Как выглядит вольт амперная характеристика тока в газе объясните характер этой кривой

Вольт- амперная характеристика газов

date image2015-05-14
views image1374

facebook icon vkontakte icon twitter icon odnoklasniki icon

Зависимость силы тока от напряжения выражена кривой ОАВС.

На участке графика ОА сила тока подчиняется закону Ома. При малом напряжении сила тока мала, т.к. ионы двигаясь с малыми скоростями рекомбинируют, не достигая электродов. При увеличении напряжения между электродами скорость направленного движения электронов и ионов возрастает, поэтому большая часть заряженных частиц достигает электродов, а, следовательно возрастает сила тока.

При определенном значении напряжения U1 все ионы имеют достаточные скорости и, не рекомбинируя, достигают электродов. Ток становится максимально возможным и не зависит от дальнейшего увеличения напряжения до значения U2. Такой ток называют током насыщения, и ему соответствует участок графика АВ.

При напряжении U2 в несколько тысяч вольт скорость электронов, возникающих при ионизации молекул, а следовательно, их кинетическая энергия значительно увеличиваются. И когда кинетическая энергия достигает значения энергии ионизации, электроны, сталкиваясь с нейтральными молекулами, ионизируют их. Дополнительная ионизация приводит к лавинообразному увеличению количества заряженных частиц, а следовательно и к значительному увеличению силы тока без воздействия внешнего ионизатора. Прохождение электрического тока без воздействия внешнего ионизатора называютсамостоятельным разрядом. Такая зависимость выражена участком графика АС.

Источник

Вольт- амперная характеристика газов

Зависимость силы тока от напряжения выражена кривой ОАВС и является Вольт- амперная характеристикой газовых разрядов.

На участке графика ОА сила тока подчиняется закону Ома. Разряды существую только под действием внешнего ионизатора и здесь идет несамостоятельный разряд.

При малом напряжении сила тока мала, т.к. ионы двигаясь с малыми скоростями рекомбинируют, не достигая электродов. При увеличении напряжения между электродами скорость направленного движения электронов и ионов возрастает, поэтому большая часть заряженных частиц достигает электродов, а, следовательно возрастает сила тока.

При определенном значении напряжения U1 все ионы имеют достаточные скорости и, не рекомбинируя, достигают электродов. Ток становится максимально возможным и не зависит от дальнейшего увеличения напряжения до значения U2. Такой ток называют током насыщения, и ему соответствует участок графика АВ.

При напряжении U2 скорость электронов, возникающих при ионизации молекул, а следовательно, их кинетическая энергия значительно увеличиваются. И когда кинетическая энергия достигает значения энергии ионизации, электроны, сталкиваясь с нейтральными молекулами, ионизируют их. Электроны движутся против поля и возникает электрический потенциал.

При увеличении U, первичные электроны, созданные ионизатором, ускоренные электрическим полем начинают ударно ионизировать молекулы газа, образую вторичные электроны и ионы (эффект газового усиления). Общее кол-во ионов и электронов будет расти по мере приближения к анаду лавинообразно. Это явление причиной увеличения тока в начале участка BЕ наз ударной ионизацией.

При значительных напряжениях между электродами газового промежутка + ионы, ускоренные электрическим полем, также приобретают достаточную для ионизации молекул газа, порождает энергию, что порождает ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сила тока растет уже практически без увеличения напряжения(EС). Лавинообразное размножение электронов и ионов приводит к тому, что разряд становится самостоятельным. т.е. сохраняется после прекращения действия внешнего ионизатора. Напряжение, при которой возникает самостоятельный газовый разряд называется напряжением пробоя.

Тлеющий разряд возникает при низких давлениях от сотых долей до нескольких мм.рт.ст (в газосветных трубках и газовых лазерах и в лампах дневного света).

Тлеющий разряд относится к самостоятельным. Для него характерно свечение газа. Плотность тока при этом разряде достигает единиц и десятков миллиампер на квадратный см. Напряжение, необходимое для тлеющего разряда, составляет десятки или сотни вольт. Разряд поддерживается за счет электронной эмиссии катода под ударами ионов.

Искровой — при нормальном давлении и высокой напряженности электрического поля (молния — сила тока до сотен тысяч ампер).

При этом возникает «канал» сильно ионизированного газа, по которому и распространяется ток. При этом газ в канале сильно нагревается, резко возрастает его давление, и, расширяясь, газ создает звуковые волны, вызывающие треск или гром. Искровой разряд происходит также и при сверкании молнии. Он сопровождается ярким свечением и громким звуком, возникающим вследствие расширения сильно разогретого воздуха в канале молнии.

Дуговой разряд. Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непре­рывным — возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкоснове­ния, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу. Дуговой разряд поддерживается за счет высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термичес­кой ионизации молекул, обусловленной высокой температурой газа.

Дуговой разряд находит широкое применение для сварки и резки металлов, получе­ния высококачественных сталей (дуговая печь) и освещения (прожекторы, проекционная аппаратура).

Коро́нный разря́д— это характерная форма самостоятельного газового разряда, возникающего в резко неоднородных полях и при сравнительно высоких давлениях. Главной особенностью этого разряда является то, что ионизационные процессы между электронами происходят не по всей длине промежутка, а только в небольшой его части вблизи электрода с малым радиусом кривизны (так называемого коронирующего электрода). Эта зона характеризуется значительно более высокими значениями напряженности поля по сравнению со средними значениями для всего промежутка.

Когда напряжённость поля достигает предельного значения для воздуха (около 30 кВ/см), вокруг электрода возникает свечение, имеющее вид оболочки или короны (отсюда название).

На линиях электропередачи возникновение коронного разряда нежелательно, так как вызывает значительные потери передаваемой энергии. С целью сокращения потерь на общую корону применяется расщепление проводов ЛЭП на 2, 3, 5 или 8 составляющих, в зависимости от номинального напряжения линии. Составляющие располагаются в углах правильного многоугольника, образуемого специальной распоркой.

В естественных условиях коронный разряд может возникать на верхушках деревьев, мачтах — т. н. огни святого Эльма.

Потенциал зажигания — наименьшая разность потенциалов между электродами в газе, необходимая для возникновения самостоят. разряда, т. е. разряда, поддержание к-рого не требует наличия внеш. ионизаторов. Самостоят. разряд поддерживается за счёт процессов ионизации в межэлектродном промежутке и в результате электронной эмиссии с катода; интенсивность этих процессов возрастает с увеличением разности потенциалов между электродами. З. п. равен той разности потенциалов, при к-рой интенсивность процессов ионизации оказывается достаточной для того, чтобы каждая заряж. ч-ца до своего «исчезновения» рождала подобную же ч-цу. Величина З. п. зависит от природы и давления р газа, от материала, формы, состояния поверхности электродов и от расстояния d между ними. В однородном электрич. поле З. п. зависит от общего числа атомов газа в промежутке между электродами, т. е. от произведения pd.

Читайте также:  Dell адаптер переменного тока не может быть определен 1

ПАШЕНА ЗАКОН — устанавливает, что наим. напряжение зажигания газового разряда между двумя плоскими электродами есть величина постоянная (характерная для данного газа) при одинаковых значениях произведения pd, где р — давление газа, d — расстояние между электродами. П. з. — частный случай закона подобия газовых разрядов: явления в разряде протекают одинаково, если при увеличении или уменьшении давления газа во столько же раз уменьшить или соответственно увеличить размеры разрядного промежутка, сохраняя его форму геометрически подобной исходной. П. з. справедлив с тем большей точностью, чем меньше р и d,

Плазма –сильно ионизированный газ в котором плотноть + и – зарядов практически одинакова.

Наиболее распространенное состояние вещества в природе:

1. Низкотемпературная плазма. 2. Высокотемпературная плазма.

Можно наблюдать: пламя костра, рекламные газовые трубки, медицинские кварцевые лампы. Большое значение: получение термоядерной реакции.

1)высокая степень ионизации

2) большая электропроводность и теплопроводность

3) сильное взаимодействие с электрическими и магнитными полями

Источник

Физика. 10 класс

§ 36. Электрический ток в газах. Плазма

Газы при нормальных условиях не проводят электрический ток, т. е. являются диэлектриками. Это обусловлено тем, что газы состоят из нейтральных атомов (молекул). Однако при определённых условиях газы, в том числе и воздух, становятся проводниками. При каких условиях это возможно?

Природа электрического тока в газах. Проведём опыт и убедимся, что электрическая проводимость газа (воздуха) может изменяться. Два металлических диска, заряженных разноимёнными зарядами и расположенных на некотором расстоянии друг от друга, соединим с электрометром ( рис. 204 ). Стрелка электрометра при этом отклонится на некоторый угол. Электрометр не разряжается, значит, при небольшой разности потенциалов между дисками воздух не проводит электрический ток.

Повторим опыт, нагревая пламенем (спиртовки, свечи) воздушный промежуток между дисками. Электрометр разряжается, т. е. через воздух проходит электрический ток ( рис. 205 ).

Вывод очевиден: в воздушном промежутке между дисками появились свободные носители электрического заряда.

Если убрать пламя, то электрический ток исчезнет, т. е. воздух между дисками опять станет диэлектриком.

Объясним результаты рассмотренного опыта. Нагревание газа пламенем приводит к образованию свободных электронов и положительно заряженных ионов, т. е. к ионизации газа.

Для отрыва электрона от атома (молекулы) необходима энергия, минимальное значение которой называют энергией ионизации атома (молекулы). Наряду с ионизацией может происходить присоединение образовавшихся при отрыве электронов к нейтральным атомам (молекулам) газа. Это приводит к образованию отрицательно заряженных ионов.

Под действием электрического поля в газе возникает направленное движение положительно заряженных ионов к отрицательному электроду (катоду) и направленное движение электронов и отрицательно заряженных ионов к положительному электроду (аноду). В ионизированном газе возникает электрический ток, который называют газовым разрядом.

Таким образом, носители электрического заряда в ионизированных газах — положительно и отрицательно заряженные ионы и свободные электроны, а проводимость газов является ионно-электронной.

Если устранить внешнее воздействие (в данном случае нагревание пламенем), электрический ток в газе прекращается. Это обусловлено тем, что при столкновении положительно заряженного иона с электроном они образуют нейтральный атом (молекулу) газа. Ионы противоположных знаков при столкновении также превращаются в нейтральные атомы (молекулы) — рекомбинируют. При рекомбинации освобождается энергия, равная энергии, затраченной на ионизацию.

Таким образом, чтобы в газе появились свободные носители электрического заряда, его атомы (молекулы) необходимо ионизировать. Это можно осуществить нагреванием газа до высокой температуры, воздействием на газ ультрафиолетовым, рентгеновским, радиоактивным излучениями и др.

Внешние воздействия, в результате которых происходит ионизация, называют ионизаторами. Разряд, возникающий в результате ионизации газа под действием ионизатора, называют несамостоятельным.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

SA. Ток в газах

В обычных условиях газы являются диэлектриками, т.к. состоят из нейтральных атомов и молекул, и в них нет достаточного количества свободных зарядов.

Содержание

  • 1 Ионизация и рекомбинация
  • 2 Газовый разряд
    • 2.1 Несамостоятельный разряд
    • 2.2 Самостоятельный разряд
    • 2.3 Виды самостоятельного разряда
  • 3 Понятие о плазме
  • 4 Литература

Ионизация и рекомбинация

Газы становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Процесс ионизации газов заключается в том, что под действием каких-либо причин от атома отрывается один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон.

  • Распад молекул на ионы и электроны называется ионизацией газа.

Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появляются отрицательно заряженные ионы.

Таким образом, в ионизованном газе имеются носители зарядов трех сортов: электроны, положительные ионы и отрицательные.

Отрыв электрона от атома требует затрат определенной энергии — энергии ионизации Wi. Энергия ионизации зависит от химической природы газа и энергетического состояния электрона в атоме. Так, для отрыва первого электрона от атома азота затрачивается энергия 14,5 эВ, а для отрыва второго электрона — 29,5 эВ, для отрыва третьего — 47,4 эВ.

Факторы, вызывающие ионизацию газа называются ионизаторами.

Различают три вида ионизации: термоионизацию, фотоионизацию и ударную ионизацию.

  • Термоионизация происходит в результате столкновения атомов или молекул газа при высокой температуре, если кинетическая энергия относительного движения сталкивающихся частиц превышает энергию связи электрона в атоме.
  • Фотоионизация происходит под действием электромагнитного излучения (ультрафиолетового, рентгеновского или γ-излучения), когда энергия, необходимая для отрыва электрона от атома, передается ему квантом излучения.
  • Ионизация электронным ударом (или ударная ионизация) — это образование положительно заряженных ионов в результате столкновений атомов или молекул с быстрыми, обладающими большой кинетической энергией, электронами.

Процесс ионизации газа всегда сопровождается противоположным процессом восстановления нейтральных молекул из разноименно заряженных ионов вследствие их электрического притяжения. Это явление называется рекомбинацией. При рекомбинации выделяется энергия, равная энергии, затраченной на ионизацию. Это может вызвать, например, свечение газа.

Если действие ионизатора неизменно, то в ионизованном газе устанавливается динамическое равновесие, при котором в единицу времени восстанавливается столько же молекул, сколько их распадается на ионы. При этом концентрация заряженных частиц в ионизованном газе остается неизменной. Если же прекратить действие ионизатора, то рекомбинация начнет преобладать над ионизацией и число ионов быстро уменьшится почти до нуля. Следовательно, наличие заряженных частиц в газе — явление временное (пока действует ионизатор).

При отсутствии внешнего поля заряженные частицы движутся хаотически.

Газовый разряд

При помещении ионизированного газа в электрическое поле на свободные заряды начинают действовать электрические силы, и они дрейфуют параллельно линиям напряженности: электроны и отрицательные ионы — к аноду, положительные ионы — к катоду (рис. 1). На электродах ионы превращаются в нейтральные атомы, отдавая или принимая электроны, тем самым замыкая цепь. В газе возникает электрический ток.

Читайте также:  Сила тока ощущения пострадавшего

  • Электрический ток в газах — это направленное движение ионов и электронов.

Электрический ток в газах называется газовым разрядом.

Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду.

В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов.

Таким образом, проводимость газов имеет ионно-электронный характер.

Несамостоятельный разряд

Рассмотренный выше механизм прохождения электрического тока через газы при постоянном воздействии на газ внешнего ионизатора представляет собой несамостоятельный разряд, так как при прекращении действия ионизатора прекращается и ток в газе.

  • Несамостоятельный разряд — это разряд, который зависит от наличия ионизатора.

Исследуем зависимость силы тока от напряжения при несамостоятельном разряде в газе. Для этой цели удобно использовать стеклянную трубку с двумя впаянными в стекло металлическими электродами. Соберем цепь по схеме, изображенной на рисунке 2.

Пусть с помощью какого-нибудь ионизатора, например за счет воздействия рентгеновских лучей, в газе образуется ежесекундно определенное число пар заряженных частиц: электронов и положительных ионов.

При отсутствии напряжения на электродах (U = 0) гальванометр, включенный в цепь (см. рис. 2), покажет нуль (I = 0). При небольшой разности потенциалов между электродами трубки положительно заряженные ионы начнут перемещаться к отрицательному электроду (катоду), а электроны и отрицательно заряженные ионы — к аноду, т. е. возникнет газовый разряд.

Однако вследствие рекомбинации не все образующиеся под действием ионизатора ионы доходят до электродов. Часть их, рекомбинируя, образует нейтральные молекулы. По мере увеличения разности потенциалов между электродами трубки доля заряженных частиц, достигающих электродов, увеличивается, т. е. сила тока в цепи возрастает (рис. 3). Объясняется это тем, что при большем напряжении между электродами ионы движутся с большей скоростью, поэтому им остается все меньше времени для воссоединения в нейтральные молекулы.

Наконец, при некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток, как говорят, достигает насыщения (см. рис. 3, горизонтальный участок графика).

Таким образом, вольт-амперная характеристика при несамостоятельном разряде в газах является нелинейной, т. е. закон Ома для газов выполняется только при малых напряжениях.

Самостоятельный разряд

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (рис. 4). Это означает, что в газе появляются дополнительные ионы сверх тех, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор можно теперь убрать. Поскольку разряд не нуждается для своего поддержания во внешнем ионизаторе, его называют самостоятельным разрядом.

Напряжение U = Uпр, при котором несамостоятельный электрический разряд переходит в самостоятельный, называют напряжением пробоя газа, а сам процесс такого перехода — электрическим пробоем газа.

Электрон, ускоряясь электрическим полем, на своем пути к аноду сталкивается с ионами и нейтральными молекулами. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля. Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля.

Если кинетическая энергия электрона превосходит работу Wi, которую нужно совершить, чтобы ионизовать нейтральный атом (или молекулу), то при столкновении электрона с атомом (или молекулой) происходит его (ее) ионизация, называемая ионизацией электронным ударом.

В результате столкновения электрона с атомом образуется еще один электрон и положительный ион. Таким образом, вместо одной заряженной частицы появляются три — ион и два электрона. Эти электроны, в свою очередь, получают энергию в поле и ионизуют новые атомы и т. д. Вследствие этого число заряженных частиц очень быстро возрастает. Описанный процесс имеет сходство с образованием снежной лавины в горах и поэтому получил название электронной (или ионной) лавины.

Лавинообразное нарастание числа заряженных частиц в газе может начаться под действием сильного электрического поля, если в газе окажется хотя бы один электрон. Ионизатор в этом случае не нужен. Так, например, в окружающем нас воздухе всегда имеется некоторое число ионов и электронов, возникающих под действием радиоактивных излучений земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также других излучений, проникающих в земную атмосферу из космического пространства.

Обратим внимание на то, что роль электронов и ионов в образовании лавинного разряда в газах неодинакова. Основную роль в ударной ионизации играют свободные электроны.

Но ионизация только электронным ударом не может обеспечить длительный самостоятельный разряд. Действительно, ведь все возникающие таким образом электроны движутся по направлению к аноду и по достижении анода «выбывают из игры». Для поддержания разряда необходима эмиссия электронов с катода («эмиссия» означает «испускание»). Эмиссия электронов может быть обусловлена несколькими причинами.

Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

Катод может испускать электроны при нагревании до высокой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используют для изготовления катодов.

При самостоятельном разряде нагрев катода может происходить за счет бомбардировки его положительными ионами. Если энергия ионов не слишком велика, то выбивания электронов с катода не происходит и электроны испускаются вследствие термоэлектронной эмиссии.

В газах при больших напряженностях электрических полей электроны достигают таких больших энергий, что начинается ионизация электронным ударом. Разряд становится самостоятельным и продолжается без внешнего ионизатора.

Виды самостоятельного разряда

В зависимости от давления газа, напряжения, приложенного к электродам, формы и характера расположения электродов различают следующие типы самостоятельного разряда: тлеющий, коронный, дуговой и искровой.

  • Тлеющий разряд наблюдается при пониженных давлениях газа (порядка 0,1 мм рт. ст.). Для возбуждения такого разряда достаточно напряжения между электродами в несколько сотен (а иногда и значительно меньше) вольт. Тлеющий разряд используют в газоразрядных трубках для освещения и рекламы. Красное свечение возникает при наполнении трубки неоном. Положительный столб в аргоне имеет синевато-зеленоватый цвет. В лампах дневного света используют разряд в парах ртути.
  • Искровой разряд можно получить, если постепенно увеличивать напряжение между двумя электродами. При некотором напряжении возникает электрическая искра. Примером гигантского искрового разряда является молния. Она возникает либо между двумя заряженными облаками, либо между заряженным облаком и Землей. Сила тока в молнии достигает 500000 ампер, а разность потенциалов между облаком и Землей — 1 млрд. вольт. Длина светящегося канала может достигать 10 км, а его диаметр — 4 м.
  • Если после зажигания искрового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться, и возникнет новая форма газового разряда, называемого дуговым. В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами. Ее температура при атмосферном давлении около 4000 °С. Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других осветительных установках. Вследствие высокой температуры дуга широко применяется для сварки и резки металлов. Высокую температуру дуги используют также при устройстве дуговых электрических печей, играющих важную роль в современной электрометаллургии.
  • Коронный разряд наблюдается при сравнительно высоких давлениях газа (например, при атмосферном давлении) в резко неоднородном электрическом поле. Так, например, коронный разряд можно получить около тонкой проволоки. При этом возле нее наблюдается свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда. Коронный разряд используется в технике для устройства электрофильтров, предназначенных для очистки промышленных газов от твердых и жидких примесей. В природе коронный разряд возникает иногда под действием атмосферного электрического поля на ветках деревьев, верхушках мачт (так называемые огни святого Эльма). Коронный разряд может возникнуть на тонких проводах, находящихся под напряжением.
Читайте также:  Как определить ток утечки изоляции

Понятие о плазме

  • Плазма — это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой.

Степень ионизации плазмы α определяется отношением числа ионизированных атомов к их общему числу\[

\alpha = \frac\]. В зависимости от степени ионизации плазма подразделяется на слабо ионизированную (α — доли процента), частично ионизированную (α — несколько процентов) и полностью ионизированную (α = 100%). Слабо ионизированной плазмой является ионосфера — верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 10 6 — 10 7 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах.

Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.

Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма — самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму.

Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую — плазменные источники электроэнергии, магнитогидродинамические генераторы. Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.

Источник

Вольт-амперная характери­стика протекания электрического разряда в газовом промежутке

Рассмотрим вольт-амперную характери­стику протекания электрического разряда в газовом промежутке представлено рис.

Рис. 13.1. Воль — амперная характеристика разряда в воздушном промежутке

Участок Oab соответствует несамостоятельному разряду. Ток поддерживается за счет внешних ионизаторов, известно, что при нормальных условиях любой объем газа содержит некоторое число заряженных частиц. Так, например, в 1 см3 воздуха на уровне моря содержится в среднем около 103 пар ионов, создаваемых под действием космических лучей, ультрафиолетового излучения Cолнца и естественной радиоактивности Земной коры. Ток на этом участке изменяется в соответствии с законом Ома. Участок a-b называется участком «насыщения», так как все заряды, содержащие в промежутке, достигают электродов. При дальнейшем увеличении напряжения (U2 = — kт L1× di1/dt), скорость движения ионов по направлению к электродам увеличивается. При напряжении Uн учасок bc начинается ударная ионизация, т. е. самостоятельный газовый разряд. Когда межэлектродный промежуток перекрывается полностью проводящей газоразрядной плазмой, наступает его пробой. Характерные стадии пробоя: ударня ионизация, лавинообразный процесс образования электронов (и ионов). Проскочившая искра создает между электродами сильно нагре­тый и ионизированный канал. Тем­пература в канале разряда радиу­сом 0,2. 0,6 мм достигает 5000 — 10000 К (градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15). При достаточной мощности источника, способной вызвать ток в цепи порядка нескольких ма, стадия пробоя переходит в стадию тлеющего разряда, участок cd. Сопротивление канала резко падает до значения нескольких кОм. При этом колебательный процесс нарушается.

Искровой разряд на свече состоит из двух фаз — емкостной и индуктивной (рис. 123).

Рис. 123. Изменение первичного тока i1 и вторичного напряжения i2 при работе системы зажигания

t1 — время нарастания вторичного напряжения до момента яробоя, t2 — время емкостного разряда, t3 — время индуктивного разряда

Первая емкостная фаза разряда (после пробоя искрового про­межутка свечи) характеризуется большими разрядными токами, поскольку искровой промежуток сильно ионизирован и сопротив­ление его мало. Разрядные токи при этом достигают нескольких десятков ампер, но протекают в течение очень короткого проме­жутка времени (доли или единицы микросекунд). Скорость изме­нения силы тока достигает около 50·10 9 А/с. Емкостную фазу разряда можно наблюдать как ярко голубоватую искру.

Вторая индуктивная фаза разряда за счет оставшейся энергии происходит по подготовленному каналу, при этом ток непрерывно протекает через искровой промежуток, сильно ионизированный предыдущим емкостным разрядом. Продолжительность этой фазы достигает нескольких миллисекунд, а сила тока измеряется де­сятками миллиампер. Разряд продолжается практически до пол­ного расхода электромагнитной энергии.

При нормальной величине питающего напряжения энергия емкостной фазы равна 5—15 МДж, в то время как энергия индук­тивной фазы составляет 30—60 МДж. Обычно топливная смесь воспламеняется во время емкостной фазы искрового разряда. При пуске холодного двигателя индуктивная фаза способствует нагреву начального объема воспламеняемой смеси.

Основной характеристикой батарейной системы зажигания является зависимость напряжения U2m от частоты вращения коленчатого вала двигателя n (рис. 124).

Рис. 124. Зависимость напряжения U2m от ча­стоты, вращения nДВ вала двигателя: 1 — теоретическая; 2 — экспериментальная

Действительная кривая 2 (рис. 124) расположена ниже теоретической, так как между контактами прерывателя при их медленном размыкании происходит дугообразование.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector