должны быть даны письменные указания с перечнем всех защит, которые должны быть при этом временно (и на какое время) отключены.

Рис. 4. Схема трехфазного пятистержневого трансформатора напряжения

После окончания работы во вторичных цепях ТТ оперативный персонал должен проверить, введены ли в действие на отключение все защитные устройства, которые выводились из действия.

Источник

Обрыв вторичной обмотки трансформатора тока. К чему приводит?!

Февраль 27th, 2018 Рубрика: Трансформаторы тока, Электрооборудование

obryv_v_tokovyx_cepyax

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад мне передали замечание, что на одном из фидеров перестал показывать амперметр, хотя нагрузка на фидере была, и причем не маленькая, около 30-50 (А).

Читайте также:  Ток 200 костюм испытание

Кстати, данная неисправность произошла в распределительном устройстве напряжением 10 (кВ) исполнения КСО.

Щитовой амперметр типа Э30 подключен через трансформатор тока ТПОЛ-10 с коэффициентом трансформации 150/5.

obryv_v_tokovyx_cepyax_3

obryv_v_tokovyx_cepyax_4

По приезду на подстанцию я обнаружил, что произошел обрыв провода на щитовом амперметре.

obryv_v_tokovyx_cepyax_6

Амперметр установлен на дверце ячейки КСО и, видимо, в течение длительной эксплуатации произошло перегибание жилок гибкого проводника, что и привело к обрыву.

obryv_v_tokovyx_cepyax_7

Напомню, что согласно ПУЭ, п.3.4.4, сечение токовых цепей должно быть не менее 2,5 кв.мм по меди или 4 кв.мм по алюминию. В моем случае применен медный гибкий провод ПВ-3 (ПуГВ) сечением 2,5 кв.мм.

obryv_v_tokovyx_cepyax_2

В связи со случившейся ситуацией я и решил написать статью о том, что произойдет с трансформаторами тока при обрыве их вторичной цепи.

Во всех правилах, хоть в ПОТЭУ (п.42.2), хоть в ПТЭЭП (п.2.6.24), строго настрого запрещено размыкать вторичную цепь ТТ и об этом должны знать все без исключения.

obryv_v_tokovyx_cepyax_5

К тому же об этом всегда напоминают в виде надписи «Внимание! Опасно! На разомкнутой обмотке напряжение», а то вдруг кто забудет!

obryv_v_tokovyx_cepyax_8

parametry_transformatora_toka_параметры_трансформатора_тока

А что же все таки произойдет с трансформатором тока при обрыве его вторичной цепи? Давайте разберемся!

Правда для этого нам необходимо рассмотреть принцип работы трансформатора тока и его устройство. Сильно вдаваться в подробности устройства ТТ я не буду, т.к. цель статьи заключается немного в другом, да и разновидностей ТТ в природе не мало. Если кому интересно, то могу рассказать об устройстве ТТ более подробнее на примере конкретного типа, но уже в другой своей публикации.

В общем, первичная обмотка трансформатора тока чаще всего состоит из одного витка или шины, которая подключена последовательно в силовую цепь, где необходимо измерять или контролировать ток.

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

Встречаются также и трансформаторы тока с многовитковой первичной обмоткой.

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

Вот например, трансформаторы тока ТПФМ-10 имеют многовитковую первичную обмотку. На данный момент таких ТТ на наших подстанциях осталось уже немного, т.к. мы с некоторой периодичностью заменяем их на более новые ТПОЛ-10.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_11

obryv_v_tokovyx_cepyax_9

Подробнее про классификацию трансформаторов тока читайте в моей отдельной статье (вот ссылочка).

Первичная обмотка (шина) имеет малое количество витков (чаще всего один) и большое сечение, соизмеримое с номинальным током силовой нагрузки.

Шина первичной обмотки проходит через магнитопровод, на котором намотана вторичная обмотка.

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

Вторичная обмотка имеет много витков и малое сечение, и всегда замыкается накоротко, либо через малое сопротивление подключенных к ней реле и различных приборов (Zн).

obryv_v_tokovyx_cepyax_10

Сильно вдаваться в теорию я не буду, а попробую объяснить более по-простому.

При протекании тока в первичной обмотке трансформатора тока, по закону электромагнитной индукции возникает магнитный поток Ф1, который замыкается по магнитопроводу и пронизывает вторичную обмотку ТТ. В связи с этим, во вторичной обмотке ТТ наводится (индуцируется) ток I2 (при условии, что цепь замкнута), который образует магнитный поток Ф2, направленный встречно магнитному потоку Ф1. В итоге, в магнитопроводе образуется результирующий магнитный поток Фт, который называют основным или намагничивающим потоком.

Конструктора при проектировании рассчитывают сечение магнитопровода исходя из нормальной работы трансформатора тока, т.е. при его замкнутой вторичной обмотке. При нормальной работе трансформатора тока основной поток Фт не велик.

При разрыве вторичной обмотки ТТ произойдет следующее.

Во-первых, значительно увеличится основной магнитный поток Фт в магнитопроводе, что вызовет его нагрев. Это произойдет из-за того, что во вторичной обмотке не будет тока, а значит не возникнет встречного магнитного потока Ф2, который скомпенсирует магнитный поток Ф1 от первичной обмотки.

Во-вторых, на выводах вторичной обмотки наведется напряжение, соизмеримое с несколькими киловольтами.

Согласно закону сохранения энергии, мощность с генератора (первичная обмотка трансформатора тока в нашем случае) равна мощности, которую мы снимаем со вторичной обмотки с учетом потерь в меди и стали. В итоге, это выражение можно записать в таком виде :

Для простоты и наглядности не будем учитывать потери в меди и стали:

Запишем мощности вышеприведенного выражения через токи и напряжения:

А теперь представим, что тока I2 у нас не стало. Соответственно, выражение примет следующий вид:

У обычных трансформаторов напряжения при изменении вторичного тока I2 всегда изменяется ток в первичной обмотке I1 из-за наличия большого количества витков. А вот у трансформатора тока первичная обмотка имеет всего один виток, а изменить первичный ток I1 никак не возможно, потому что он является частью силовой цепи, где мы и контролируем его.

Поэтому, «U1·I1» является как бы константой (неизменной величиной) и для сохранения передаваемой мощности из первичной обмотки во вторичную в значительной степени увеличивается напряжение на вторичной обмотке до нескольких киловольт. В нормальном режиме на вторичной обмотке напряжение составляет буквально несколько вольт, а то и меньше (зависит от нагрузки).

На самом деле напряжение на первичной обмотке (напряжение падения на витке или шине) тоже немного изменяется, но это настолько малая величина, что ей можно смело пренебречь.

  1. Повышенное напряжение на выводах вторичной обмотки может привести к повреждению подключенных к ней устройств, в особенности это касается полупроводниковых приборов и различной электроники.
  2. Повышенное напряжение может привести к межвитковому замыканию вторичной обмотки или пробою ее на корпус, соответственно, выходу трансформатора тока из строя.
  3. Также повышенное напряжение опасно в плане поражения обслуживающего персонала электрическим током в случае ошибочного или самопроизвольного разрыва вторичных цепей ТТ.

Ну коль такая ситуация с обрывом токовых цепей ТТ фазы С у меня случилась на подстанции, то я и решил воспользоваться ситуацией, и измерить напряжение на разомкнутой вторичной обмотке.

obryv_v_tokovyx_cepyax_12

obryv_v_tokovyx_cepyax_14

Напряжение между выводами ТТ (421 и 410) составило 34,2 (В). Как видите, ничего критического нет и это далеко не киловольты. Тем не менее нужно учесть то, что во время измерения первичный ток ТТ составлял 30% от номинального. При номинальном же токе напряжение на разомкнутой обмотке будет гораздо и гораздо больше и не исключено, что там наведутся киловольты!

obryv_v_tokovyx_cepyax_13

Кстати, из-за насыщения магнитопровода напряжение на разомкнутой вторичной обмотке имеет несинусоидальную форму с резкими и острыми пиками.

В общем, решил фидер в ремонт не выводить. Установил на токовом клеммнике закоротку и произвел переподключение амперметра.

obryv_v_tokovyx_cepyax_15

Перезачистил оба конца, опрессовал их изолированными наконечниками и подключил к амперметру. Готово.

obryv_v_tokovyx_cepyax_17

Снял закоротку с клеммника и проверил показания амперметра. Как видите, теперь амперметр показывает ток нагрузки данного присоединения.

obryv_v_tokovyx_cepyax_20

Вот еще один пример разрыва вторичной цепи ТТ из моей практики.

При проведении пуско-наладочных работ в одном из торговых центров я обнаружил, что монтажники забыли закоротить трансформатор тока на фазе А.

obryv_v_tokovyx_cepyax_18

obryv_v_tokovyx_cepyax_19

И уже по традиции, рекомендую посмотреть видеоролик по материалам данной статьи:

Дополнение. Рекомендую посмотреть видео про еще один случай обрыва вторичной цепи ТТ:

Запомните главное и золотое Правило! Трансформатор тока работает в режиме короткого замыкания, т.е. его вторичная обмотка должна быть всегда замкнута накоротко или через малое сопротивление подключенных к ней устройств и приборов.

Источник